Stability of solitary waves for coupled Klein-Gordon-Schrödinger equations in one space dimension

Masahito Ohta (太田 雅人)

Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan Email:tsmoota@eng.shizuoka.ac.jp

1 Introduction and Main Result

In this note we consider the stability of solitary wave solutions for the Yukawa coupled Klein-Gordon-Schrödinger equations in one space dimension:

$$i\partial_t u + \partial_x^2 u = uv,$$
 $(t, x) \in \mathbf{R} \times \mathbf{R},$ (1.1)

$$\partial_t^2 v - \partial_x^2 v + v = -|u|^2, \qquad (t, x) \in \mathbf{R} \times \mathbf{R}. \tag{1.2}$$

Here, u = u(t, x) and v = v(t, x) describe a complex scalar neucleon field and a real scalar meson field, respectively (see Fukuda and M. Tsutsumi [3] and Yukawa [11]). In Section 5 of [3], Fukuda and M. Tsutsumi showed that (1.1)–(1.2) admits the following two types of exact solitary wave solutions (1.3)–(1.4) and (1.5)–(1.6):

(I) when
$$\lambda^2 < 1$$
 and $\mu = \lambda^2/4 + 1/(1 - \lambda^2)$,

$$u(t,x) = \frac{3}{2\sqrt{1-\lambda^2}} \operatorname{sech}^2\left(\frac{x-\lambda t}{2\sqrt{1-\lambda^2}}\right) \exp[i\mu t + i(\lambda/2)(x-\lambda t)], \tag{1.3}$$

$$v(t,x) = -\frac{3}{2(1-\lambda^2)} \operatorname{sech}^2\left(\frac{x-\lambda t}{2\sqrt{1-\lambda^2}}\right),\tag{1.4}$$

(II) when $\lambda^2 = 1$ and $\mu > 1/4$,

$$u(t,x) = \sqrt{2(\mu - 1/4)} \operatorname{sech}\left(\sqrt{\mu - 1/4} (x - \lambda t)\right) \times \exp[i\mu t + i(\lambda/2)(x - \lambda t)], \tag{1.5}$$

$$v(t,x) = -2(\mu - 1/4) \operatorname{sech}^{2} \left(\sqrt{\mu - 1/4} (x - \lambda t) \right),$$
 (1.6)

and they proposed a problem of whether the solitary wave solutions are stable or not. The purpose of this note is to give a partial answer to the problem.

To explain our results precisely, we prepare some function spaces and functionals. Let $X = H^1(\mathbf{R}; \mathbf{C}) \times H^1(\mathbf{R}; \mathbf{R}) \times L^2(\mathbf{R}; \mathbf{R})$ be a real Hilbert space with the inner product

$$((u, v, w), (\psi, \phi, \varphi))_{X} = 2 \operatorname{Re} \int_{\mathbf{R}} \left(\partial_{x} u(x) \overline{\partial_{x} \psi(x)} + u(x) \overline{\psi(x)} \right) dx$$
$$+ \int_{\mathbf{R}} \left(\partial_{x} v(x) \partial_{x} \phi(x) + v(x) \phi(x) + w(x) \varphi(x) \right) dx$$

for (u, v, w), $(\psi, \phi, \varphi) \in X$. Then, (1.1)–(1.2) is written as abstract Hamiltonian system in the form

$$\frac{d}{dt}\vec{u}(t) = JE'(\vec{u}(t)), \tag{1.7}$$

where

$$\vec{u}(t) = \left(egin{array}{c} u(t) \\ v(t) \\ w(t) \end{array}
ight) \in X, \quad J = \left(egin{array}{ccc} -i & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}
ight),$$

and E is the energy functional on X defined by

$$E(u, v, w) = \int_{\mathbf{R}} \left\{ |\partial_x u|^2 + |u|^2 v + \frac{1}{2} \left(w^2 + (\partial_x v)^2 + v^2 \right) \right\} dx. \tag{1.8}$$

The energy functional $E(\vec{u})$ is invariant under the action $T(\alpha, \beta)$ of the group defined by

$$T(\alpha, \beta)(u, v, w)(x) = (e^{i\beta}u(x+\alpha), v(x+\alpha), w(x+\alpha))$$

for $\alpha, \beta \in \mathbf{R}$ and $(u, v, w) \in X$. Associated with the group action $T(\alpha, \beta)$, we define two conserved functionals on X, the momentum P and the charge Q, by

$$P(u, v, w) = \int_{\mathbf{R}} (i\overline{u}\partial_x u + w\partial_x v) dx, \qquad (1.9)$$

$$Q(u, v, w) = \int_{\mathbf{R}} |u|^2 dx. \tag{1.10}$$

The following global existence of solutions of the Cauchy problem for (1.7) is known.

Proposition 1.1 For any $\vec{u}_0 \in X$ there exists a unique solution $\vec{u} \in C(\mathbf{R}; X)$ of (1.7) with $\vec{u}(0) = \vec{u}_0$ satisfying

$$E(\vec{u}(t)) = E(\vec{u}_0), \quad P(\vec{u}(t)) = P(\vec{u}_0), \quad Q(\vec{u}(t)) = Q(\vec{u}_0), \quad t \in \mathbf{R}.$$
 (1.11)

For λ , $\mu \in \mathbf{R}$, we put

$$S_{\lambda,\mu}(\vec{u}) = E(\vec{u}) + \lambda P(\vec{u}) + \mu Q(\vec{u}), \quad \vec{u} \in X.$$

Then, we have

$$S_{\lambda,\mu}(u,v,w) = \int_{\mathbf{R}} \left\{ \left| \partial_x (e^{-i\lambda x/2} u) \right|^2 + (\mu - \lambda^2/4) |u|^2 + |u|^2 v + \frac{1}{2} \left((w + \lambda \partial_x v)^2 + (1 - \lambda^2) (\partial_x v)^2 + v^2 \right) \right\} dx, \qquad (1.12)$$

and $T(\lambda t, \mu t)\vec{\psi}_{\lambda,\mu}$ is a solution of (1.7) if $\vec{\psi}_{\lambda,\mu}$ is a solution of $S'_{\lambda,\mu}(\vec{\psi}) = 0$. Note that $S'_{\lambda,\mu}(\psi,\phi,\varphi) = E'(\psi,\phi,\varphi) + \lambda P'(\psi,\phi,\varphi) + \mu Q'(\psi,\phi,\varphi) = 0$ is equivalent to

$$-\partial_x^2 \psi + i\lambda \partial_x \psi + \mu \psi + \psi \phi = 0, \tag{1.13}$$

$$-(1 - \lambda^2)\partial_x^2 \phi + \phi + |\psi|^2 = 0, \tag{1.14}$$

$$\varphi + \lambda \partial_x \phi = 0, \tag{1.15}$$

and also that by $\psi(x)=e^{i(\lambda/2)x}\tilde{\psi}(x),$ (1.13) is transformed into

$$-\partial_x^2 \tilde{\psi} + (\mu - \lambda^2/4)\tilde{\psi} + \tilde{\psi}\phi = 0. \tag{1.16}$$

Thus, when $\lambda^2 < 1$ and $\mu = \lambda^2/4 + 1/(1 - \lambda^2)$, if we put

$$\psi_{\lambda,\mu}(x) = \frac{3}{2\sqrt{1-\lambda^2}} \operatorname{sech}^2\left(\frac{x}{2\sqrt{1-\lambda^2}}\right) \exp[i(\lambda/2)x],\tag{1.17}$$

$$\phi_{\lambda,\mu}(x) = -\frac{3}{2(1-\lambda^2)} \operatorname{sech}^2\left(\frac{x}{2\sqrt{1-\lambda^2}}\right),\tag{1.18}$$

$$\varphi_{\lambda,\mu}(x) = -\lambda \partial_x \phi_{\lambda,\mu}(x), \tag{1.19}$$

then $\vec{\psi}_{\lambda,\mu} = (\psi_{\lambda,\mu}, \phi_{\lambda,\mu}, \varphi_{\lambda,\mu})$ is a solution of $S'_{\lambda,\mu}(\vec{\psi}) = 0$, and when $\lambda^2 = 1$ and $\mu > 1/4$, if we put

$$\psi_{\lambda,\mu}(x) = \sqrt{2(\mu - 1/4)} \operatorname{sech}\left(\sqrt{\mu - 1/4} \ x\right) \exp[i(\lambda/2)x], \tag{1.20}$$

$$\phi_{\lambda,\mu}(x) = -2(\mu - 1/4) \operatorname{sech}^2\left(\sqrt{\mu - 1/4} \ x\right),$$
(1.21)

$$\varphi_{\lambda,\mu}(x) = -\lambda \partial_x \phi_{\lambda,\mu}(x), \tag{1.22}$$

then $\vec{\psi}_{\lambda,\mu} = (\psi_{\lambda,\mu}, \phi_{\lambda,\mu}, \varphi_{\lambda,\mu})$ is a solution of $S'_{\lambda,\mu}(\vec{\psi}) = 0$.

Definition. We say that a subset Σ of X is *stable* if for any $\varepsilon > 0$ there exists a $\delta > 0$ with the following property. If $\vec{u}_0 \in X$ satisfies $\inf\{\|\vec{u}_0 - \vec{\psi}\|_X : \vec{\psi} \in \Sigma\} < \delta$, then the solution $\vec{u}(t)$ of (1.7) with $\vec{u}(0) = \vec{u}_0$ exists for all $t \in \mathbf{R}$ and satisfies

$$\sup_{t\in\mathbf{R}}\inf\{\|\vec{u}(t)-\vec{\psi}\|_X:\vec{\psi}\in\Sigma\}<\varepsilon.$$

Moreover, let $\vec{\psi}_{\lambda,\mu}$ be a solution of $S'_{\lambda,\mu}(\vec{\psi}) = 0$. We say that the solitary wave solution $T(\lambda t, \mu t) \vec{\psi}_{\lambda,\mu}$ is stable if $\{T(\alpha, \beta) \vec{\psi}_{\lambda,\mu} : \alpha, \beta \in \mathbf{R}\}$ is stable.

We are now in a position to state our main result in this note.

Theorem II. Let $\lambda^2 = 1$ and $\mu > 1/4$. Then, the solitary wave solution $T(\lambda t, \mu t) \vec{\psi}_{\lambda,\mu}$ given by (1.20)–(1.22) is stable for any $\mu > 1/4$.

Remark. In my lecture at the conference, I announced that when $\lambda^2 < 1$ and $\mu = \lambda^2/4 + 1/(1-\lambda^2)$, the solitary wave solution $T(\lambda t, \mu t)\vec{\psi}_{\lambda,\mu}$ given by (1.17)–(1.19) is stable if λ^2 is sufficiently close to 1. However, after the conference, I found a mistake in the proof. So, the stability of $T(\lambda t, \mu t)\vec{\psi}_{\lambda,\mu}$ given by (1.17)–(1.19) seems to be still an open problem.

2 Proof of Theorem II

In this section, we give the proof of Theorem II, basically along the argument in [7]. When $\lambda^2 = 1$ and $\mu > 1/4$, we obtain the following basic identity from (1.12).

$$S_{\lambda,\mu}(u,v,w) = \int_{\mathbf{R}} \left\{ \left| \partial_x (e^{-i\lambda x/2} u) \right|^2 + (\mu - 1/4) |u|^2 - \frac{1}{2} |u|^4 \right\} dx + \frac{1}{2} \int_{\mathbf{R}} \left\{ (w + \lambda \partial_x v)^2 + \left(|u|^2 + v \right)^2 \right\} dx.$$
 (2.1)

Associated with the identity (2.1), we define for $\rho > 0$

$$S_{\lambda,\mu}^{0}(u) = \int_{\mathbf{R}} \left\{ \left| \partial_x (e^{-i\lambda x/2} u) \right|^2 + (\mu - 1/4) |u|^2 - \frac{1}{2} |u|^4 \right\} dx, \tag{2.2}$$

$$Q^{0}(u) = \int_{\mathbf{R}} |u|^{2} dx, \tag{2.3}$$

$$I^{0}(\rho) = \inf\{S_{\lambda,\mu}^{0}(u) : u \in H^{1}(\mathbf{R}), \ Q^{0}(u) = \rho\}, \tag{2.4}$$

$$\Sigma^{0}(\rho) = \{ u \in H^{1}(\mathbf{R}) : S_{\lambda,\mu}^{0}(u) = I^{0}(\rho), \ Q^{0}(u) = \rho \}.$$
(2.5)

For $\alpha, \beta \in \mathbf{R}$ and $u \in L^2(\mathbf{R})$, we define

$$T_1(\alpha)u(x) = u(x+\alpha), \quad T_2(\beta)u(x) = e^{i\beta}u(x).$$

Lemma 2.1 Assume that $\lambda^2 = 1$ and $\mu > 1/4$. Let $\psi_{\lambda,\mu}$ be the function defined by (1.20). Then, we have

$$\Sigma^{0}(\rho(\mu)) = \{T_{1}(\alpha)T_{2}(\beta)\psi_{\lambda,\mu} : \alpha,\beta \in \mathbf{R}\},\$$

where $\rho(\mu) = Q^0(\psi_{\lambda,\mu}) = 4\sqrt{\mu - 1/4}$.

Lemma 2.2 Let $\rho > 0$. If $\{u_j\} \subset H^1(\mathbf{R})$ satisfies $S^0_{\lambda,\mu}(u_j) \to I^0(\rho)$ and $Q^0(u_j) \to \rho$, then there exist $\{\alpha_j\} \subset \mathbf{R}$, a subsequence of $\{T_1(\alpha_j)u_j\}$ (we still denote it by the same letter) and $\psi \in \Sigma^0(\rho)$ such that

$$T_1(\alpha_j)u_j \to \psi$$
 strongly in $H^1(\mathbf{R})$.

Lemma 2. 2 is proved by using the concentration compactness method introduced by Lions [6]. For the proofs of Lemmas 2. 1 and 2. 2, see Cazenave and Lions [1]. From Lemmas 2. 1 and 2. 2 and the conservation laws, one can show the stability of solitary wave solutions for the single nonlinear Schrödinger equation (for details, see [1]).

Following the idea by Cazenave and Lions [1], we consider the following minimization problem:

$$I(\rho) = \inf\{S_{\lambda, \mu}(\vec{u}) : \vec{u} \in X, \ Q(\vec{u}) = \rho\},$$
 (2.6)

$$\Sigma(\rho) = \{ \vec{u} \in X : S_{\lambda, \mu}(\vec{u}) = I(\rho), \ Q(\vec{u}) = \rho \}.$$
 (2.7)

From Lemma 2.1 and (2.1), we have

Lemma 2.3 Assume that $\lambda^2 = 1$ and $\mu > 1/4$. For any $\rho > 0$, we have $I(\rho) = I^0(\rho)$ and

$$\Sigma(\rho) = \left\{ \vec{\psi} = (\psi, \phi, \varphi) : \psi \in \Sigma^{0}(\rho), \ \phi = -|\psi|^{2}, \ \varphi = -\lambda \partial_{x} \phi \right\}.$$
 (2.8)

Moreover, let $\vec{\psi}_{\lambda,\mu} = (\psi_{\lambda,\mu}, \phi_{\lambda,\mu}, \varphi_{\lambda,\mu})$ be the vector in X given by (1.20)–(1.22). Then, we have

$$\Sigma(\rho(\mu)) = \left\{ T(\alpha, \beta) \vec{\psi}_{\lambda, \mu} : \alpha, \beta \in \mathbf{R} \right\}, \tag{2.9}$$

where $\rho(\mu) = Q(\vec{\psi}_{\lambda,\mu}) = 4\sqrt{\mu - 1/4}$.

Proof. First, we note that $S_{\lambda,\mu}^0(u) \leq S_{\lambda,\mu}(\vec{u})$ holds for all $\vec{u} = (u,v,w) \in X$, so that we have $I^0(\rho) \leq I(\rho)$. We put

$$\Sigma_1(\rho) = \left\{ \vec{\psi} = (\psi, \phi, \varphi) : \psi \in \Sigma^0(\rho), \ \phi = -|\psi|^2, \ \varphi = -\lambda \partial_x \phi \right\}.$$

If $\vec{\psi} = (\psi, \phi, \varphi) \in \Sigma_1(\rho)$, then we have $Q(\vec{\psi}) = Q^0(\psi) = \rho$ and

$$I(\rho) \le S_{\lambda,\mu}(\vec{\psi}) = S_{\lambda,\mu}^0(\psi) = I^0(\rho) \le I(\rho).$$

Thus, we have $I(\rho) = I^0(\rho)$ and $\vec{\psi} \in \Sigma(\rho)$. Conversely, if $\vec{\psi} = (\psi, \phi, \varphi) \in \Sigma(\rho)$, then we have $Q(\vec{\psi}) = Q^0(\psi) = \rho$ and

$$I^{0}(\rho) \leq S^{0}_{\lambda,\mu}(\psi) \leq S_{\lambda,\mu}(\vec{\psi}) = I(\rho) = I^{0}(\rho).$$

Thus, we have $\vec{\psi} \in \Sigma_1(\rho)$. Hence, we obtain (2.8). (2.9) follows from Lemma 2.1 and (2.8). This completes the proof.

Lemma 2.4 Let $\rho > 0$ and $\vec{\psi}_0 \in \Sigma(\rho)$. If $\{\vec{u}_i\} = \{(u_i, v_i, w_i)\} \subset X$ satisfies

$$E(\vec{u}_j) \to E(\vec{\psi}_0), \quad P(\vec{u}_j) \to P(\vec{\psi}_0), \quad Q(\vec{u}_j) \to Q(\vec{\psi}_0).$$
 (2.10)

then there exist $\{\alpha_j\} \subset \mathbf{R}$, a subsequence of $\{T(\alpha_j,0)\vec{u}_j\}$ (we still denote it by the same letter) and $\vec{\psi}_1 = (\psi_1,\phi_1,\varphi_1) \in \Sigma(\rho)$ such that

$$T(\alpha_j,0)\vec{u}_j \rightarrow \vec{\psi}_1$$
 strongly in X .

Proof. First, we note that by the Gagliardo-Nirenberg-Sobolev inequality and (2.10), we see that $\{\vec{u}_j\}$ is a bounded sequence in X, and

$$S_{\lambda,\mu}(\vec{u}_j) = E(\vec{u}_j) + \lambda P(\vec{u}_j) + \mu Q(\vec{u}_j) \to S_{\lambda,\mu}(\vec{\psi}_0) = I(\rho).$$
 (2.11)

Since we have

$$I(\rho) = I^{0}(\rho) \le S_{\lambda,\mu}^{0}(u_{i}) \le S_{\lambda,\mu}(\vec{u}_{i}),$$

it follows from (2.11) and (2.10) that

$$S^0_{\lambda,\mu}(u_j) \to I^0(\rho), \quad Q^0(u_j) = Q(\vec{u}_j) \to \rho.$$

Thus, by Lemma 2.2, there exist $\{\alpha_j\} \subset \mathbf{R}$ and a subsequence of $\{T_1(\alpha_j)u_j\}$ (we still denote it by the same letter) and $\tilde{\psi} \in \Sigma^0(\rho)$ such that

$$T_1(\alpha_j)u_j \to \tilde{\psi}$$
 strongly in $H^1(\mathbf{R})$. (2.12)

Since $\{\vec{u}_j\}$ is bounded in X, so is $\{T(\alpha_j,0)\vec{u}_j\}$. Thus, there exists a subsequence $\{\vec{u}_j^1\} = \{(u_j^1,v_j^1,w_j^1)\}$ of $\{T(\alpha_j,0)\vec{u}_j\}$ and $\vec{\psi}_1 = (\psi_1,\phi_1,\varphi_1) \in X$ such that

$$\vec{u}_i^1 \rightharpoonup \vec{\psi}_1$$
 weakly in X . (2.13)

By (2.12) and (2.13), we have $\psi_1 = \tilde{\psi} \in \Sigma^0(\rho)$ and

$$u_i^1 \to \psi_1$$
 strongly in $H^1(\mathbf{R})$. (2.14)

Moreover, from (2.1) and (2.14), we have

$$|u_j^1|^2 + v_j^1 \to 0$$
 strongly in $L^2(\mathbf{R})$, (2.15)

$$w_i^1 + \lambda \partial_x v_i^1 \to 0$$
 strongly in $L^2(\mathbf{R})$. (2.16)

From (2.13)–(2.16), we have

$$v_j^1 \to \phi_1 = -|\psi_1|^2$$
 strongly in $L^2(\mathbf{R})$, (2.17)

$$\partial_x v_i^1 \rightharpoonup \partial_x \phi_1$$
 weakly in $L^2(\mathbf{R})$, (2.18)

$$w_i^1 \rightharpoonup \varphi_1 = -\lambda \partial_x \phi_1$$
 weakly in $L^2(\mathbf{R})$. (2.19)

Since $\psi_1 \in \Sigma^0(\rho)$, $\phi_1 = -|\psi_1|^2$ and $\varphi_1 = -\lambda \partial_x \phi_1$, it follows from Lemma 2. 3 that $\vec{\psi}_1 = (\psi_1, \phi_1, \varphi_1) \in \Sigma(\rho)$. Finally, we have to show the strong convergence of $\{\partial_x v_j^1\}$ and $\{w_j^1\}$ in $L^2(\mathbf{R})$. By the definition (1.9) and the convergences in (2.10) and (2.14), we have

$$\begin{split} &\int_{\mathbf{R}} w_j^1 \partial_x v_j^1 dx = P(\vec{u}_j^1) - \int_{\mathbf{R}} i \overline{u_j^1} \partial_x u_j^1 dx \\ &= P(\vec{u}_j) - \int_{\mathbf{R}} i \overline{u_j^1} \partial_x u_j^1 dx \to P(\vec{\psi}_0) - \int_{\mathbf{R}} i \overline{\psi_1} \partial_x \psi_1 dx. \end{split}$$

Since $\vec{\psi}_0, \vec{\psi}_1 \in \Sigma(\rho)$, from Lemma 2. 3, we have $P(\vec{\psi}_0) = P(\vec{\psi}_1)$. Thus, we have

$$\int_{\mathbf{R}} w_j^1 \partial_x v_j^1 dx \to \int_{\mathbf{R}} \varphi_1 \partial_x \phi_1 dx. \tag{2.20}$$

Therefore, by (2.16) and (2.18)–(2.20), we have

$$\begin{split} \lambda^2 \|\partial_x \phi_1\|_{L^2}^2 + \|\varphi_1\|_{L^2}^2 & \leq & \liminf_{j \to \infty} \left(\lambda^2 \|\partial_x v_j^1\|_{L^2}^2 + \|w_j^1\|_{L^2}^2 \right) \\ & = & \liminf_{j \to \infty} \left(\|w_j^1 + \lambda \partial_x v_j^1\|_{L^2}^2 - 2\lambda \int_{\mathbf{R}} w_j^1 \partial_x v_j^1 dx \right) \\ & = & -2\lambda \int_{\mathbf{R}} \varphi_1 \partial_x \phi_1 dx = \lambda^2 \|\partial_x \phi_1\|_{L^2}^2 + \|\varphi_1\|_{L^2}^2. \end{split}$$

Here we have used the fact that $\varphi_1 + \lambda \partial_x \phi_1 = 0$ in the last identity. Hence, we obtain

$$\partial_x v_i^1 \to \partial_x \phi_1$$
 strongly in $L^2(\mathbf{R})$, (2.21)

$$w_j^1 \to \varphi_1$$
 strongly in $L^2(\mathbf{R})$. (2.22)

This completes the proof.

Proof of Theorem II. By Lemma 2.3, it is enough to show that $\Sigma(\rho)$ is stable for any $\rho > 0$. We prove it by contradiction. Suppose that $\Sigma(\rho)$ is not stable. Then, by the definition, there exist a constant $\varepsilon_0 > 0$ and sequences $\{\vec{u}_{0j}\} \subset X$ and $\{t_j\} \subset \mathbf{R}$ such that

$$\lim_{j \to \infty} \inf \{ \|\vec{u}_{0j} - \vec{\psi}\|_X : \ \vec{\psi} \in \Sigma(\rho) \} = 0$$
 (2.23)

and

$$\inf\{\|\vec{u}_j(t_j) - \vec{\psi}\|_X : \ \vec{\psi} \in \Sigma(\rho)\} \ge \varepsilon_0, \tag{2.24}$$

where $\vec{u}_j(t)$ is the solution of (1.7) with $\vec{u}_j(0) = \vec{u}_{0j}$. By (2.23) and the conservation laws (1.11), we have

$$E(\vec{u}_{j}(t_{j})) = E(\vec{u}_{0j}) \to E(\vec{\psi}_{0}),$$

$$P(\vec{u}_{j}(t_{j})) = P(\vec{u}_{0j}) \to P(\vec{\psi}_{0}),$$

$$Q(\vec{u}_{j}(t_{j})) = Q(\vec{u}_{0j}) \to Q(\vec{\psi}_{0})$$

for some $\vec{\psi}_0 \in \Sigma(\rho)$. Thus, by Lemma 2.4, there exist $\{\alpha_j\} \subset \mathbf{R}$, a subsequence of $\{T(\alpha_j,0)\vec{u}_j(t_j)\}$ (we still denote it by the same letter) and $\vec{\psi}_1 \in \Sigma(\rho)$ such that

$$T(\alpha_j, 0)\vec{u}_j(t_j) \to \vec{\psi}_1$$
 strongly in X .

However, this contradicts (2.24). Hence, $\Sigma(\rho)$ is stable.

3 Concluding Remarks

When $\lambda^2 > 1$ and $\mu = \lambda^2/4 + 1/(2(\lambda^2 - 1))$, (1.1)–(1.2) also admit the following exact solitary wave solutions (see [10]):

$$u(t,x) = \frac{3}{\sqrt{\lambda^2 - 1}} \operatorname{sech}\left(\frac{x - \lambda t}{\sqrt{2(\lambda^2 - 1)}}\right) \tanh\left(\frac{x - \lambda t}{\sqrt{2(\lambda^2 - 1)}}\right) \times \exp[i\mu t + i(\lambda/2)(x - \lambda t)],$$

$$v(t,x) = -\frac{3}{\lambda^2 - 1} \operatorname{sech}^2\left(\frac{x - \lambda t}{\sqrt{2(\lambda^2 - 1)}}\right).$$
(3.1)

The variational characterizations and the stability problem for (3.1)–(3.2) seem to be open problems.

References

- [1] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561.
- [2] H. J. Efinger, On the stability of solitary-wave solutions of Yukawa-coupled Klein-Gordon-Schrödinger equations, Lett. Nuovo Cimento 35 (1982), 186–188.
- [3] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations II, J. Math. Anal. Appl. 66 (1978), 358-378.
- [4] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197.
- [5] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348.
- [6] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compactness, Ann. Inst. Henri Poincaré, Anal. non linéaire 1 (1984) 109–145, 223–283.

- [7] M. Ohta, Stability of solitary waves for the Zakharov equations, in "Dynamical Systems and Applications" (R. P. Agarwal ed.), WSSIAA Vol. 4, 563–571, World Scientific, Singapore, 1995.
- [8] M. Ohta, Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Anal., T.M.A. 27 (1996) 455-461.
- [9] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys. **91** (1983) 313-327.
- [10] T. Yoshinaga and T. Kakutani, Solitary and E-shock waves in a resonant system between long and short waves, J. Phys. Soc. Japan 63 (1994) 445-459.
- [11] H. Yukawa, On the interaction of elementary particles I, Proc. Physico-Math. Soc. Japan 17 (1935) 48-57.