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BERNSTEIN-TYPE APPROXIMATION PROCESSES
FOR VECTOR-VALUED FUNCTIONS

TOSHIHIKO NISHISHIRAHO (F& H{rEZ)
Faculty of Science, University of the Ryukyus (FREkRKFEHFE)

ABSTRACT. A sequence of the Bernstein-type operators for vector-
valued functions is provided and its uniform convergence is consid-
ered by making use of a theorem of Korovkin type under certain

requirements.

1. Introduction

Let f be a real-valued continuous function on the unit r-cube
]Ir = {.’Ij — (1'1,.’132’-. . 72},-) ceR":0 SSC,L' S 17’1, = 1,2’... ,7‘},

where R" is the r-dimensional Euclidean space and let n be a positive
integer. Then the n-th Bernstein polynomial of f is defined by
P ILD 90 | () ETIE L YRR
k1=0  k,=0i=1
It is well-known that {B5,(f)} converges uniformly to f on L. (cf. [6]).
This result also remains true for a continuous function f taking values
in a normed linear space ([8]).

In this paper, we give a generalization of (1) and consider its
uniform convergence in the context of normed vector lattices. For this
we have to establish a theorem of Korovkin type for vector-valued
functions (cf. [8], [9], [10]). For the background of the Korovkin-type



approximation theory, see the book of Altomare and Campiti [2], in

which an excellent source and a vast literature of this theory can be

found (cf. [3], [4], [3])-

2. A theorem of Korovkin type

Let X be a compact Hausdorff space and let E be a normed
vector lattice with its positive cone Ey = {a € E : a > 0}. For the
general notions and terminology needed from the theory of normed
vector lattices, we refer to [12] (cf. [1], [7]). Let B(X, E) denote the

normed vector lattice of all E-valued norm bounded functions on X

with the usual pointwise addition, scalar multiplication, ordering and.

the supremum norm || - ||. We shall use the same symbol || - || for the
underlying norms. C(X, E) denotes the closed sublattice of B(X, E)
consisting of all E-valued continuous functions on X. In the case when
E is equal to R, we simply write B(X) and C'(X) instead of B(X, E)
and C(X, E), respectively.

Throughout this paper we suppose that E always contains an
element e such that e > 0, ||le]] = 1 and |a| < ||a|le for all a € E. We
call e the normal order unit of E. We define p(z) = e and 1x(z) = 1
for all z € X. Notice that p and 1x are the normal order units of
C(X, E) and C(X), respectively. For any a € If and v € B(X), the
function v @ a is defined by (v ® a)(z) = v(z)a for all z € X. Also,
for any v € B(X) and f € B(X, E), we define (vf)(z) = v(z) f(zx) for
all z € X. Clearly, v ® a and vf belong to B(X, E), and |l[v ® af| =
lolll|all, lvfll < llvllllf]] and p = 1x ®e. We shall denote by C(X)QE
the linear subspace of C(X, E) consisting of all finite sums of functions
of the form v ® a, where v € C(X) and a € E. A bounded linear
operator L of C(X,E) into B(X, E) is said to be quasi-positive if
v,w € C(X) and |v] < w, then ||L(v ® a)(z)|| < ||L(w ® a)(z)|| for
alla € E, and all z € X. (cf. [8], [9]). A typical example of such an
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operartor is given by
T(f)=hf forevery f € C(X,E), | (2)

where h is an arbitrary fixed function in B(X).

Lemma 1. If L is a positive linear operator of C(X, E) into B(X, E),
then it 1is quasi-positive and || L|| = || L(p)]|.

Proof. Let v,w € C(X),|v] < wand a € E.. Then we have
[v®a| < w®a, and'so |L(v®a)| < L(w®a). Thus forallz € X, |L(v®
a)(z)| < L(w ® a)(z), which implies ||L(v ® a)(z)|| < ||L(w ® a)(z)]].
Since, for all f € C(X, E), [f| < ||fllp, we have |L(f)| < ||IfI|IL(p),
and so [|[L(f)[| < [[fIIL(p)ll. Therefore, ||L]] < [|L(p)||. On the other
hand, ||L(p)|| < ||L|| because of ||p|| = 1. O

Lemma 2. (/8; Lemma 2) C(X) ® E is dense in C(X, E).

In fact, this is an immediate consequence of [11; Theorem 1.15],
since C'(X) separates the points of X.
Now, we have the following Korovkin-type theorem (cf. [8; Corol-

lary 4 (i) and Remark]), which can be useful for later applications.

Theorem 1. Let {L,} be a net of quasi-positive linear operators of
C(X, E) into B(X, E) such that there exsits an element aq for which

sup{||La|| : @ > ap} < o0 (3)

and let T' be as in (2). Let G be a subset of C(X) separating the points

of X. Then the following statements are equivalent:

(a) For all g € G,a € E, and for j =0,1,2,
lim | La(’ ® 0) — T(g? ® )| =0, @)

‘where ¢° = 1x.



(b) For all g € G and all a € E,, (4) holds with j = 0 and
limg p24(g,a) = 0, where
tia (g, @) = sup{|| La((g — 9(1)1x)* ® ) ()| : y € X }.
(c) For all f € C(X, E),
lim [|La(f) = T(f)] = 0.
Proof. Since
La((g - 9)1x)* @ a)(y) = La(g* ® a)(y) — T(¢* ® a)(y)

~29(y){ La(9®0) () ~T(9®a) (y) }+9" (¥){ La(1x®a) (y) T (1x®a) (1)},
we have
Ha(9:a) < [|Lalg® ® @) = T(g* ® a)|
+2[lgllLalg ®a) = T(g ® a)ll + lg° | La(lx @ @) — T(1x @ a)l.
Therefore (a) implies (b). Next we suppose that (b) is valid. Let v €
C(X),b e E and € > 0 be given. Note that b has the representation

b=b"—b",

where b™ and b~ are the positive part and the negative part of b,
respectively. Since X is compact and G separates the points of X,
the original topology on X is identical with the weak topology on X
induced by G. Therefore, there exists a finite subset {g1,92, - , gm}
of G and a costant K > 0 such that

m

[v(2) —v()| < e+ KD (gi(z) — giy))”

=1

for all z,y € X. Hence it follows that

[La((v —v(y)1x) @b ) W)l < el La(1x @ 67) (W)

+K Y |ILa((9: — g:(¥)1x)? @ b7) ()]
i=1
for all y € X, and so we have

[ Lo(v@b") —T(v @b
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<[ La(v®b7) = vLla(lx @b7)|| + [Vl La(1x @ 6F) — T(1x ® bF)||

< €llLa(1x @07+ Kiua(gz’y %)+ [[vlll| La(1x @b7) = T(1x @11,

i=1
which together with the assertion (b) yields lim, || Lo (v @b7) —T (v ®
b*)|| = 0. Similarly, we have lim, || Lo (v®b™) —T(v®b7)|| = 0. Now,

we have
| Lo (v®@b) =T (v@b) || < [[La(v®b™) =T (v@b") ||+ La(v@d™) =T (v@b7)|,

and so
lim|[La(v®@b) — T'(v @) = 0.

Hence, in view of (3), Lemma 2 and the theorem of Banach-Steinhaus

establish the statement (c). It is obvious that (c) implies (a). O

Remark 1. Theorem I can be applied in the following situation: Let
X be a compact subset of a real locally convex Hausdorff vector space
F unth its dual space F* and G = {u|x : u € F*}, where u|x denotes
the restriction of u to X. If X is a compact convex subset of F', then GG
can be taken as the space of all real-valued continuous affine functions
on X.

3. Bernstein-type operators

Let B[E] denote the normed algebra of all bounded linear oper-
ators of I into itself with the identity operator!. Let X1, Xy, -+, X,

be compact Hausdorff spaces and we here consider their product space
X = HXL = {CL = (.’131,.’1327--- 71'7.) I € X,,;,Z‘ = 1727.. . 77-}_
'L:].

Let & = {(@S}’k)mkzo :1=1,2,---,7} be a set of infinite lower tri-

angular matrices of continuous functions from X; into B[F] and let



T = {Tokr ko pr - 0 < ki <n,i=1,2,--- 7} be a set of bounded
linear operators of C'(X, E) into E. Then we define

B.(f)(z) = Buzo(f Z Z Hdi(” Trjer o ()

k1=0 kr=01=1
(5)

for all f € C(X,FE) and all z € X. Notice that each B, is a bounded
linear operator of C'(X, E) into itself. We call B,, the n-th Bernstein-
type operator with respect to 7 and &. |

If we take

X, =1, =10,1] (izl,?,-.-,r) (6)

and _

where

then (5) becomes

Bu(N)@) = BaralH)@) = 3 -+ 3 T8 @) Tapn s (F). ()

k1=0 kr=01i=1

Furthermore, in particular, if we take

(pn.k() <k>tk(1—t) (tEXL77’:1727 7T)
and define

Takrha e () = flRaf1 koo Refm) - (f € O(X,E)),  (8)
then (7) reduces to (1) in case of £ = R.

From nowon let X;,2 =1,2,--- |7, be as in (6) and each operator
T ks ko, ke is defined by (8). ‘

Lemma 3. Suppose that for allt € X;,1=1,2,--- 7,

S ol (1) =1, 2 k@0, (t) = nt] (9)
k=0
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and
n

S k(k— 109, (1) = n(n — DI (10)

k=2

Then we have
Bn(lx ®a) =1x ®a, Bple;®a)=e;®a

and
2 2 1
B,(e;®a)=¢€;®@a+ — (e —e)@a

foralae Esn>1andj=1,2,---,r. Here, e; denotes the j-th
coordinate function on X defined by

e;(z) =z (z = (21,22, ,7,) € X).

Proof. Let € X. Then we have

B,z(l)(@a Z Z H@,(;k xz - ]( ) a,

kr=01i=1

Bo(e; ® a)(z) = i o) () (%) = %(n:{:jl)(a) =20

k=1 n
and
BiGeaw = 3 99, @) (5e)
k=1
{ > kB (2)(0) + 3 ky(h; — )BT (:vj)(a)}
ki=1 k=2
1 2 2 1 2
= {(n:z:]])( )+ (n(n—1)z1)(a)} = zia+ ;L-(a:j — z7)a,
which implies desired result. 0 |

Theorem 2. Suppose that for every ¢ € X1 =1,2,---,r each op-
erator @S)k(t) is positive, and (9) and (10) are fulfilled. Then we have
limy, oo | Be(f) — f|| = 0 for all f € C(X, E).
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Proof. We take G = {ey,es,--- ,e,}, which clearly separates the
points of X (cf. Remark 1). Since each B, is positive, by Lemma 1,
it is quasi-positive and || B,|| = ||B.(1x ® €)||. Therefore, the desired

result follows from Theorem 1 and Lemma. 3. U

Lemma 4. Let {( nk)nk>0 =1,2,---,7} be a set of infinite ma-
trices of continuous mappings from X; into B|E] such that for all
te X‘ivi = 1727"' T

O m®) =" (n,k=0,1,2,---,m=1,2)  (11)
and . ‘
Z() k=1 (n=0,1,2,--). (12)
Then we have ) .
Y k(Z) U () = ntl (13)
and

o\ () _ 2
Z k(k (k>¢n~k’k(t) =n(n—1)t°] (14)
foralltEXz,L—IQ LT
Proof. Since

and .
n n —
k(k—1)<k>:n(n—1)<k_2> (2 <k <n),
it follow from (11) and (12) that
n n " /n—1
S ZICEES of by [T
1:2::1 <k> ’ k=1 k-1
lin -1\ 4 lin—1\ 4
=n Z ( ' )wvgly—l,jﬂ(t) = nt ( : )Wéll—u(t) = ntl
3=0 J j=0 \ J
and
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=n(n—1) nz_j <n _ 2) SZ’r(zi—)j—2,j+2(t)

=0\ J

=n(n - 1)1&2 f <” B 2) U, () = n(n —1)¢1.

J=0 J
Therefore, The equalities (13) and (14) hold. O

Theorem 3. Let (Sﬁéf?c)n,kzo,i = 1,2,---,r, be as in Lemma 4 with
the additional assumption that all the operators Wr(llzc(t) are positive for
eacht € X;,1=1,2,--- |r, and define
(Z)wﬁkk (0<k<n)

0 (k> mn).

)

n,k

Then we have lim,_,« || B,(f) — f|| = 0 for all f € C(X, E).

Proof. This follows from Lemma 4 and Theorem 2. U
Let {{cp,(f)}kzo 11 =1,2,--- 7} be aset of sequences of continuous

mappings from X; into B[E]|, and we define

n

INVLUEDY <

7=0

7 (4
j) CU"9, () (nk=0,1,2,). (15)

Suppose that forall t € X;,2=1,2,--- 7,

and
k=0 k

Corollary 1. Assume that all the operator A"np,(:) (t) given by (15) are
positive for eacht € X;,i=1,2,---r, and define

n n— (2)

50 _ LA 0<k<n)
: 0 (k>n)

Then we have lim,_,o ||Ba(f) — fll = 0 for all f € O(X, E).
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Indeed, setting
ipr(zf;c:Ansol(:) (TL k“071727” :1727"'T>7

the conditions (16) and (17) imply the equalities (11) and (12)
spectively. Thus, by Theorem 3, we have the claim of the corollary.

, Te-

In particular, we take
() = 1 (t€Xiyi=1,2,- ,r,k=10,1,2,...).
Thenwehave |
A" (1) = (1 — t)"tk] (n,k=0,1,2,-- t€ X;i=1,2,... 1)

and the conditions (16) and (17) are also satisfied. Furthermore, we

get again the Bernstein operators given by (1).

Remark 2. Suppose that E is a Banach space. Letr =1 and let @(1)
be as in Corollary 1. Then B, (f) becomes the ®-Bernstein approzi-
mation of f of order n due to Tucker [13]. Also, conversely if we have
My oo [|Ba(f) — f]| = 0 for every [ € C(Xy, E), then

SDIE:I)(t):tk] (tElek:O,1,27)
([13; Corollary)).
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