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ALMOST EVERYWHERE CONVERGENCE THEOREMS
FOR NONLINEAR OPERATORS

SHOJI KAMIMURA

1. INTRODUCTION

There have been many important researches on the study of ergodic theorems
for nonlinear operators. However, most researches on this subject dealt only with
questions of mean ergodic theorems, while the problem of pointwize ergodic theorems
had been ignored. In the 1980’s the study on this problem was started by Krengel
and Lin etc.

Let (E,p) be a o-finite measure space and all the LP spaces are with respect to
this measure space. The classical pointwise ergodic theorem for linear operators is
the following theorem of Hopf:

Theorem 1.1. Let T be a positive: linear contraction on L' with u(E) < oo such
that T1 = 1. Then for any f € L', the averages
, N
Af=——> T
v f n + 1 1=0 f
converge almost everywhere.

In the nonlinear situation, instead of being a contraction we assume that T' is
nonexpansive, and instead of positivity we assume that T is order preserving. Krengel
and Lin [3] obtained a result for this class of nonlinear operators:

Theorem 1.2. Let T be an order preserving, L* nonezpansive and L™ norm de-
creasing mapping on L' with u(E) < oco. Then for any f € L', the averages
‘ .

nf— T _OTZf ' ; : (1)

converge weakly in L'.

Further Krengel [2] gave an example that almost everywhere convergence of the
averages (1) fails. Namely, we can not expect the almost everywhere convergence for
A, f defined by (1). | '

In the linear case, the partial sums S, f = 37 T f satlsfy

Sof =f,  Swnf=f+T(Sf) (n=0) (2)
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However in the nonlinear case, the partial sums {S,f}, of course, do not satisfy the
recursive relations (2). Then Lin and Wittmann [5, 7] adopted the definition (2) for
{S.f} and put

1
n+ 1Snf (3)

to get the almost everywhere convergence. Wittmann [7]' obtained the following:

Anf =

Theorem 1.3. Let T be an order preserving, integral preserving, positively homoge-
neous and L™ nonezpansive mapping on L' with u(E) < co. Then A,f defined by
(3) converges almost everywhere for any f € L'.

Recently Wittmann [6] improved his own result:

Theorem 1.4. Let T be an order preserving and L' and L™ nonezpansive mapping
on L'. Then A, f converges almost everywhere for any f € L' .

In this paper, we prove another extention of Theorem 1.3 by assuming the existence
of a kind of strictly positive invariant functions. The method of the proof is due to
that of Wittmann [6]. Further we give some properties of the limit point of A, f.

2. PRELIMINARIES

Throughout this paper, (E, 1) is a o-finite measure space and all the L? spaces are
with respect to this measure space. And expressions involving measurable functions
or sets have to be understood in the almost everywhere sense.

Let T be an operator on L'. The nonlinear ergodic average A, f (f € L') is defined
by

Sof =f, Sanf=f+T(Saf) (n>0)
and .
' Anf =——8, > 0).
f=—38.f (n>0)

In the linear case, A, f is equal to 25 S T f.

T' is said to be order preserving if f < g = Tf < Tg (f,g € L'). T is said to
be L? nonexpansive if |Tf — Tgll, < ||f —gll, (f,g € L'NLP1 <p < 00). T is
called positively homogeneous if T(af) = oT'f (f € L',a > 0). T is called integral
preserving if [T fdu = [ fdu (f € L'). Note that an order preserving and integral
preserving mapping is L' nonexpansive (See Krengel and Lin [3]).

We denote by F(T) the set of invariant functions of T, i.e. F(T) = {f € L' :
Tf = f}. We define G(T); by G(T), = {k € L' : k > 0, T(f +tk) = Tf +tk, Vf €
L',¥t € R}. Obviously if T0 = 0, then G(T), C F(T). We know from Lin and
Wittmann [5] that if u(E) < oo and T is order preserving, integral preserving and
L* nonexpansive, then G(T'); # 0.
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3. ALMOST EVERYWHERE CONVERGENCE THEOREMS FOR NONLINEAR
OPERATORS

For a sequence {f,} C L', we define f by

fi=swp fi (1<n<o)
0<i<n
Our first aim is to prove the nonlinear version of the maximal ergodic theorem.
The maximal ergodic theorem plays important role in the proof of pointwize ergodic
theorems. Wittmann [6] proved the following theorem and lemma.

Theorem 3.1. Let T be an order preserving mapping on L. And let K € R, and let
h, ' be two measurable functions with value in (—oo, 00| (both functions may attain
the value 0o on a set of positive measure) such that '

/(Tg —h)dp+ < /(9 —h)ydp+ K <oo (geLh), (4)
Further, let {f.} be a sequence in L' and let f € L' such that
fo<h, lgonyfo S Ypon(f +Tfa1) (n21). - (5)

Then 1ssny(f +h — B')_ is integrable (since {h = oo} N {fx > h} =0, this is well
defined) and

/ (f+h—=0)du>-K (1<n<o0). (6)
{f2>h}

If Lpe sny(f + 1 = h)y or Lipe suy(f + B/ — h)_ is integrable, then (6) holds also for
n=00.

Lemma 3.2. Let T be an L' nonezpansive mapping on L'. Further, let h,h' be
measurable functions such that

F<h=>Tf<H
for any f € L' . Then

J@f=wydn< [(F-ndu<oo (felb)
We prepare one more lemma.

Lemma 3.3. LetT be an order preserving and L' nonezpansive mapping on L such
that G(T'),. is nonempty. Let K € R, and let h,h' be two measurable functions such
that

/(Tg —h)pdp < /(9 —h)idp+K <00 (gelLl),

31
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Then
[@f =+ ak)) s <
/(f— (h+ak)du+ K <o (f €Ll ke G(T),,a>0)

Proof. We fix & > 0,k € G(T'); and f € L'. Since f(g — h)4dy < oo, we obtain
h_ € L' by putting g = 0. Setting f, = sup(f — ak,—h_), we can show f, € L. In
fact, '

/Ifqldu=/lsup(f—ak, —h_)|du

= —ak)dy — sup(f — ak,—h_)d
g =R sup(f )

< (f —ak)du —I—/ h_du < .
{fzak} {f<ak}

Further we obtain
(fa = B)y = (sup(f — ak,—h_) — h),
= (sup(f — (h + ak), ~h_ — b)),
=(f—(h+ak))s
and
sup(f, —h_) — fo = sup(f,—h_) — sup(f — ak, —h_) < ok.

Since T is order preserving and k € G(T"), Tsup(f, —h-) < T(foa+ak) = T f,+ak.
This implies T'f, + ak > T'sup(f,—h_) > T'f. The assertion follows from

/ (Tf — (b + ak))pdp < / (Tfo + ak — (W + ak))ydu
= [(@fa = 1) sdn
< [(fa=h)ydu+ K

- /(f— (h + ak))du + K < 0.
O
Now we can prove the nonlinear maximal ergodic theorem.

Theorem 3.4. Let T' be an order preserving mapping on L' such that G(T)y is
nonempty. Let K € R and let h,h' be two measurable functions with values (—o0, 0o]
such that 1p<ooy (R’ — h)4 is integrable and

J@g=t)du< [(g-h)sdu+ K <o (g€ L), (7)
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Further let { fn} be a sequence in L* and f € L' such that

33

Lgosofa < Loy (F 4+ Thact) (21). @®)

Then we have

(F4 R =R > —K. 9
/{foo—oo}\{h o Jdu | (%)

Proof. We assume k € G(T);4. As observed in the last proof, we have h_ € L'. Thus
for a given € > 0, there exists ag > 0 such that Jin_ >a0k}h dp + Jify>aeky Jo < €

Hence, settmg h = sup(h, —aok) + (fo — k), we have h = sup(h, —ook) + (fo —
aok)+ = (—h — aok)s + (fo — aok)y +h > h and

[ k= hldu = [(=h — aok)sdu+ [(fo = aok)sd

= ' —h — apk)+dp + — apk)+d
{-—-h—aok)O}( 0 )+ H {f0~a0k>0}(f0 0 )+ H

< hedp + / | d
{—h>agk} H {fo>aok} fodu

< hodp + fodp < €.
{h_>aok} # {fo>aok} ‘

Together with (7), this implies
[@g—H)udu < [(g - mysdut K
< [tg=Rpsdu+ [(h=h)rdn+ K
< /(g — l~z)+du +K+e<oco (g€ LY.
Combining this with Lemma 3.3, We obtain
J@g— (W +ak))du
vg /(g —(h+ ak));du +K+e <_boo (9 € L',k € G(T)4,a > 0).

From the definition of i, h— fo = sup(h, —aok) + (fo — ao)+ _ fo> —ao+ (—agk) V
(—fo) > —2aok. This implies
| fo<h+ak (a>2a).

Further we also have h + 2agk = sup(h, —aok) + (fo — aok)y + 2a0k = sup(h +
200, ogk) + (fo — aok)+ > 0. So we obtain i+ ak > 0 (a > 2ay). Together with (8),
this implies .

Losivaky < Ypshtary(f +Tfa1) (2102 2ay).
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Thus the assumption of Theorem 3.1 are satisfied for any a > 2ay, if we replace h, b’
by h + ak,h’ + ak and K by K + . Hence we obtain, from Theorem 3.1 and A < h,
that 1ir Sryar(f + R — h) is integrable and that

B — h)dy > W+t k) — (7
/{fpﬂak}(f%— Jdp > i k}(f+( + ak) — (h + ak))dpy

>-K—¢ (a> 2ag).

Since {f2 > h+ak} | {f2 = 0o}\{h = o0} as a tends to oo, we may let a tend to
oo in the above inequalities to obtain

f4+h —h)dy>—-K —e.
/{f;o=°°}\{h=°°}( Jau

Since € > 0 is arbitrary, the assertion (9) follows. O

Using the above theorem, we obtain the following lemma which is crucial for our
main result. :

Lemma 3.5. LetT be an order preserving and L' nonezpansive mapping on L' such
that G(T)+ is nonempty. Then for any f € L} '

p({limsup A, f > 0} N {liminf A, f < 0}) = 0.

Proof. We assume k € G(T),. It suffices to show that u(A. N A,) = 0 for any € > 0,
where

A= {limsup A, f > ek} and A= {liminf A, f < —ek}.

We fix ¢ > 0. We define a mapping 7 on L' by setting Tf = —T(—f) (f € L'). Let
S be defined as S, but with T instead of T. Putting f, = (Sp.f — (n + 1)ek), and

Fo=(Su(=f) = (n+ Dek)y = (Spf + (n + 1)ek)_, we have

A.CA:={fr =00} and A CA:={f: =o0}.
In fact, if + ¢ A, there exists M € R such that f,(z) < M (0 < n < ).
Then we have S, f(z) < (n+ 1)ek(z) + M and A,(z) < ek(z) + 2. This implies
limsup,,_, ., Anf(z) < ek(az) and hence z ¢ A.. So we obtain A, c A Similarly we

can show A, C A. Thus the proof is complete if we can show that (AN A) = 0.
Next we will show

Ligos0y S lgsoy((f —€k) + T fam1) (n2>1)
and
1{fn>0} < 1{fn>0}((_f — k) +Tfn—1) (n>1).

Since T is order preserving, k € G(T); and (Sn—1f)+ — fac1 = (Sn1f)s — (Sp1 f —
nek); < nek, we have T((Sn_lf)+) < Tfno1 + nek. This implies T f,_, + nek >
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T((Sn-1f)+) = T(Sp-1f) and therefore (f—ek)+T fu_1 > f+T(Sn_1f)—(n+1)ek =
Snf — (n+ 1)ek. Hence we obtain
Lus0p(f = k) + T fn1) 2 150 (Suf = (n + 1)ek)
= Lip>01(Snf — (n+ 1)ek)
= 1{fn>0}fn (n > 1).
- Similarly we can obtain 1,z .o, <1z o ((—f —ek) + Tfa 1)
Putting
hag = —aklza+Bkly i and hag = —akly z+ Bkl 4,
(0<a<00,0<8< ),
we define ,
hoo = Hm hos  and ho = Jim hop.

Further, since hq s, ha g belong to L', we can define

h,=supThe, and Al =supThe, (a>0).

neN neN

Since f < ho(f € L') = Tf < The = sup,eny Than = b, we get from Lemma 3.2
that

/(Tg B pdu < /(g — ho)edy (g€ L',a > 0). (10)
Similarly we can get
f(f“g — ht)pdp < /(9 —ha)rdp (g€ L', >0). (11)

To see the principal idea, we postpone the proof of the following statements until
later,

1{ho<oo} i, 18 integrable for any a > 0, (12)
I <oo}ﬁf1 is integrable for any o > 0, (13)
— 00 < inf _hldu < sup | h’ ol < 00, (14)
ANA a>0
and
lim Jim [ Thegdp= Jim lim / Tha sdp. (15)
a0 f—o00 J ANA —>oo a—r0o0
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Because of (10) and (12), we can apply Theorem 3.4 to {fa} Wlth K =0 and hg, A/

instead of h,h’. Then we obtain

0< —€ek)+hl, — hyo)d
{f§o=°°}\{ha=°°}((f ) Jau

= [ ((f = k) + i )an

since hq = 0 on AN A. Analogously, we can show that

0< [ ((=F —€k) + hy)dp.

ANA
Since Thap = T(Bk1 4 — @kl g 1) = T(=hag) = —~Tha,g, (15) implies

lim _hldu = lim Iim/ _The gdu

a0 JANA a—00 f—o0 JANA

= lim lim/ _Thqagdp
nA

f—ooa—00 Ju

= lim lim _—Thg odp

B—oco =00 JAnA

= — lim n.d
B—o00 J ANA pat-

Adding (16) and (17), we obtain
0</ f —¢k) +h’)du+/ —f — k) + L)dp
= (—2¢k + h! B )dp.
| /An ((=2ek g + R )du
Letting o tend to oo and using (14) and (18), we obtain

0< (—2¢k)dp
ANA

ay 'Yy

(16)

(17)

(18)

and therefore (A N A) = 0. Thus the proof is completed if we can show (12)- (15).
At first, we will prove (15) . Because of Lemma 3.2, we can apply Theorem 3.4 to

{fn} with hao,Theyp instead of h, A’ and K = 0. Then we obtain

0< y }(f — €k +Thag — hao)du

- /A (f — ek + Tha)dy,

because hao =0 on A. It follows that

— %0 < /A(ek ~Pdu < /ATha,odu (Va > 0).

(19)
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Since hoo < 0 and T is order preserving, we have Theo — 70 < 0. Together with
Theo < ., this implies [,(Thap—T0)dp < [4ni(Thao—T0)dp < f405(h; —T0)dp.
Therefore fATh 0dp < fanihhdp + [4T0dp — Sanz T0dp < [y hodp + ||TO.
Because of (19), the “—o0 half” of (14) follows from

o< [(eh= flan < [ Thaodu < [ Hodu+|T0lh (Yo >0).
A A AnA
Replacing T by T and hgo,Thgo by hs.0,Thg, we obtain analogously
—00 < /A(ek—kf)du < /Ajzlilmodﬂ (VG >0).

Since Thpg = —Thog and Theg —T0 > 0, this implies

Thosdp — ||TO </—Tﬁ )d
[ Thoadu— |70 < [ (~Thsg)du

< [(~f—e)du<oo (v820), (20)
and therefore the “+oo half” of (14) follows from

sup/ ~h;d,u:/ uh’du-—sup Thogdu<oo
a>0JANA ANA 8>0

Our next aim is to show that

C,= sup (hag —Thag)dp < 0. (21)

To prove this, we put go3 = —aklA\A + k14 and apply Theorem 3.4 to {f,} with
K =0 and gu6, T'gag instead of h,h'. Then we obtain

| (= k) + Tgup = o) 2 0
{f& =00}
and therefore

— < — .
Sup (9o = Tgap)dpt < /A (f — ek)dp < o0 (22)

Since gap — Jop = Pkla < P, gap < 0 and k € G(T)4, we have Tgop < Tgop +
Bk < TO + k. Therefore gog — Tgap = Ok — Tgap > —T0 on A. It follows that
JalGap — T9ap)-dp < [4|TO|dpu < ||TO]|;. Together with (22), this implies

Cy = sup [ (a6 = T Ya,p)+dl
a,3>0 /A

< [ (f = ek)dp + | O] < oo. (23)
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From (20) and Thag < Tho g, we get

Cs = sup |. Th,,,ﬁd,u<oo | . (24)
7/3>0

Since T is order preserving, has < ga,s implies The g < Tg, 5. Since ||ga B8—hagll =
B Janikdp and T is L' nonexpansive, we have

Tgap — Thy = ||T9ap — Thq < kd. 2
/( 9o, 8)dp = ||Tga,p slh ﬁ/Am{ 7 (25)
On the other hand, by (23) and (24), '

/Aﬂ/{(Tga"B - Tha,ﬂ)dﬂ

= ad—/ Thad"‘/ a_Ta d
i st = | Thapdu AM(g,ﬁ Go,8) A1t

20| _kdu—Cs—Cs.

AnA
Together with (25), this implies

Tgus — Thy 5)du < Tgu s — Thy 5)d
/A\A( 9o, 8)dp E\(AM)( 9o, ) p

= [ (Tgas~Tha —/ T9os — The
/E( goup = Thap)dp = | (T9as = Thay)dps
<8 _kd,u—-ﬁ/ kdp+ Co +Cy
ANA ANA
= Csy + Cs. (26)
Since hqp = gap = Bk on A\A, we obtain from (23) and (26) that

hap —Thapg)dit = | (9o —Thag)d
Jy 5o = Thag)dn = [ (805 = Thas)dn

< _
/A\ A(ga,ﬂ Tgo,p)dpe + / (T9ep — Tha,p)dp
<Cy+ (CQ + 03) (VOz,ﬁ > 0).

So we obtain (21).
Our next aim is to show

o Sz, < o= 1A\fi(ha1 A~ Thayp) < lA\A(h’m,ﬂz — Thay,p,)- (27)

If oy < @y, then hqyp > ha,p. Therefore we have Tha, g > Tha, s (01 < @), since
T’ is order preserving. On the other hand, ha, g = ha, 5 On A, and hence

a1 < 0 :> 1A\A(h041,ﬂ - Thal,ﬂ) < ]'A\A(haz,ﬂ - Th’az,ﬁ)' (28>
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If /1 < B2, then hap, — hap, = (B2 — B1)k14 1z < (B2 — B1)k. Therefore we obtain
Th,o[”g2 < Tho,"@1 + (ﬂg — ,31)]{) (@1 < ﬂg) since k € G(T)+ On the other hand,
ho,g, — ha g, = (B2 — 1)k on A\A and therefore

pr < B = 1A\A(ha,ﬂ1 - Tha,ﬂl) < lA\A(ha,ﬂz - Thot,ﬂ2)' (29)

Now (27) follows from (28) and (29).
Analogously to (21) and (27), we can show

su ﬁa —Tﬁa dy < 00
Sup, /A\ A( 5 )

and

o1 < a2, 01 < o = Lz alPer gy — Thay ) < Liya(Pos, gy — Thas,).

Since fig 3 = —hpo and Thes = —Ths ., We obtain

Cy=sup [. (Thapg— hap)du < o0 (30)
@,020 JA\A

and
a1 <@g, 01 < Pp = 1A\A<h0¢1,ﬂ1 - Thalyﬁl) < IA\A(haz,ﬁh - Thazﬁz)‘ (31)

Let § > 0 be given. By (21) and (27) (resp. (30), and (31)) there exists as > 0
such that

Joshes = Thagddu> Ci=6 (0 f>a) = (32)
and
/A A(Thag = hap)in> Co=6 (5> as). (33)

Let a1, o, 1, f2 > s be given. Then we have ||hay,6 —Ras,sa || < 1 — a2l [3\4 kdp+
|81 ~ Bal| [4\ 4 kdp and therefore

[1Thas s, = Thaygldu < oz — al /m kdp + 6, — Bl /A\A kdp.  (34)

39
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Using (32), we obtain

/A\/i(Thal B T Thaz B2 )dﬂ
= ‘L\A(halyﬁl - haz,ﬂz)du - /A\A(hal,ﬂl - Thal,ﬁl)d:u
+ /A\A(haz,@ - Thaz,ﬂz)d,u
> _ -d i — —
> (B =) [ kdu =it (G =)

> - kdu — 6.
> (8- ) [ 5
Interchanging ai, /1 with ag, B2, we also get

[ i Tesn = Thoy ) > (B = ) [ .

From (35) and (36), we obtain

Thayso = Theagldp > |y = Bl [ kdu—6.
/A\Al B oo, |t 2 |1 — [ A\ H
Analogously, using (33) instead of (32), we can show that

S 21 Ther = Thesldis > Jon = o] [, b=,
Combining (37) and (38) with (34), we obtain

/IThOtl,ﬁl —Th’aQ,ﬂZ|d/“L |

<20+ A\A |Tha1,ﬂ1 - Thazﬁz

dp + //i\A |Thax,/31 - Thazﬂz ldﬂ

and therefore

[ Thay s, = Thaypldi <28 (az,02,61, 62 2 a).

Since § > 0 is arbitrarily, we have (15).

40

(33)

(36)
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Using (21), we obtain
Thosldu < | Thoslly — / The.sd
/E\(A\A)l o8ldu < ||Thogllx oq L hosd

< |IT0||; + |Thos — TO —/ Tho gdp
= ” ”1 ” 0,8 “1 VA 0,801
< ||T0l); + ||A ——/ Thopdu

= ” “1 ” O,ﬁHI A\A 0,8

= ||T0]]; - / hog — Thog)d
[7°0]x + A\A( 0, 0,8)dp
<||T0)|: + Cy
Therefore we obtain Thg s < h, < supgsqThog,

R |dp < |[Thosllr + su Thoysld

/{ha@}l al@ < ||Tho sl D fovcard T ho,5dp
< || Tholly + IT0]1 + Ci.

Thus we have (12). The proof of (13) is analogous. O

The following theorem is our main result.

Theorem 3.6. LetT be an order preserving and L nonezpansive mapping on L' such
that G(T)+ is nonempty. Then A,f converges a.e. to an element f* of L' for
any f € L. Further if F(T) is nonempty, then we have f* € L'. In paticular if
0 € F(T), then we also have lim,_. ||Anf — f*|l1 = 0. And further if T is positively
homogeneous, then f* € F(T).

Proof. Let f € L' and k € G(T)4 be given. We assume
u({hﬁg}f A, f <limsup A,f}) > 0.

n—co

Since k£ > 0, there exists & € R such that
p({liminf A, f < ok} N {limsup 4.f > ak}) > 0.
Since k € G(T')4, we have A,(f — ak) = A, f — ak and therefore
p({liminf An(f — ak) < 0} N {limsup A,(f — ak) > 0}) > 0.

But this contradicts Lemma 3.5. So A, f converges a.e..

We assume | € F(T'). And weset (f4)" = lim,—co An(fy), (f=)* = limueo 4n(f2).
Since A, is order preserving, we have (—f_)* < f* < (f;)*. Using Fatou’s lemma,
since A, is L' nonexpansive and A,! = [, we obtain

[ < [y du
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< [ liminf A, (f;)dp

< liminf [ A,(f+)dp

< liminf || Ax(f5) — Il + |l
<N = U+ il < o0

and
J(F)-du < = [(~f-)au
< — [ limsup An(—f-)du

n—oo

< —limsup [ A.(—f-)dp

= iminf [ (~Au(~f_))d
= lim inf || An(—f2)ll1
< timinf | 4,(~ ) = U] + il
<=+ + ] < co.

Therefore f* belongs to L!. Next we will show that if 0 € F(T'), then
T [[Auf = 7l = 0.

We set fo, = (f Amk)V (—mk) (m € N) and lim, o, A, fn = f. Then we obtain
limy,—co ||Anfm — f]l1 = 0 by Lebesgue’s convergence theorem, because A,0 = 0 and
k € G(T), implie |A, frn| < mk (n € N). Further we have

”Anf - f*”l < HAnf - Anfm”l + “Anfm - f?ﬁ”l + Hf:n - f*Hl

Letting n tend to oo, we obtain
Tim [|40f = £l < 21 = fuls.
Therefore, since limy, o ||f — fmll1 = 0, we get
T [[4,f = £l = 0.
Moreover if T is positively homogeneous, we have

n+2 1

A, -
RIS Rt Ay

Hence we obtain T'f* = f* by letting n tend to co. O
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