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Abstract: Let f; be a member of a Hilbert space H;, S; be a linear system of
H; and f; be the output of f; in the system. We assume that the outputs f;
are functions on a same set E. Then we consider the problems :

How to find the sum f; + f,, the product f, f,, and etc by means of their
inputs f; ?

The theoxy of reproducing kernels will glve natural answers in natural situa-
tions for these problems.

Surprising enough, for very general nonlinear system S;, we Will be able to
discuss the similar problems.
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1. A General Concept

Following Saitoh [1], we shall introduce a general theory for linear transforms
in the framework of Hilbert spaces. |

Let ‘H be a Hilbert (possibly ﬁmte—dunensxona.l) space. Let E be an abstract
set and h be a Hilbert H-valued function on E. Then we shall consider the
linear transform

fp) = (£, h(p)),f € H )

from H into the linear space F(E) comprising all the complex valued function
on E. In order to investigate the linear transform (1.1), we form a positive
matrix A'(p,q) on E defined by

K(p,q) = (h(g), h(p))» on ExE. @
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Then, we obtain the following :

(I) The range in the linear transform (1.1) by H is characterized as the repro-
ducing kernel Hilbert space Hg (F) admitting the reproducing kernel K (p,q).

(II) In general, we have the inequality

I acmy < NIl

Here, for a member f of Hg(FE) there exists a uniquely determined f* € H
satisfying

f(p)=(",h(p))yon E
and
Wl oy = IE ™1l

(III) In general, we have the inversion formula in (1.1) in the form
[ f (1.3)

in (II) by using the reproducing kernel Hilbert space Hy(E). However, this
formula is, in general, involved and delicate. We need, case by case, arguments.
In this paper, we assume that the inversion formula (1.3) is established.

(IV) Conversely, we assume that an isometrical mapping L from a reproducing
kernel Hilbert space Hx (E) admitting the reproducing kernel K(p, q) on E onto
a Hilbert space H. Then we have the representation (1.1) by

h(p) := LK (.,p).
Furthermore, {h(p); p € E} is complete in H.

Now we shall consider two systems

fi(p) = (f5,h;(p))n;, fj € H,; (1.4)

in the above way by using {H;, E, hj}§=1~ Here, we assume that E is a same

set for the two systems in order to have the output functions f;(p) and f2(p)

on the same set E. '
For example, we can consider the operators

fi(p) + fa(p)

and |
fi(p) f2(p)

in F(FE). Then, we can consider the following problems : How to represent the
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sum fi(p) + f2(p) and the product fi(p) f2(p) on E in terms of their inputs f,
In this paper, we shall show that by using the theory of reproducing kernels
we can give natural answers for these problems. Furthermore, for some very
general nonlinear systems, we shall show that we can consider similar problems
and solutions.
After introducing several operators in H; and H, based on the above idea,
we shall give typical and concrete operators, as examples.

2. Sum

By (1), fi € Hk,(E) and f, € Hy,(E), and we note that for the reproducing
~ kernel Hilbert space Hg, 4k, (F) admitting the reproducing kernel

Ki(p,q) + K2(p,q) on E,
Hg,\ 4k, (E) is composed of all functions _
f(p) = fi(p) + fo(p); fj € Hi;(E) (2.1)

and its norm || fl g, , ,(E) is given by

M, iy ey = min{l Al 5y + 12l ()} (2.2)

where the minimum is taken over fi € Hg,(E) satisfying (2.1) for f. Hence, in
general, we have the inequality

Ui + Follo, sy < Wi IB, iy + el - (2.3)

For the positive matrix K} + K5 on E, we assume the expression in the form
K\(p,q) + K2(p,q) = (hs(q), hs(p))us on E x E (2.4)

with a Hilbert space Hg-valued function on E and furthér we assume that
{hs(p); p € E} is complete in Hs. (2.5)

Such a representation is, in general, possible (Saitoh [1], page 36 and see chapter
1. §5). Then, we can consider the linear mapping from Hs onto Hg, 4k, (E)

fs(p) = (fs,hs(P))ns, fs € Hs (2.6)
and we obtain the isometrical identity
sl b, oy ) = Ifsllaes- (27)

Hence, for such representations (2.4) with (2.5), we obtain the isometrical map-
pings among the Hilbert space Hg.
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Now, for the sum f,(p) + f2(p) there exists a uniquely determined fs € Hg
satisfying

11(P) + f2(p) = (£s, hs(p)) s on E. (28)

Then, fs will be considered as a sum of f; and f; through these transforms a.nd
so, we shall introduce the notation

fs = f[+]f>. | (2.9)

This sum for the members f; € H, and f, € H, is introduced through the three
transforms induced by {’H], E, h;} (j =1,2) and {H,, F, hs}.

The operator fl [+]f2 is expresmble in terms of f; and f, by the inversion
formula

(f1, 01 (), + (f2.h2(p))w, — fi[+]f (2.10)
in the sense (II) from Hg, 4k, (E) onto Hg. Then, from (II) and (2.5) we have

Theorem 2.1. We have a triangle inequality

£ [+1E205 < Ifall3e, + lIf2ll3, - (2.11)

If {hj(p); p € E} are complete in H; (j = 1,2), then H; and H, are
isometrical. By using the isometrical mappings induced by Hilbert space valued

function h; (7 = 1,2) and hg, we can introduce the sum space of H, and H; in
the form

Hi[+Ho (2.12)

through the transforms.
For example, if for some positive number v

K, <7y K;on E (2.13)
that is, v’Ky, — K, is a positive matrix on E, we have
Hg,(E) C Hg,(E) ; (2.14)

and ‘ |
W fill e, By S AIIA "HK‘(E) for fy € Hg,(E) (2.15)

(Saitoh [1], page 37). Hence, in this case, we need not to introduce a Hilbert
space Hs and the linear mapping (2.6) in Theorem (2.1) and we can use the
linear mapping

| (f2,h2(p))n,, f2 € Ha

instead of (2.6) in Theorem 2.1.

3. Product
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The product K (p, q) K2(p, q) is a positive matrix on E and the reproducing ker-
nel Hilbert space H, k,(E) admitting the reproducing kernel K, (p,q) K2(p,q)
is composed of all functions S Cen , oo

10)=Y fin@)fan(®) on B BERCRY
n=1 » : o

| fin(p) € Hx;(E) (=12
and the norm in Hg, g,(E) is given by

“f"%{,ﬁ,(?(s) = min Z ”fl,n"%{,q(E)”f&"”ilK?(E) (3.2)
n=1 '

where the minimum is taken over all functions satisfying (3.1) for f. In partic-
ular, (3.1) converges absolutely on E. Especially we obtain the inequality

Wi follb i, vy (8 S WAl (el foll i, - - (3.3)

As in the sum, we assume that the representation

K\ (p,q)K1(p.q) = (hp(a),hp(p))n, on E x E (3.4)

with a Hilbert space H p-valued function on E, and we assume that
{hp(p);p € E} is complete in Hp. (3.5)
Then we consider the linear mapping

fp(p) = (fp, hp(P))np, fPEHP (3.6)

and we obtain the isometrical identity
NPl b, x, (B) = ifpllHp- (3.7)

’H'en(_:e, for any product f,(p)f2(p) there exists a uniquely determined fp € Hp
satisfying ‘ ‘ ‘ ' ‘
filp) f2(p) = (fp,hp(p))n, on E. | (3.8)
Then, fp will be considered as a product of f; and f; through these transforms
and so, we shall introduce the notation

fp = f| [X]f2 : (39)

This product for the members f ;€H; (7 = 1,2) is introduced t.hrough the three
transforms induced by {#;, E, h;} (j = 1,2) and {Hp, E, hp}. The operator
f,[x]fz is expressible in terms of f; and f, by the inversion formula

(fﬂvhl(p))ﬂn(f25h2(p))’}l2 — fl[xlf'z ’ (310)
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in the sense (III) from Hg, ,(E) onto Hp. Then, we obtain

Theorem 3.1. We have a Schwarz type inequality
I (X1l < Nfill2e, [1fallae - (3.11)

As in the sum space H,[+]H2 we can introduce the product space
Hy[x]Ho (3.12)
through the tﬁree transforms under the completeness assumptions of h; in
H; (1 =1,2).
For example, if for a positive v
KK, €« ¥*K, on E, (3.13)

as in the sum, we can consider the linear transform

(flahl(p))ﬂya fl € 7'{l |
instead of (3.6).

In particular, in the setting in Section 1, we obtain

Corollary 3.1. If K2 € ¥2K on E for a positive constant v and {h(p);p € E}
is complete in H, then H is a commutative ring with the product f[x]g through
the same three transforms {H, E, h}. Furthermore if v = 1, H is a Banach
ring with the product.

4. Differential

In the setting in Section 1, for simplicity we shall assume that F is an interval
on the real line and the reproducing kernel Hilbert space Hy(FE) is composed
of C'-class functions on E. This smoothness reflects to the smoothness of the
reproducing kernel K (p, q) that

_0’K(p,q)

K ,(p,q):= Bpoq belongs to C!'(E x E) (4.1)

and h(p) is differentiable on E in the space ‘H. Furthermore, we have

o= (0252) o g (42)

(Saitoh [1], pages 40-41). For the positive matrix (4.1) we have the expression
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Ky.(p,q) = (6h(q)‘ 0h(p)) on F x E. . (4.3)
9 ~ Op )
Here, we assume that
h
00;}7) ;p € E} is complete in H. (4.4)

Then, the derived function f’(p) belongs to the reproducing kernel Hilbert space
Hy, | (g) admitting the reproducing kernel K, ; (p, q) and we have the isometrical
identity

"f,”K;.l = ”f”H (4'5)

However, for the positive matrix K ;(p, q) if we use a representation
I‘l l(p’ ) (hD( )ahD(p))'HD on £ x E (46)

for a Hilbert space H p-valued function such that

{hp(p);p € E} is complete in H p,

there exists a unique vector fp € Hp satisfying

,(p) = (fDa hD(P))?{D on F. (47)

Then, fp will be considered as a derived vector through the transforms induced
from {4, E, hp} and {Hp, E, h}. So, we shall write

fp = Df (4.8)
and the operator Df is expressible in terms of f by the inversion formula
—6—(f h(p)),, — Df (4.9)
ap *9 p H . *
in the sense (III) from Hg, ,(g) onto Hp. Then we have
Theorem 4.1. We have the inequality

IDfll2ep < NI 13- (4.10)

As in the sum and the product spaces, we can introduce the derived Hilbert
space ‘ '

DH | (4.11)

through the transforms induced by {H, E, h} and {Hp, E, hp}if {h(p);p €
H} is complete in H.
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In the setting in Section 4, we can consider an integral of a Hilbert space H as

in the derived space DH.

- We assume that

14 q
K'pq)i= [ [ KD on Ex E

vpo Yqdo .

exists, and A" (p, q) is expressible in the form

K"'(p.q) == (hi(q),hs(p))n, on E x E
for a Hilbert space H;-valued function h; on E such that

{h;(p);p € E} is complete in H;.

Then, as in the derived vector we can introduce the integrated vector

P
/ f
Po
p
/ H.

Po

The vector (5.3) is expressible in terms of f by the inversion foumula

and the space

p p
/ (£ B(p))udp — [ £
p

0 Po

in the sense (III) from Hg1.1(E) onto H;. Then we have

Theorem 5.1. We have the inequality

p
I / flln, < Il
Po '

6. Integral of Hilbert spaces

(5.2)

(5:3)

(5.4)

In the setting in Section 2, we shall consider systems with a continuous param-

‘eter t on an index set T as follows :

{H., E, hy}, teT.

We assume that the associated reproducing kernel

(6.1)
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K(p,q) = (hi(q), hu(p))nu, on Ex E. (6.2)

is integrable on T with respect to a o-finite positive measure do on T" and

Kr(p,q) = / K/(p,q)do(t) on E x E. (63)
T ’ ' B
As a generalization of the sum of reproducing kernels, note that the reproduc-

ing kernel Hilbert space H k,(E) is composed of all functions f(p) which are
expressible in the form

:ﬁf@,t)da(t), f(p,t) € Hy,(E) (6.4)

and the norm || f|| (&) is given by

10y = min | 175 Ol (e (65)

where the minimum is taken over all the expressions (6.4) for f.
We shall assume the expression

Kr(p,q) = (br(q). br(p))u, on Ex E (6.6)

by a Hilbert space Hp-valued function hr on E and {hr(p);p € E} is complete
in Hp. Then, we can introduce the integral of f;

’Aﬁ | (6.7)
Lw . (6.8)

similarly. The integral (6.7) is expressible in terms of f; by the inversion formula

and

/mm@ da—ﬂ/ﬂ 'y (6.9)

from H..(E) onto Hr. Then we have

Theorem 6.1. We have the inequality

[ /T Ll < /T 1612, dot). (6.10)

As shown in Appendix 1 in Saitoh [1], for very general nonlinear transforms of
a reproducing kernel Hilbert space, their ranges belong to naturally determined
reproducing kernel Hilbert spaces and norm inequalities hold in the nonlinear
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transforms. Therefore, for very general nonlinear transforms we can obtain
similar results as in the linear transforms. In order to reduce this paper in
a reasonable size, we shall present their exact formulations and applications in
another papers. In the last part, we shall give a concrete example as a prototype
result.

Our background idea comes from the idea of “convolution” and for our con-
crete applications we can give various solution of integral equations. In fact, the
product f,[x]f, will be regarded as a convolution of f, and f,. As a first step
paper in our new concept, in the sequel we shall present typical concrete exam-
ples in the general and abstract operators. It seems that to examine concrete
operators in various concrete transforms is to rich our mathematics.

7. Examples of Operators

7.1. We shall consider two linear transforms

50) = [ FORERIp(0am(®), pe E (7.01)
where p; are positive continuous functions on T,
/r|h(t,p)|2pj(t)dm(t) <ocoonp€kFE (7.1.2)
and
| IFOFp0dm@ <. (7.1.3)

We assume that {h(t,p);p € E} is complete in the spaces satisfying (7.1.3).
Then, we consider the associated reproducing kernel on E

Ki(p.) = | .o Pips(0hdm()

and, for example we consider the expression

I\'l(p,q)+lx’z(p,q)=Lh(t,b)h(t,p)(pl(t)+pz(t))dm(t)- (7.1.4)

So, we can consider the linear transform

f(p) = /T FOREE)(o1() + pat)dm(t)  (7.15)

for functions F satisfying

L|F(t)|2(Pl(t) + p2(t))dm(t) < oo.



93

Hence, through the three transforms (7.1.1) and (7.1.5) we have the sum

Fi(t)pi(t) + Fz(t)l’z(t)-

Fi{+]F3) (t) = 7.1.6
7.2. We shall consider two linear transforms
@)= [ emFwpnd (7.2.1)
for positive L, (—cio, o) integrable functions p; and for funtions F; satisfying
oo
| IE@Rpstat < . (7.2.2)
—00

We consider the associated reproducing kernels

Kifew) = [ eemp; (e

- 00

and, for example we have the expression

K (z,y)K2(z,y) = / e'Zle ™V (p, * py)(t)dt (7.2.3)
and the induced linear transform
f(z) = / F(t)e'='(p, * p2)(t)dt (7.2.4)
for functions F’ satisfying
o0
[ F@R e pr0a < . (7.2.5)

Meanwhile, we have the expression from (7.2.1)

fi(z) f2(z) _/°° '™ (Fip1) * (F2p2) (t)d (7~2-6)

We thus have the product F}[x]F; through the transforms (( 2.1)(j =1,2)and
(7.2.4) :

(Fipy) (F2p2) (t)
(F1[X]F2 (t (p *pg)(t) . (727)

In particular, we obtain the inequality

dt

/ | 22, Fi(€)pu(§)Fa(t — €)pa(t — €)dE|?
> S0, P1(E)pa(t — €)dE
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< /°° |FL(t) | (t)dt /°° |F2(t) [ p2(t)dt. (7.2.8)

-0 - 00

7.3. Let Kj(z,1) be two reproducing kernels on {|z| < r;} defined by the
expansions

Kj(z,a) = ZC(”z" a", (CY) >0). ~(7.3.1)

=0

Then, the reproducing kernel Hilbert spaces H; are composed of all analytic
funtions f;(z) defined by

(2) Z al2" on {|z]| < r,} (7.3.2)
with finite norms
2 = a2
i, =2 o (7.3.3)
n=0 n.

as we see easily, respectively. We have the expressions

K\(z,0)K(z,8) = Y ( > cg”c}?) 2"a", - (7.3.4)

n=0 \v+u=n

and
fi(2) fa(z Z( > a(”am) (7.3.5)
=0 \v+u=n

Hence, we have the sum a!'[+]a(? (a(j) = (ay’, &, - )) satisfying (7.3.3)
for y = 1,2 '

{ Y aalPY, (7.3.6)

v+u=n

through the two transforms (7.3.2) satisfying (7.3.3) and the transform

o0
=) anz" (7.3.7)
n=0

satisfying
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. 00

|a,,| | : :
z - < oo, (7.3.8)
n=0 ZV—{-p =n C‘(’I)CI(})

In particular, we have the 1nequa.hty

=~ |Zu+”=na9)a§‘2)|2 |a(l)|2 50 a2 (2)12
2, > o) (2w ) (739

1 2 (2)
n=0 Zy-{-p:n C'(’ )Cl(‘) n=0 n=0 C

7.4. Recall that

, 1 _ 1 oo eiz:te—iyt ‘
K = e lT7¥l = ———dt 7.4.1

is the reproducing kernel for the Sobolov space Hg comprising all absolutely
continuous function f(z) on (—o0o,00) with finite norms

Wl = [ (5@ + 1 @) o (7.42)
Then,
- 2 _ 1 22—y
I\(;l:, y) = —€
4
11 o0 ei2rztefi2yt
T2 J_oo 241
1 o0 eizle—iyl
= — —dt. 743
2n J_ t2 44 ‘ ( )
Hence,
K(z,y)* < K(z,y) on (—o0,0). (7.4.4)

We consider the linear transform induced from (7.4.1)

F (t irl ’ . ‘
-—————dt 7.4.5
fi(z) = 27r/°Q 241 (7.4:5)
for functions Fj satisfying
“ |F; (t)l2 .
————dt . 4.6
27r gyl S (7.4)

—oe

Then, we have
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ot [ (B4) - (52 o s

1. [ F(t)e=!
= ———d{t. 7.4.7
2r J_oo 241 ( )

Hence, through the same three transforms (7.4.5) we have the product

(F[XIF2) (t) = 51;{(5—‘19-12) " (f;_-gf)%) ) +1). (7.4.8)

By Corollary 3.1, the space (7.4.6) is a Banach ring under the product (7.4.8).

7.5. For any separable Hilbert space H and its complete orthonormal system
{£.}>2,, we shall consider the linear transform from H onto [

an = (£, ). (7.5.1)

Then, the reproducing kernel for {2 is Kronecker’s d,m, and of course

82, < bnm. (7.5.2)
Hence for o
f = Z af, € H
n=1
and

" 00
g=) bof, €H
n=1
through the three transforms (7.5.1), we have the product

f{x]g = D _ anbnfn. (7.5.3)
n=1

Under this product, H is a Banach ring.

7.6. For g > 1,

- v T(29)
I&q(z,u).— Gt
.:/ e e B29 gt (7.6.1)
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is the reproducing kernel for the Bergman-Selbert space Hg (R*) on the com-
plex half plane R* = {Re z > 0} comprising all ‘analytic functions f(z) on Rt
with finite norms

, 1 ' |
T R — 2[2Re 2|**"%dz dy. 7.6.2
W, = r50— [ ., 1FIFl2Re =120~z dy (762)
Note that
m -
Kl(z,ﬁ)=/ e e " tdt (7.6.3)
o .
and |
O*K\(z,u) 6
0z0u - (z+ )t
=/ e e Mdt
0
= Ky(z,a). (7.6.4)
In the transform induced from (7.6.3)
ﬂﬂ:/~€MFMMt (7:6.5)
0
for functions F satisfying
/ |[F(t)]*t dt < o0 (7.6.6)
0 ,
we have
' oo
f’(z):] e F(t)(—tP)dt. (7.6.7)
A v

By using the transform induced from (7.6.4)

f'(z):/()ooe'z‘G(t)(t3)dt | (7.6.8)

for a function G satisfying

/ |G(t)*t3dt < oo, (7.6.9)
0 .

we have the derived vector of F'

DF = —— (7.6.10)
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through the transforms (7.6.5) and (7.6.8).
Furthermore, by integrating (7.6.4) from +oo to z and by using the corre-

sponding transforms to (7.6.8) and (7.6.5) we have the integrated vector of F
as follows :

/F = —tF(t). | (7.6.11)

7.7. Note that for example, for the nonlinear transform

dy f" +dyf'f +dsf* (d;: constants) (7.7.1)

for f € Hg, in 7.6, it has a specially simple structure and it belongs to the
space H,. Furthermore we have the inequality

120 ,
E,‘z‘"dlf” +dof f+ d3f3”2HK3

1 1 .
<l (agldsl + Sl U, + 16U, ) (072)
(Saitoh [1], Appendix 2).

In the transform (7.6.5), we have
o0
f'(z) = / e”* F(t)t3dt,
0

() () = /0 e~ ((F(8)(=2)) * (F(0)(1))) ()t

1P = [ et (P (et

Here, ( )3 means the three times convolution product. Hence we have the
expression

dif"(2) + dof'(2)f(2) + dsf(2)* = / T ety 2 F(2) + dt

((F()(=t2)) * (F(t)t)) (t) + dst > (F(6))™" (1) }*dt. (7.7.3)

Hence, by using the transform

f(z) = /Oooe“”G(t)t"’dt - (7.7.4)
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for functions G satisfying
/ |G(t)|*t°dt < o0 (7.7.5)
0
induced from the expression (7.6.1) for ¢ = 3, we have
G(t) = dit™2F(t) + dat 5 ((F(t)(—t?))

«(F(t)t)) (t) + dst ™ (F(t)t)™ (¢). (7.7.6)

Note that the nonlinear transform (7.7.1) is transformed to the form (7.7.6)
containing convolutions. g ‘ : v
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