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1 Introduction and Main Result

In this note we consider the stability of solitary wave solutions for the Yukawa coupled

Klein-Gordon-Schrédinger equations in one space dimension:

10 + 0%u = uv, (t,z) € R xR, (1.1)

#v—Pv+v=—Ju?, (tz)eRxR. (1.2)

Here, u = u(t,z) and v = v(t, z) describe a complex scalar neucleon field and a real scalar
meson field, respectively (see Fukuda and M. Tsutsumi [3] and Yukawa [11]). In Section
5 of [3], Fukuda and M. Tsutsumi showed that (1.1)-(1.2) admits the following two types

of exact solitary wave solutions (1.3)-(1.4) and (1.5)-(1.6):
(I) when A <1 and p=2X2/4+1/(1—)2%),

' 3 o f T—A , o
u(t,z) = Wiy sech (2\/————1—:_————)‘2) explipt +i(A/2)(z — At)], (1.3)
v(t,w) = —E(T-_—-;\—z—) sech (2\/—?__—=/\2) ) (14)
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(I) when \? =1 and p > 1/4,

u(t,z) = /2(p—1/4) sech(y/u—l/ll(m—)\t))

x explipt + i(A/2)(z — At)], (1.5)
o(t,z) = —2(u— 1/4) sech? (, i —1/4 (c - At)) , (1.6)

and they proposed a problem of whether the solitary wave solutions are stable or not.
The purpose of this note is to give a partial answer to the problem.

To explain our results precisely, we prepare some function spaces and functionals. Let

X = H'(R; C) x H'(R;R) x L*(R;R) be a real Hilbert space with the inner product
(w,0,0), (9,6,0))x = 2Re [ (0.u(@)00(2) + u(=)b(z)) do
+ [ (0:0(2)0:8(2) + v(2)$(=) + w(z)e(x) dz
for (u,v,w), (¥,6,9) € X. Then, (1.1)~(1.2) is written as abstract Hamiltonian system

in the form

d

Et-u(t) = JE'(d(t)), (1.7)
where
u(t) - 0 0
d(t)=| o) |€X, J=| 0 0 1],
w(t) 0 -10
and E is the energy functional on X defined by
E(u,v,w) = /R {‘8,;11[2 + |ul?v + % (w2 + (0v)? + vz)} dz. (1.8)

The energy functional E(%) is invariant under the action T'(e, 3) of the group defined by
T (e, B)(u, v, w)(z) = (€¥u(z + @), v(z + a), w(z + @))

for o, B € R and (u,v,w) € X. Associated with the group action T'(a, 3), we define two

conserved functionals on X, the momentum P and the charge @, by
P(u,v,w) = /R (1wl u + wo,v) dz, (1.9)
Q(u, v, w) = /R |u|?de. (1.10)

The following global existence of solutions of the Cauchy problem for (1.7) is known.
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Proposition 1.1 For any iy € X there exists a unique solution & € C(R;X) of (1.7)
with 4(0) = @, satisfying

E(u(t)) = E(do), P(i(t)) = P(do), Q(d(t)) = Q(d%), t€R: (1.11)

For A\, u € R, we put

Sy u(@) = E(@) + M\P(@) + pQ(@), @€ X.

Then, we have
Sl v,w) = [ {]0uleP )"+ (u = NP + fufo

+% ((w+ A0,0)? + (1 = X2)(B0)? +2) } de,  (L12)

and T(\t,ut)y, is a solution of (1.7) if ¥y, is a solution of S&M(J) = 0. Note that
S5u(9:0,0) = E'(4,6,0) + AP'(¢,9,¢) + pQ' (¥, 6, ) = 0 is equivalent to

—0%% +1A0et) + pp + Yo = 0, | (1.13)
~(1=X)02¢+ ¢+ [¥* =0, (1.14)
@+ X0,6 =0, | (1.15)

and also that by ¥(z) = /2o (z), (1.13) is transformed into

— 32+ (n— N2/4)) + P =0, | (1.16)
Thus, when A% <1 and p = A2/4+1/(1 — X\?), if we put

3 2 x ‘.
Yau(z) = ﬁ sech (ﬁ) exp[i(A/2)z],

(1.17)

3 9 z
drulz) = ) sech (2\/—1—1___—)‘2) , (1.18)
Pau() = —A0:hru(2), (1.19)

-

then 15,\,,L = (Y25 Pru> Pru) is a solution of S} ,(¥) =0, and when A2 =1 and p > 1/4,

if we put

Vau(z) = 1/2(u — 1/4) sech ,(\/,u —1/4 x) exp[i(A/2)z], (1.20)

banu(@) = —2(1t — 1/4) sech? ( - 1/4 x) , (1.21)
oxau(T) = =A0pru(z), (1.22)
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then 1;,\,” = (¥4 Paur Pa,u) 1s @ solution of Sf\“(zZ) =0.

Definition. We say that a subset ¥ of X is stable if for any € > 0 there exists a § > 0
with the following property. If @, € X satisfies inf{||td, — J”X € Y} < 4, then the
solution #(t) of (1.7) with @(0) = 4 exists for all + € R and satisfies

supinf{||Z(t) —¥||lx : ¥ € T} < &.
teR

Moreover, let 1;,\,“ be a solution of SS\,“(J) = 0. We say that the solitary wave solution

T(At, ut)iy,, is stable if {T(c, B, : a, B € R} is stable.
We are now in a position to state our main result in this note.

Theorem II. Let \* = 1 and p > 1/4. Then, the solitary wave solution T(At, ut)iy ,
given by (1.20)—(1.22) is stable for any p > 1/4.

Remark. In my lecture at the conference, I announced that when A2 < 1 and p =
X2/4+1/(1— A?), the solitary wave solution T'(At, ut)¥, , given by (1.17)~(1.19) is stable
if A2 is sufficiently close to 1. However, after the conference, I found a mistake in the

proof. So, the stability of T()\t,,ut)z;,\,ﬂ given by (1.17)—(1.19) seems to be still an open
problem.

2 Proof of Theorem II

In this section, we give the proof of Theorem II, basically along the argument in [7].

When A% = 1 and p > 1/4, we obtain the following basic identity from (1.12).
D 2 1
Snu(wv,w) = [ o) + (u = 1/9)lul - Slul'} do

%/R {(w+)\6zv)2 + (juP +v)2} dz. (2.1)
Associated with the identity (2.1), we define for p > 0

58, = [ {0 0)|" 4 (= 1)l ~ SJul*} do, (22)
Qw) = [ fulde, (23)
1°(p) = nf{S,(u) : u € H'(R), Q°(w) = p}, (24)

£°(p) = {u € H'(R) : 83, (u) = I(p), Q(u) = p}. (2.5)
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For o, 8 € R and u € L*(R), we define

Ti(a)u(z) =u(z + a), Ta(B)u(z) = ePu(z).
Lemma 2.1 Assume that \> = 1 and p > 1/4. Let vy, be the function defined by
- (1.20). Then, we have

2°(p(12)) = {Ta(@)Ts(B)r, : @, € R},

where p(p) = Q°(¥a,.) = 4y/p — 1/4.

Lemma 2.2 Let p > 0. If {u;} C H'(R) satisfies S} ,(u;) = I°(p) and Q°(u;) — p,
then there exist {a;} C R, a subsequence of {Ti(c;)u;} (we still denote it by the same
letter) and ¢ € ¥°(p) such that

Ti(oyj)u; — ¢ strongly in  H'(R).

Lemma 2. 2 is proved by using the concentration compactness method introduced by
Lions [6]. For the proofs of Lemmas 2.1 and 2.2, see Cazenave and Lions [1]. From
Lemmas 2.1 and 2.2 and the conservation laws, one can show the stability of solitary
wave solutions for the single nonlinear Schrodinger equation (for details, see [1]).

Following the idea by Cazenave and Lions [1], we consider the following minimization

problem:
I(p) = inf{S,,(4) : 4 € X, Q(d&) = p}, (2.6)
Y(p) ={i € X :5, u(ﬁ) I(p), Q&) = p}. (2.7)

From Lemma 2.1 and (2.1), we have

Lemma 2.3 Assume that \* = 1 and u > 1/4. For any p > 0, we have I(p) = I°(p)

and

={¥=,0.9) ¥ €°), 6= P, ¢ = -Ad.9}. (2.8)

Moreover, let 7,[),\” (Y20, Py P ) be the vector in X given by (1.20)—(1.22). Then, we

have
(p(u) = {T(, B)hru : @, B € R}, (2.9)

where p(p) = Q(Pr,) = 4y/u — 1/4.
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Proof. First, we note that S  (u) < Sy ,(¢) holds for all @ = (u,v,w) € X, so that we
have I°(p) < I(p). We put

1(p) = {¥ = (¥,6,¢) : ¥ € 2%p), &= —[e]’, o = 23,0}
If = (,, ) € 1(p), then we have Q(¥) = Q°(¥) = p and
1(p) < Sru(B) = S2,(8) = I°(p) < I(p).

Thus, we have I(p) = I°(p) and P € (p). Conversely, if 1 = (Y, d,¢) € L(p), then we
have Q(¢) = Q%) = p and

I°(p) < 8% ,(#) < Sr,u($) = 1(p) = I°(p).

Thus, we have ¢ € 21(p). Hence, we obtain (2.8). (2.9) follows from Lemma 2.1 and
(2.8). This completes the proof. O

Lemma 2.4 Let p >0 and ¢ € X(p). If{u;} = {(uj,vj,w;)} C X satisfies
E(i;) = E($o), P(d;) = P(do), Q(il;) — Q(tbo). (2.10)

then there exist {o;} C R, a subsequence of {T(e;,0)d;} (we still denote it by the same
letter) and ¥, = (Y1, ¢1,01) € X(p) such that

T(a;,0)u; — ¥ strongly in  X.

Proof. Tirst, we note that by the Gagliardo-Nirenberg-Sobolev inequality and (2.10),

we see that {@;} is a bounded sequence in X, and

Sx (i) = E(ii;) + AP(ii;) + pQ(5;) — Si,.(%o) = I(p). (2.11)

Since we have
I(p) = I°(p) < S3 u(u;) < Si,u(dy),
it follows from (2.11) and (2.10) that

S8 (u) = I°(p),  Q°(u;) = Q(d;) = p.
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Thus, by Lemma 2.2, there exist {a;} C R and a subsequence of {T3(a;)u;} (we still
denote it by the same letter) and ) € ¥°(p) such that

Ty(ej)u; — ¢ strongly in  H'(R). (2.12)

Since {#;} is bounded in X, so is {T(a;,0)d;}. Thus, there exists a subsequence {@}} =

{(u}, v}, wh)} of {T(a;,0)d;} and 91 = (Y1, ¢1,1) € X such that
| @l — ¢ weaklyin X. (2.13)
By (2.12) and (2.13), we have ¢; = ¢ € Z°(p) and
u} — ¢y strongly in H'(R). (2.14)
Moreover, from (2.1) and (2.14), we have

lui|*+vj -0  strongly in L*(R), (2.15)
w} + Ad;v; — 0 strongly in L*(R). (2.16)

From (2.13)—(2.16), we have

vj = ¢ = —|p1|>  strongly in | L*(R), (2.17)

dv} - O0r 1 weakly in L*(R), (2.18)

w; = @1 = —A0:b weakly in L*(R). (2.19)

Since ¥; € X%p), ¢ = —|tu|* and 1 = —Ady¢y, it follows from Lemma 2.3 ‘that

1 = (Y1, 61, 01) € E(p); Finally, we have to show the strong convergence of {0zv;} and
~{w!} in L*(R). By the definition (1.9) and the convergences in (2.10) and (2.14), we have

/R w}(‘?agv}d:t = P(ﬁ}) - /R i@@zu}d:c
= P(&;) - /R iulduldz — P(do) — /R 70,1 de.
Since 1;0, 1;1 € X(p), from Lemma 2. 3 , we have P(J;o) = P('(Zl). Thus, we have

/R w]lamv;da: — ./R 010;¢1dx. (2.20)
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Therefore, by (2.16) and (2.18)—(2.20), we have
X[10:61l13: + lleslfs < Timinf (\[10:05l13 + 1w} 2)
_ liminf (nw;. + A80|2s — 2 /R w}@zv}d:c)
= -2\ [ ¢iddide = M0, 132 + el

Here we have used the fact that ¢, + A0,¢; = 0 in the last identity. Hence, we obtain

d;vj = 041 stronglyin  L*(R), (2.21)
wi = @1 stronglyin  L*(R). (2.22)
This completes the proof. 0

Proof of Theorem II. By Lemma 2.3, it is enough to show that X(p) is stable for
any p > 0. We prove it by contradiction. Suppose that ¥(p) is not stable. Then, by the
definition, there exist a constant €9 > 0 and sequences {#p;} C X and {t;} C R such that

Jim inf{]|io; ~ Pllx : ¥ € 2(p)} =0 (2.23)
and .
inf{||Z;(t;) — Pllx : ¥ € T(p)} > o, (2.24)

where @;(¢) is the solution of (1.7) with %;(0) = @o;. By (2.23) and the conservation laws
(1.11), we have

E(i;(t;)) = E(iio;) = E (o),
P(;(t;)) = P(ilo;) — P(o),
Q(T;(t;)) = Q(do;) — Qo)

for some 1,;0 € X(p). Thus, by Lemma 2.4, there exist {a;} C R, a subsequence of
{T(e;,0)%;(t;)} (we still denote it by the same letter) and Py € B(p) such that

T(aj,0)i(t;) — ¥, strongly in X.

However, this contradicts (2.24). Hence, ¥(p) is stable. O
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3 Concluding Remarks

When A? > 1 and p = A?/4 + 1/(2(0% — 1)), (1.1)~(1.2) also admit the following exact

solitary wave solutions (see [10]):

u(t,z) = 3 sech (—ii> tanh (w——)\t)
A?—1 222 — 1) 2(A2 — 1)
x explept + 1(A/2)(z — At)], (3.1)

3 9 x — At
v(t,z) = BSVINE] sech (—————————m) . (3.2)

The variational characterizations and the stability problem for (3.1)-(3.2) seem to be

open problems.
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