BERNSTEIN-TYPE APPROXIMATION PROCESSES FOR VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHIRAHO (西白保敏彦)

Faculty of Science, University of the Ryukyus (琉球大学理学部)

ABSTRACT. A sequence of the Bernstein-type operators for vectorvalued functions is provided and its uniform convergence is considered by making use of a theorem of Korovkin type under certain requirements.

1. Introduction

Let f be a real-valued continuous function on the unit r-cube

$$\mathbb{I}_r = \{x = (x_1, x_2, \cdots, x_r) \in \mathbb{R}^r : 0 \le x_i \le 1, i = 1, 2, \cdots, r\},\$$

where \mathbb{R}^r is the r-dimensional Euclidean space and let n be a positive integer. Then the n-th Bernstein polynomial of f is defined by

$$B_n(f)(x) = \sum_{k_1=0}^n \cdots \sum_{k_r=0}^n \prod_{i=1}^r \binom{n}{k_i} x_i^{k_i} (1-x_i)^{n-k_i} f(k_1/n, \cdots, k_r/n).$$
 (1)

It is well-known that $\{B_n(f)\}$ converges uniformly to f on \mathbb{I}_r (cf. [6]). This result also remains true for a continuous function f taking values in a normed linear space ([8]).

In this paper, we give a generalization of (1) and consider its uniform convergence in the context of normed vector lattices. For this we have to establish a theorem of Korovkin type for vector-valued functions (cf. [8], [9], [10]). For the background of the Korovkin-type

approximation theory, see the book of Altomare and Campiti [2], in which an excellent source and a vast literature of this theory can be found (cf. [3], [4], [5]).

2. A theorem of Korovkin type

Let X be a compact Hausdorff space and let E be a normed vector lattice with its positive cone $E_+ = \{a \in E : a \geq 0\}$. For the general notions and terminology needed from the theory of normed vector lattices, we refer to [12] (cf. [1], [7]). Let B(X, E) denote the normed vector lattice of all E-valued norm bounded functions on X with the usual pointwise addition, scalar multiplication, ordering and the supremum norm $\|\cdot\|$. We shall use the same symbol $\|\cdot\|$ for the underlying norms. C(X, E) denotes the closed sublattice of B(X, E) consisting of all E-valued continuous functions on X. In the case when E is equal to \mathbb{R} , we simply write B(X) and C(X) instead of B(X, E) and C(X, E), respectively.

Throughout this paper we suppose that E always contains an element e such that e>0, $\|e\|=1$ and $|a|\leq\|a\|e$ for all $a\in E$. We call e the normal order unit of E. We define $\rho(x)=e$ and $1_X(x)=1$ for all $x\in X$. Notice that ρ and 1_X are the normal order units of C(X,E) and C(X), respectively. For any $a\in E$ and $v\in B(X)$, the function $v\otimes a$ is defined by $(v\otimes a)(x)=v(x)a$ for all $x\in X$. Also, for any $v\in B(X)$ and $f\in B(X,E)$, we define (vf)(x)=v(x)f(x) for all $x\in X$. Clearly, $v\otimes a$ and vf belong to B(X,E), and $\|v\otimes a\|=\|v\|\|a\|,\|vf\|\leq\|v\|\|f\|$ and $\rho=1_X\otimes e$. We shall denote by $C(X)\otimes E$ the linear subspace of C(X,E) consisting of all finite sums of functions of the form $v\otimes a$, where $v\in C(X)$ and $a\in E$. A bounded linear operator L of C(X,E) into B(X,E) is said to be quasi-positive if $v,w\in C(X)$ and $|v|\leq w$, then $\|L(v\otimes a)(x)\|\leq \|L(w\otimes a)(x)\|$ for all $a\in E_+$ and all $x\in X$. (cf. [8], [9]). A typical example of such an

operartor is given by

$$T(f) = hf$$
 for every $f \in C(X, E)$, (2)

where h is an arbitrary fixed function in B(X).

Lemma 1. If L is a positive linear operator of C(X, E) into B(X, E), then it is quasi-positive and $||L|| = ||L(\rho)||$.

Proof. Let $v, w \in C(X), |v| \leq w$ and $a \in E_+$. Then we have $|v \otimes a| \leq w \otimes a$, and so $|L(v \otimes a)| \leq L(w \otimes a)$. Thus for all $x \in X$, $|L(v \otimes a)(x)| \leq L(w \otimes a)(x)$, which implies $||L(v \otimes a)(x)|| \leq ||L(w \otimes a)(x)||$. Since, for all $f \in C(X, E)$, $|f| \leq ||f||\rho$, we have $|L(f)| \leq ||f||L(\rho)$, and so $||L(f)|| \leq ||f|||L(\rho)||$. Therefore, $||L|| \leq ||L(\rho)||$. On the other hand, $||L(\rho)|| \leq ||L||$ because of $||\rho|| = 1$.

Lemma 2. ([8; Lemma 2) $C(X) \otimes E$ is dense in C(X, E).

In fact, this is an immediate consequence of [11; Theorem 1.15], since C(X) separates the points of X.

Now, we have the following Korovkin-type theorem (cf. [8; Corollary 4 (i) and Remark]), which can be useful for later applications.

Theorem 1. Let $\{L_{\alpha}\}$ be a net of quasi-positive linear operators of C(X, E) into B(X, E) such that there exists an element α_0 for which

$$\sup\{\|L_{\alpha}\|: \alpha \ge \alpha_0\} < \infty \tag{3}$$

and let T be as in (2). Let G be a subset of C(X) separating the points of X. Then the following statements are equivalent:

(a) For all $g \in G$, $a \in E_+$ and for j = 0, 1, 2,

$$\lim_{\alpha} ||L_{\alpha}(g^{j} \otimes a) - T(g^{j} \otimes a)|| = 0, \tag{4}$$

where $g^0 = 1_X$.

(b) For all $g \in G$ and all $a \in E_+$, (4) holds with j = 0 and $\lim_{\alpha} \mu_{\alpha}(g, a) = 0$, where

$$\mu_{\alpha}(g, a) = \sup\{\|L_{\alpha}((g - g(y)1_X)^2 \otimes a)(y)\| : y \in X\}.$$

(c) For all $f \in C(X, E)$,

$$\lim_{\alpha} ||L_{\alpha}(f) - T(f)|| = 0.$$

Proof. Since

$$L_{\alpha}((g-g(y)1_X)^2\otimes a)(y)=L_{\alpha}(g^2\otimes a)(y)-T(g^2\otimes a)(y)$$

 $-2g(y)\{L_{\alpha}(g\otimes a)(y)-T(g\otimes a)(y)\}+g^{2}(y)\{L_{\alpha}(1_{X}\otimes a)(y)-T(1_{X}\otimes a)(y)\},$ we have

$$\mu_{\alpha}(g,a) \le ||L_{\alpha}(g^2 \otimes a) - T(g^2 \otimes a)||$$

$$+ 2\|g\|\|L_{\alpha}(g \otimes a) - T(g \otimes a)\| + \|g^{2}\|\|L_{\alpha}(1_{X} \otimes a) - T(1_{X} \otimes a)\|.$$

Therefore (a) implies (b). Next we suppose that (b) is valid. Let $v \in C(X)$, $b \in E$ and $\epsilon > 0$ be given. Note that b has the representation

$$b = b^+ - b^-,$$

where b^+ and b^- are the positive part and the negative part of b, respectively. Since X is compact and G separates the points of X, the original topology on X is identical with the weak topology on X induced by G. Therefore, there exists a finite subset $\{g_1, g_2, \dots, g_m\}$ of G and a costant K > 0 such that

$$|v(x) - v(y)| \le \epsilon + K \sum_{i=1}^{m} (g_i(x) - g_i(y))^2$$

for all $x, y \in X$. Hence it follows that

$$||L_{\alpha}((v - v(y)1_{X}) \otimes b^{+})(y)|| \leq \epsilon ||L_{\alpha}(1_{X} \otimes b^{+})(y)||$$
$$+K \sum_{i=1}^{m} ||L_{\alpha}((g_{i} - g_{i}(y)1_{X})^{2} \otimes b^{+})(y)||$$

for all $y \in X$, and so we have

$$||L_{\alpha}(v \otimes b^{+}) - T(v \otimes b^{+})||$$

$$\leq \|L_{\alpha}(v \otimes b^{+}) - vL_{\alpha}(1_{X} \otimes b^{+})\| + \|v\| \|L_{\alpha}(1_{X} \otimes b^{+}) - T(1_{X} \otimes b^{+})\|$$

$$\leq \epsilon \|L_{\alpha}(1_X \otimes b^+)\| + K \sum_{i=1}^m \mu_{\alpha}(g_i, b^+) + \|v\| \|L_{\alpha}(1_X \otimes b^+) - T(1_X \otimes b^+)\|,$$

which together with the assertion (b) yields $\lim_{\alpha} ||L_{\alpha}(v \otimes b^{+}) - T(v \otimes b^{+})|| = 0$. Similarly, we have $\lim_{\alpha} ||L_{\alpha}(v \otimes b^{-}) - T(v \otimes b^{-})|| = 0$. Now, we have

$$||L_{\alpha}(v \otimes b) - T(v \otimes b)|| \leq ||L_{\alpha}(v \otimes b^{+}) - T(v \otimes b^{+})|| + ||L_{\alpha}(v \otimes b^{-}) - T(v \otimes b^{-})||,$$
 and so

$$\lim_{\alpha} ||L_{\alpha}(v \otimes b) - T(v \otimes b)|| = 0.$$

Hence, in view of (3), Lemma 2 and the theorem of Banach-Steinhaus establish the statement (c). It is obvious that (c) implies (a).

Remark 1. Theorem 1 can be applied in the following situation: Let X be a compact subset of a real locally convex Hausdorff vector space F with its dual space F^* and $G = \{u|_X : u \in F^*\}$, where $u|_X$ denotes the restriction of u to X. If X is a compact convex subset of F, then G can be taken as the space of all real-valued continuous affine functions on X.

3. Bernstein-type operators

Let B[E] denote the normed algebra of all bounded linear operators of E into itself with the identity operator I. Let X_1, X_2, \dots, X_r be compact Hausdorff spaces and we here consider their product space

$$X = \prod_{i=1}^{r} X_i = \{x = (x_1, x_2, \dots, x_r) : x_i \in X_i, i = 1, 2, \dots, r\}.$$

Let $\Phi = \{(\Phi_{n,k}^{(i)})_{n,k\geq 0}: i=1,2,\cdots,r\}$ be a set of infinite lower triangular matrices of continuous functions from X_i into B[E] and let

 $T = \{T_{n,k_1,k_2,\cdots,k_r} : 0 \le k_i \le n, i = 1,2,\cdots,r\}$ be a set of bounded linear operators of C(X,E) into E. Then we define

$$B_{n}(f)(x) = B_{n,\mathcal{T},\Phi}(f)(x) = \sum_{k_{1}=0}^{n} \cdots \sum_{k_{r}=0}^{n} \prod_{i=1}^{r} \Phi_{n,k_{i}}^{(i)}(x_{i})(T_{n,k_{1},\cdots,k_{r}}(f))$$
(5)

for all $f \in C(X, E)$ and all $x \in X$. Notice that each B_n is a bounded linear operator of C(X, E) into itself. We call B_n the *n*-th Bernstein-type operator with respect to T and Φ .

If we take

$$X_i = \mathbb{I}_1 = [0, 1]$$
 $(i = 1, 2, \dots, r)$ (6)

and

$$\Phi_{n,k}^{(i)}(t) = \varphi_{n,k}^{(i)}(t)I$$
 $(t \in X_i, i = 1, 2, \dots, r),$

where

$$\varphi_{n,k}^{(i)} \in C(X_i)$$
 and $(i = 1, 2, \cdots, r),$

then (5) becomes

$$B_n(f)(x) = B_{n,\mathcal{T},\Phi}(f)(x) = \sum_{k_1=0}^n \cdots \sum_{k_r=0}^n \prod_{i=1}^r \varphi_{n,k_i}^{(i)}(x_i) T_{n,k_1,\cdots,k_r}(f). \quad (7)$$

Furthermore, in particular, if we take

$$\varphi_{n,k}^{(i)}(t) = \binom{n}{k} t^k (1-t)^{n-k} \qquad (t \in X_i, i = 1, 2, \dots, r)$$

and define

$$T_{n,k_1,k_2,\cdots,k_r}(f) = f(k_1/n, k_2/n, \cdots, k_r/n) \qquad (f \in C(X, E)),$$
 (8)

then (7) reduces to (1) in case of $E = \mathbb{R}$.

From now on let X_i , $i=1,2,\cdots,r$, be as in (6) and each operator T_{n,k_1,k_2,\cdots,k_r} is defined by (8).

Lemma 3. Suppose that for all $t \in X_i$, $i = 1, 2, \dots, r$,

$$\sum_{k=0}^{n} \Phi_{n,k}^{(i)}(t) = I, \quad \sum_{k=1}^{n} k \Phi_{n,k}^{(i)}(t) = ntI$$
 (9)

and

$$\sum_{k=2}^{n} k(k-1) \mathcal{\Phi}_{n,k}^{(i)}(t) = n(n-1)t^2 I. \tag{10}$$

Then we have

$$B_n(1_X \otimes a) = 1_X \otimes a, \quad B_n(e_j \otimes a) = e_j \otimes a$$

and

$$B_n(e_j^2 \otimes a) = e_j^2 \otimes a + \frac{1}{n}(e_j - e_j^2) \otimes a$$

for all $a \in E, n \ge 1$ and $j = 1, 2, \dots, r$. Here, e_j denotes the j-th coordinate function on X defined by

$$e_j(x) = x_j$$
 $(x = (x_1, x_2, \dots, x_r) \in X).$

Proof. Let $x \in X$. Then we have

$$B_n(1_X \otimes a)(x) = \sum_{k_1=0}^n \cdots \sum_{k_r=0}^n \prod_{i=1}^r \Phi_{n,k_i}^{(i)}(x_i)(a) = I(a) = a,$$

$$B_n(e_j \otimes a)(x) = \sum_{k_j=1}^n \Phi_{n,k_j}^{(j)}(x_j) \left(\frac{k_j}{n}a\right) = \frac{1}{n}(nx_jI)(a) = x_ja$$

and

$$B_n(e_j^2 \otimes a)(x) = \sum_{k_j=1}^n \Phi_{n,k_j}^{(j)}(x_j) \left(\frac{k_j^2}{n^2}a\right)$$

$$= \frac{1}{n^2} \left\{ \sum_{k_j=1}^n k_j \Phi_{n,k_j}^{(j)}(x_j)(a) + \sum_{k_j=2}^n k_j (k_j - 1) \Phi_{n,k_j}^{(j)}(x_j)(a) \right\}$$

$$= \frac{1}{n^2} \left\{ (nx_j I)(a) + (n(n-1)x_j^2 I)(a) \right\} = x_j^2 a + \frac{1}{n} (x_j - x_j^2) a,$$

which implies desired result.

Theorem 2. Suppose that for every $t \in X_i$, $i = 1, 2, \dots, r$, each operator $\Phi_{n,k}^{(i)}(t)$ is positive, and (9) and (10) are fulfilled. Then we have $\lim_{n\to\infty} ||B_n(f) - f|| = 0$ for all $f \in C(X, E)$.

Proof. We take $G = \{e_1, e_2, \dots, e_r\}$, which clearly separates the points of X (cf. Remark 1). Since each B_n is positive, by Lemma 1, it is quasi-positive and $||B_n|| = ||B_n(1_X \otimes e)||$. Therefore, the desired result follows from Theorem 1 and Lemma 3.

Lemma 4. Let $\{(\Psi_{n,k}^{(i)})_{n,k\geq 0}: i=1,2,\cdots,r\}$ be a set of infinite matrices of continuous mappings from X_i into B[E] such that for all $t\in X_i, i=1,2,\cdots,r$,

$$\Psi_{n,k+m}^{(i)}(t) = t^m \Psi_{n,k}^{(i)}(t) \qquad (n,k=0,1,2,\cdots,m=1,2)$$
 (11)

and

$$\sum_{k=0}^{n} \binom{n}{k} \Psi_{n-k,k}^{(i)}(t) = I \qquad (n = 0, 1, 2, \cdots).$$
 (12)

Then we have

$$\sum_{k=1}^{n} k \binom{n}{k} \Psi_{n-k,k}^{(i)}(t) = ntI$$
 (13)

and

$$\sum_{k=2}^{n} k(k-1) \binom{n}{k} \Psi_{n-k,k}^{(i)}(t) = n(n-1)t^2 I$$
 (14)

for all $t \in X_i, i = 1, 2, \dots, r$.

Proof. Since

$$k \binom{n}{k} = n \binom{n-1}{k-1} \qquad (1 \le k \le n)$$

and

$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$$
 $(2 \le k \le n),$

it follow from (11) and (12) that

$$\sum_{k=1}^{n} k \binom{n}{k} \Psi_{n-k,k}^{(i)}(t) = n \sum_{k=1}^{n} \binom{n-1}{k-1} \Psi_{n-k,k}^{(i)}(t)$$

$$= n \sum_{j=0}^{n-1} \binom{n-1}{j} \Psi_{n-j-1,j+1}^{(i)}(t) = nt \sum_{j=0}^{n-1} \binom{n-1}{j} \Psi_{n-1-j,j}^{(i)}(t) = nt I$$

and

$$\sum_{k=2}^{n} k(k-1) \binom{n}{k} \Psi_{n-k,k}^{(i)}(t) = n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} \Psi_{n-k,k}^{(i)}(t)$$

$$= n(n-1) \sum_{j=0}^{n-2} {n-2 \choose j} \Psi_{n-j-2,j+2}^{(i)}(t)$$

$$= n(n-1)t^2 \sum_{j=0}^{n-2} {n-2 \choose j} \Psi_{n-2-j,j}^{(i)}(t) = n(n-1)t^2 I.$$

Therefore, The equalities (13) and (14) hold.

Theorem 3. Let $(\Psi_{n,k}^{(i)})_{n,k\geq 0}$, $i=1,2,\cdots,r$, be as in Lemma 4 with the additional assumption that all the operators $\Psi_{n,k}^{(i)}(t)$ are positive for each $t\in X_i, i=1,2,\cdots,r$, and define

$$\Phi_{n,k}^{(i)} = \begin{cases} \binom{n}{k} \Psi_{n-k,k}^{(i)} & (0 \le k \le n) \\ 0 & (k \ge n). \end{cases}$$

Then we have $\lim_{n\to\infty} ||B_n(f) - f|| = 0$ for all $f \in C(X, E)$.

Proof. This follows from Lemma 4 and Theorem 2. \Box

Let $\{\{\varphi_k^{(i)}\}_{k\geq 0}: i=1,2,\cdots,r\}$ be a set of sequences of continuous mappings from X_i into B[E], and we define

$$\Delta^{n} \varphi_{k}^{(i)}(t) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \varphi_{n+k-j}^{(i)}(t) \qquad (n, k = 0, 1, 2, \cdots). \quad (15)$$

Suppose that for all $t \in X_i, i = 1, 2, \dots, r$,

$$\varphi_{k+m}^{(i)}(t) = t^m \varphi_k^{(i)}(t) \qquad (k = 0, 1, 2, \dots, m = 1, 2)$$
 (16)

and

$$\sum_{k=0}^{n} \binom{n}{k} \Delta^{n-k} \varphi_k^{(i)}(t) = I \qquad (n = 0, 1, 2, \cdots).$$
 (17)

Corollary 1. Assume that all the operator $\Delta^n \varphi_k^{(i)}(t)$ given by (15) are positive for each $t \in X_i, i = 1, 2, \dots, r$, and define

$$\Phi_{n,k}^{(i)} = \begin{cases} \binom{n}{k} \Delta^{n-k} \varphi_k^{(i)} & (0 \le k \le n) \\ 0 & (k \ge n) \end{cases}$$

Then we have $\lim_{n\to\infty} ||B_n(f) - f|| = 0$ for all $f \in C(X, E)$.

Indeed, setting

$$\Psi_{n,k}^{(i)} = \Delta^n \varphi_k^{(i)}$$
 $(n, k = 0, 1, 2, \dots, i = 1, 2, \dots r),$

the conditions (16) and (17) imply the equalities (11) and (12), respectively. Thus, by Theorem 3, we have the claim of the corollary.

In particular, we take

$$\varphi_k^{(i)}(t) = t^k I$$
 $(t \in X_i, i = 1, 2, \dots, r, k = 0, 1, 2, \dots).$

Then we have

$$\Delta^n \varphi_k^{(i)}(t) = (1-t)^n t^k I \qquad (n, k = 0, 1, 2, \dots, t \in X_i, i = 1, 2, \dots, r),$$

and the conditions (16) and (17) are also satisfied. Furthermore, we get again the Bernstein operators given by (1).

Remark 2. Suppose that E is a Banach space. Let r = 1 and let $\Phi_{n,k}^{(1)}$ be as in Corollary 1. Then $B_n(f)$ becomes the Φ -Bernstein approximation of f of order n due to Tucker [13]. Also, conversely if we have $\lim_{n\to\infty} \|B_n(f) - f\| = 0$ for every $f \in C(X_1, E)$, then

$$\varphi_k^{(1)}(t) = t^k I$$
 $(t \in X_1, k = 0, 1, 2, \dots)$

([13; Corollary]).

References

- [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press (New York, 1985).
- [2] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, Walter de Gruyter (Berlin-New York, 1994).
- [3] K. Donner, Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Math. Vol. 904, Springer Verlag (Berlin-Heidelberg-New York, 1982).

- [4] K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Math. Vol. 1517, Springer Verlag (Berlin-Heidelberg-New York, 1992).
- [5] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp. (Delhi, 1960).
- [6] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press (Toronto, 1953).
- [7] P. Meyer-Nieberg, Banach Lattices, Springer Verlag (Berlin-Heidelberg-New York, 1991).
- [8] T. Nishishiraho, Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 40 (1992),519-526.
- [9] T. Nishishiraho, Approximation processes of quasi-positive linear operators, Ryukyu Math. J., 5 (1992), 65-79.
- [10] T. Nishishiraho, Approximation of Korovkin type for vector-valued functions, Ryukyu Math. J., 7(1994), 65-81.
- [11] J. B. Prolla, Approximation by Vector-Valued Functions, North-Holland Publ. Co. (Amsterdam-New York-Oxford, 1977).
- [12] H. H. Schaefer, Banach Lattices and Positive Operators, Springer Verlag (Berlin-Heidelberg-New York, 1974).
- [13] D. H. Tucker, A note on Bernstein polynomial type approximations, Proc. Amer. Math. Soc., 18 (1967), 492-494.