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A note on Hilbert-Kunz multiplicity

L BERFRFRS TTHER SR #H — (Ken-ichi YOSHIDA)

1 Introduction

This is a joint work with Prof. Kei-ichi Watanabe in Nihon University; see [WY].

Throughout this talk, let (A, m, k) be a Noetherian local ring of characteristic p > 0.
Put d := dim A > 1. Let A denote the m-adic completion of A, and let Ass(A) (resp.
Min(A)) denote the associated prime ideals (resp. minimal prime ideals) of A. Moreover,
unless specified, let I denote an m-primary ideal of A and M a finite A-module.

First, we recall the notion of Hilbert-Kunz multiplicity which was defined by Kunz
[Kul]; see also Monsky [Mo|, Huneke [Hu].

Definition 1.1 The Hilbert-Kunz multiplicity egg (I, M) of M with respect to I is de-
fined as follows: d
A s M
eax(I, M) := lim Aa(M/TEM)

e-—>00 qd ?

where ¢ = p® and I = (a?|a € I)A. For simplicity, we put egx(I) := egx (I, A) and
GHK(A) = eHK(m).

The following question is fundamental but still open.

Question 1.2 Is egx (/) always a rational number?

¢ Known Results.
(1.3.1) Let e(I) be the multiplicity of A with respect to I. Then we have the following
inequalities:

e(
—‘El—!) S GHK(I) S e(I)

(1.3.3) Put Assh(A) = {P € Spec(A)| dim A/P = d}. Then

enx(I, M)= > enx(I,A/P)-14,(Mp).
PcAssh(A)

For example, if A is a local domain and B is a torsion free A-module of rank 7, then
GHK(I,B) =7T- eHK(A).
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(1.3.4) (Kunz [Ku2]) For any prime ideal P € Spec(A) such that height P +dim A/P =
- dim A, we have ‘ , -
enx(Ap) < egk(A).

(1.3.5)If Ais a regulaf local ring, then egg(I) = Aa(A/I).

(1.3.6) If I is a parameter ideal, then egg(I) = e([).

(1.3.7) We recall the notion of tight closure. An element z € A is said to be in the

tight closure I* of I if there exists an element ¢ € A® such that for all large ¢ = p°,
cz? € 19, where A® := A\ U{P| P € Min(A)}.

Let I, J be m-primary ideals such that I C J. Then if I* = J*, then egg(l) =
egk(J). Furthermore, if, in addition, A is equidimensional and reduced, then the
converse is also true.

(1.3.8) ([WY] or [BCP]) Let (4, m) C (B, n) be a module-finite extension of local

domains. Then
[B/n: A/m]

[Q(B) : Q(4)]
where Q(A) denotes the fraction field of A.

GHK(I,A): 'eHK(IB7B)7

Question 1.4 If pd, A/I < oo, then does the same formula as that in (1.3.5) hold?

e Background and Questions.

In general, there is an example such that egx(I) = e(I); for instance, let g be a minimal
reduction of m. If ¢* = m, then we have egx(m) = egx(q) = e(q) = e(m). However, we

have no example such that idj':z = egk([). On the other hand, if A = k[[X;, ..., X,]]™,
then '

egk(A) = L

r r—1

(d - 1) and e(A) = r+

A 1
enx(4) tends to —. So we consider the following

Thus if we tend r to oo, then the limit e(4) i

question.
Question 1.5 Is there a constant number a > 0 depending on d = dim A alone such that
1
eHK(I) > % + a?
On the other hand, in [WY], we proved the following theorem.

Theorem 1.6 [WY, Theorem (1.5)] If A is an unmized (i.e. Ass(A) = Assh(A)) local
ring with egx(A) = 1, then it is regular.
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In the above theorem, we cannot remove the assumption that A is “unmixed”. For
instance, if e(A) = 1, then egx(A) = 1. We now consider the case of Cohen-Macaulay
local rings. Then the following question is a natural extension of the above theorem.

Question 1.7 If A is a Cohen-Macaulay local ring with egx(A4) < 2, then is it F-regular
o

The following conjecture is related to the above questions.

Conjecture 1.8 Let A be a quasi-unmized (i.e. Min(A) = Assh(A)) local ring. Then
exx(I) > MA/I*) for any m-primary ideal I.

Further, if A is a Cohen-Macaulay local ring then egx(I) > A(A/I) for any m-primary
wdeal 1.

2 A positive answer to Question 1

Throughout this section, let A be a Noetherian local ring with dim A = 2 and suppose
that £ = A/m is infinite. The following theorem is a main result in this section.

Theorem 2.1 (cf. [WY, Section 5]) Suppose dim A = 2. Then for any m-primary ideal

I, we have ([)+1( (I))
e AN

N>
enx(l) 2 =3 2

First, we consider the case of Cohen-Macaulay local rings. Now suppose that A is
Cohen-Macaulay. Let I be an m-primary ideal and J its minimal reduction, that is,
J = (a, b) is a parameter ideal of A and I™*! = JI™ for some n > 1.

Lemma 2.2 Suppose that A is Cohen-Macaulay, 1 < s < 2 and ¢ = p*. We define
I* = I®! for any positive real number x. Then we have

(1) Aq(A/I6~Y9) = %I)(s —1)%2¢% + o(q?), where f(q) = o(q?) means lim Ha) _ 0.

e—00 q2
sq lq] e
@) A (I +J )z 1) (3~ 522 + ofg?).

Jldl 2
Proof. Put n = |(s —1)g] and e = (s — 1)g — n.

(1) Aa(AJTEY9) = X (A/T™) = -e—g—)n2 + f(n), where lim LZ) =0.

2 e—00
Thus we get
aa(arre ) = (s 10—+ ol?) = s~ 1207 4+ o?)

759 4 Jldl Jsa 4+ Jld V&S
(2) 2 (—Ju—) <M (—:fﬁ— +34 (73)
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First, we estimate the second term. Since e(I) = e(J), we have -
Aa(L] %) = AA(A/J“") Aa(A/T*) = o(q?).

Next, we estlmate the first term.

I=n

JS‘I+J91 | |
AA(T) < Z{:{:y €Z2[0<m,y<q—1 x+y——l}><)\AA/J)+o( %)

_ %(2q— 50 e(I) +o(¢).  QE.D.

Lemma 2.3 Suppose that A is Cohen-Macaulay. Let I be an m-primary ideal of A and
J a minimal reduction of I. If I/J is generated by r elements (i.e. v > pa(I) —2), then
we have

Aa(Ilel/ gl < e(I) - ¢* + o(g?).

r
2( +1)
Moreover, if J* C I and I/J* is generated by r elements, the same result holds.

Proof. Let s be any real number such that 1 < s < 2. Then ;
Jld Jl9 4 Jsq Jlal 4 rsa
Aa (]{ }) <Aa <~———J{q] +Isq) + Aa <7J[q] ) =: (FE1) + (E2).
Since we can write as I = Aug + - - - Au, + J, we get
ul A+ Jl o Je r A
El) < A =) A
B < S () = 3 (e )

< 1)y (T(él_)q-) =r- E(—{—)—(s —1)2¢*+0(¢°) by (2.2).

2
;s e(f) 2
On the other hand, by (2.2) again, (E2) = 7(2 —5)%¢®> + o(¢?). Thus

la) e '
w (T) < S22 {0+ 102 20+ Dk (4 0} + o)

r+2 . . .
Put s = i T and we get the required inequality.
r

Further, the last statement follows from the fact A4(A/J9) = /\A(A/(J*) ) + o(¢?).
Q.E.D.

Next proposition easily follows from the above lemma.

Proposition 2.4 Suppose that A is Cohen-Macaulay. Let I be an m-primary ideal of A
and J a minimal reduction of I. If I/J is generated by r elements then we have
r+2

2(r+1) ve(l).

Moreover, if J* C I and I/J* is generated by r elements (i.e. 7 > pa(I/J*) =
Aa(I/J* + Im)), the same result holds.

eax(l) >
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We now give a proof of Theorem (2.1). First, we suppose that A is Cohen-Macaulay
and let J be a minimal reduction of m. Since

e(I) —-1= )\A(m/J) - /\A(I/J) + )\A(m/]) Z AA(I/J“F Im) + /\A(m/I),
we have e(I) —1 > e(I) —1—Aa(m/I) > pa(I/J). By virtue of Proposition (2.4), we get

r 2 e)+1 . e(I)+1
2(7'—!—1).6()2 2e(I) ell) = 2

We remark that Equality egx(I) = (e(I) + 1)/2 implies I = m.

exx(l) >

where r = e(I) — 1 — Aa(m/1).

Next, we consider about general local rings. Since exg(I) = eHK(Iﬁ) and e(I) =
e(IA), we may assume that A is complete. Moreover, since

eHK(]) = Z( )GHK(I, A/P) '/\AP(AP)
PecAssh(A
e(I) = Z( )6(1, A/P)/\AP(AP),
PcAssh(A

we may assume that A is a complete local domain. Let B be the integral closure of A in
its fraction field. Then B is a complete normal local domain and a finite A-module; thus

it is a two-dimensional Cohen-Macaulay local ring. Let n be an unique maximal ideal of
B and put t = [B/n: A/m]. Then we have

eHK(I)zt-eHK(IB,B), e(I)-—-t-eHK(IB,B).
Thus by the argument in the Cohen-Macaulay case, we get

IB,B)+1 1
eHK(I):t'fZHK(IB,B)Zt.eHK( ,B) + >3HK(I)+ ‘

2 - 2
Corollary 2.5 If A is a non-Cohen-Macaulay, unmized local ring (with dim A = 2), then
I)+1
BHK(I, A) > %

for any m-primary ideal I of A.

Proof. By the above proof, we may assume that A is a complete local domain. With the
same notation as in the proof of Theorem, B is a torsion free A-module. If u,(B) = 1,
then B = A; this contradicts the assumption that A is not Cohen-Macaulay. Thus
Aa(B/mB) = pa(B) > 2.

When ¢ := [B/n : A/m] = 1, since Ag(B/mB) = As(B/mB) > 2, we have IB C
mB C n. Hence
._eIB)+1 e(l)+1
GHK(I) = eHK(IB,B) > ( 2) = ( )2 .

On the other hand, when t > 2, we have

(I)+t _ e(l)+1
2 > 2

enx(l) > = Q.E.D.
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Corollary 2.6 Let A be a local ring with dim A = 2. Then
(1) When e(A) =1, we have egg(A) = 1.

3
5

(2) When e(A) > 2, we have egg(A) >

3 Local rings with small Hilbert-Kunz multiplicity

In this section, we consider Question (1.7) in case of local rings with dim A = 2. In order
to state the main theorem, we recall the notion of F-regular rings. A local ring A is said
to be F-regular(resp. F-rational) if 1* = I for every ideal (resp. parameter ideal) I of A.
We are now ready to state the main theorem, which is a slight generalization of Theorem
(5.4) in [WY].

Theorem 3.1 (cf. [WY, Theorem (5.4)]) Let A be an unmixed local ring with dim A = 2
and suppose k = k. Then '

(1) 1 < egg(A) < 2 if and only if A is an F-rational double point, that is, A
k[[X, Y, Z]]/(f), where f is given by the list below (3.2).

(2) egx(A) =2 if and only if A satjsfies either one of the following conditions:

(a) A is not F-regular with e(A) = 2.
(b) A= E[X3, X2V, XY? Y.

Corollary 3.2 Let A be an unmized local ring with dim A = 2. If egx(A) < 2, then A is
isomorphic to the completion of the ring k| X,Y]% where G is a finite subgroup of SLy(k).

In particular, A is a module-finite subring of k[[X, Y]] and egx(A) =2 — Gl

In fact, |G| is given by the following table.

type | f | G|

(A,) | f=zy+ 2"t n+l |n>1

(Dp) | f=224+9y22+y" 1 |4(n—2) | n>4,p>3
(Be) | f=2>+y*+ 2 24 |p>3

(Br) | f=24+9*+y2® | 48 |p>5

(Es) | f=22+y*+2° 120 |p>7

From now on, let A be an unmixed local ring with dim A = 2. In order to prove the
above theorem, we give several lemmas.

Lemma 3.3 If 1 <egx(A) <2, then A is an integral domain with e(A) = 2 and Ap is
reqular for any prime ideal P # mA.
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Proof. We may assume that A is complete. First, we observe that e(A) = 2. Actually,
it follows from Theorem (2.1).

Next, we show that A is a local domain with isolated singularity. For any prime ideal
P # m, we have egx(Ap) < exx(A) < 2. Since egx(Ap) must be a positive integer, we
have ez (Ap) = 1. Hence Ap is regular.

On the other hand, # Ass(A) = # Assh(A) = 1. Actually, if # Assh(A) > 2,

2>egx(A)= >, enx(Ap)- Aup(Ap) > # Assh(A) > 2
PeAssh(A) :

gives a contradiction. Hence # Ass(A) = 1. Therefore A is a local domain. Q.E.D.

Corollary 3.4 Let A be a Cohen-Macaulay local ring with e(A) = 2 and suppose that A
is reduced. Then

(1) If A is F-regular, then er(A) < 2.
(2) If A is not F-regular, then egg(A) = 2.

Proof. Let q be a minimal reduction of m. Since A is Cohen-Macaulay, we have
Ma(A/q) = e(A) = 2; thus g* = q or ¢* = m, because g C g* C m.

When g* = g, since A is Gorenstein, A must be F-regular. Moreover, since m # g¢*
and A is reduced, we get

enx(A) = enx(m) < emx(q*) = exx(q) = e(q) = 2.

On the other hand, when q* = m, A is not F-regular and egx(A) = exx(q) = 2.
Q.E.D.

We now give an outline of the proof of Theorem (3.1). Let A be an unmixed local ring
with dim A = 2 and suppose k = k.

Step 1. When A is a complete Cohen-Macaulay local ring with egg(A) < 2, it is an
F-rational double point.

Proof. In fact, by Lemma (3.3), A is a complete local domain with e(A) = 2. Thus
Corollary (3.4) implies that A is F-regular. Then A is given by the list in Corollary (3.2).

Step 2. If A is unmixed local ring with egx(A4) < 2, then A is F-regular.

Proof. We may assume that A is complete. By Lemma (3.3), A is a complete
local domain with e(A) = 2. Let B the integral closure of A in its fraction field. Then
Aa(B/A) < 0o and B is a local domain and is a module-finite extension of A. Let n be
an unique maximal ideal of B. In order to show that A is F-regular it is enough to show
A = B, for B is Cohen-Macaulay. As A/m = B/n, we get

2> 6HK(A) = eHK(m, B) > eHK(n, B) =: GHK(B).

1
According to Step 1, B is F-regular with egx(B) = 2— @ and is a module-finite subring
of C = k[[X, Y]] such that |G| = [Q(C) : Q(B)].
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Now suppose A # B. Then H.(A) = B/A # 0 and thus A is not Cohen-Macaulay.
Further, as pu4(B) > 2, we have m.B C n. Moreover, since both B and C are F-regular
rings, we obtain that I.C N B = I for any ideal I of B. In particular, we have m.C' G n.C.
Hence we get

1 1
eHK(A)~eHK(B) = ‘—G—T)\A(C/mC)—TE')\A(C/nC)
_ ! A (nC/mC)>i
G = ay
Thus
(A)> enx(B) + — = [2- L)+ L =2
= S e T\ el) el T
Thus we conclude that A = B as required. O

Step 3. Let A be a complete Cohen-Macaulay local ring. Then exgx(A) =2 if and only
if A is not F-regular with e(4) = 2 or A = k[[X3, X%V, XY?, Y7

Proof. If part is easy. But only if part is hard. See [WY, Section5] for details. [

Step 4. Suppose that A is unmixed but not Cohen-Macaulay. Then exx(A) = 2 if and
only if e(4) = 2.

Proof. If part: If e(A) = 2, then egx(A) < 2. If egx(A) < 2, then A is Cohen-
Macaulay by Step 2. However, this contradicts the assumption. Hence egx(A) = 2.
Only if part follows from Corollary (2.5). Q.E.D. :

In the final of this section, we give the following problem.

Problem 3.5 Let A be an unmized local ring with dim A = 2. Characterize the ring A

A)+1
which satisfies egg(A) = E(——)z—j_——. .
1
In fact, if A = k[[X,Y]]® then e(A) = e and egx(A) = et Further, the
A)+1
proof of the above theorem implies that if egx(A4) = 3(——)2+— and e(A) < 3 then

A = K[[X, Y]]e(A). Moreover, the following proposition gives a partival answer to this
problem. :

e(A)+1

Proposition 3.6 If A is an unmized local ring with enx(A) = , then it is F-

rational.

Proof. By Cor (2.5), A is Cohen-Macaulay. Then we show that A has a minimal
multiplicity, that is, emb(A) = e(A) + dim A — 1. Let q be a minimal redcution of m.
Then since

e(A) —1 = Aa(m/q) > Aa(m/q + m?) = pa(m/q).
If e(A) — 1> pa(m/q) =: 70 , then

T9 + 2 e(A)+1
GHK(A)> 0 %————,

> 2t 1) -e(A) >
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see the proof of Theorem (2.1) for detail. Thus e(A) — 1 = pa(m/q). It follows that
m? C q; thus A has a minimal multiplicity.

We will show that A is F-rational. Suppose not. Then q* # q. Since m?> C q C g*, we
have r1 := ps(m/q*) < pa(m/q) = ro. Thus by virtue of (2.4), we get

7‘0+2

e(A)+1
2(7‘0 + 1) )

71+ 2
eHK(A)> ! )

_m-e(A)> -e(A) =

This contradicts the assumption. Hence we conclude that A is F-rational. Q.E.D.

4 Extended Rees Rings.

In this section, we consider the following question.

Question 4.1 Let A be a local ring and F' = {F,} a filtration of A. Then does egg(A) <
egx(Gp(A)) always hold ? Further, when does equality hold?

In order to state our result, we recall the definition of Rees ring, extended Rees ring
and the associated graded ring.

Let A be a local ring of A with d := dim A > 1. Then F = {F,},cz is said to be a
filtration of A if the following conditions are satisfied:

(a) F; is an ideal of A such that F; D F;,; for each 1.
(b) F; = A for each i < 0 and m D F;.
(c) FiF; C F4j for each 4, j.

For a given filtration F' = {F, },cz of A, we define

R:=Rp(A) = P Fut"
n=0

S = Ry(A) = @ Fat™

n€Z
G:=Gp(A) = @ Fu/Foi1 = S/t71S =2 R/R(1).
n=0
Rp(A) (resp. Ry(A), Gp(A)) is said to be the Rees (resp. the exteded Rees, the
associated graded) ring with respect to a filtration F of A.

Then our main result in this section is the following theorem.

Theorem 4.2 Let A be any local ring with d := dim A > 0 and let F = {F,}ncz be a
filtration of A. Suppose that Rg(A) is a Noetherian ring with dim Rp(A) = d + 1. Then
for any m-primary ideal I of A such that F; C I C m, we have

(1) egx(I,A) < egg(N,S), where N = (t71, 1, S,).
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(2) If Fy is an m-primary ideal, then eg(N,S) < egx(G).

In particular, of Fy is an m-primary ideal, then

enx(A) < egk(S) < exgx(G).

Question 4.3 In the above theorem, when does equality hold? How about exx(A) <
6HK(RF(A)) ?
Example 4.4 Let A=k[[X, Y]] and I = (X™, Y™), where m > n > 1. Then

(1) e(R(I)) =n+1. '

n(3m — 1)
3m2

(3) e(R(I))=n+2 (ifn>2), =2 (otherwise).

(2) egx(R(I))=n+1—

(@) enx(R(I) =n+2- 2 —
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