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Section 1.

" Let X be a unital Banach algebra over R or C, that is, a complete normed algebra with
a unit 1 such that ||1|| = 1.
The aim of this note is, roughly speaking, to show that if f : [0.c0) — X satisfies-
f(0) =1, f(0) = a, then f(£)™ converges to €'* as n — oo, where

[o o]

xn
=) —

|
n—

by definition.

If X = R, this assertion clearly follows from the L’hospltal theorem. Since a set of all
bounded operators on a Banach space is a unital Banach algebra, for a bounded operator
A, e is defined as above. In this case for bounded operators A, B the Lie product formula:

exp(A + B) = (n) lim {'exp(é) exp(é)}" |

is well-known, where (n) means that the limit is in the sense of the (operator) norm
topology. Th1s implies that the above assertion holds for f(t) = exp(tA) exp(tB) as well.
The above definition e* is not useful for unbounded operator. However it is well-known
that if A is a generator of (Cp) contractive senngroup, then ‘ ’

et =(s ) lim (1 — -—A)‘" for t >0,

n—00

where (s) means that the limit is in the sense of strong topology. The Lie product formula
was extended to the case of unbounded operators on a Banach space in [2][4].
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Chernoff [1] showed a product formula in a more general form as follows :

Let f(t) be a strongly continuous function from [0,c0) to the linear contractions on a
Banach space. Suppose that f(0) = 1 and the strong derivative f'(0) has a closure A which
is a generator of a (Co) contractive sengroup Then f(t/n)" strongly converges to e'4.

In the proof of this theorern the condition ||f(t)]| 5 1 plays an important role, so it is
not easy to relax it. However we encounter many.cases where f(t) is not a contraction and
the derivative A is bounded : in this case

f(t)
117 @)]]

is a contraction, but may not be diffefentiable at t = 0-; so we can not use the Chernoft’s
theorem. Therefore we need to make a new product formula for bounded operators. See
[3] for product formulas.

Theorem 1. Let X be a unital Banach algebra, and let f(t) be a function from an
interval 0 <t < ( to X. If f(0) =1 and f(t) has a norm right derivative a att =0, then

||f(;1‘)n —exp(ta)]| - 0 (n' — o) for» 0<t<oo0.

Proof. For every t:0 <t < oo, f(%) is defined for sufficiently large n, so we may assume -
[ is defined on [0, 00). We claim that

there is v > 0 such that ||f(¢)||? is bounded on 0,r).
To see this we may show that 1 : log||f (t)|| is bounded above on 0 < ¢t < 7.

Slnce f(t) |
|=—=——2a|| =0 (¢ —+0),

L(If @] = 1) is bounded, and Ilf( =1 (- +0). Thus
log || (I _ { el test WAL (11 £()]] # 1)
t (F @Il = 1)

is bounded on some interval (O T). ‘
Now take an arbitrary ¢t : 0 < t < oo, and ﬁx it.” By the claim above, we can see that
{IIf(£)]|"}n is bounded. Thus there is M > 0 such that

t
elell < M, |If ()" < M for every n.
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From »
(e n;) i )"‘{f( )—eﬂ“}(eﬂ“)“ e
it follows that : ' IRFEEE R : R
,IIf(%)”—e‘“ll_Sllf( AL SV (ehlelhn-i-m

m=0
£ ., M — llal
_nllf(;;) —en ” (Mn -—en“““)
Since
n(M= — exllell) — log M — t||al|
and ‘

Allf () = sl S U = 1} = all + 15 (—e¥ + D+ al| > 0 (n— co)
we get : :
) =l =0 (n— co).

This concludes the proof. O
Corollary 1. Fora; € X (i=1,---,m) |
al am n
O+ 2 (14 223 — explar + -+ a)l] =0,
ll(e™ -+ ™)™ —exp(ar + - -+ + am)|| = 0.
Proof. By setting f(t) = (1+tay)--- (1 +ta,,) or f(t) = €% ... e%m, these follows from
the theorem. o O

Let ¢(z) be a holomorphic function in a neighborhood |z — 1| < §. Then for a € X :
lla — 1| < 8, ¢(a) is defined by : : '

co i(n)
oa@)=3 Wy,

n=o n!

which converges in the norm. Thus for f(t) with the property set out in the theorem
#(f(t)) is well-defined for sufficiently small t. Since ¢(f(0)) = #(1) and the right norm
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derivative of ¢(f(t)) at t =0 is ¢/(1) f'(0), we have

Corollary 2. If ¢(2) is a scalar valued holomorphic function in a neighborhood of z = 1
with ¢(1) = 1, then for f(t) which has the property set out in the theorem,

" — bt Wl 0 (s ce) for 0t <co.

In particular, we have
Corollary 3.

[{(1+ f:li)f\l (14 %)Am}" —exp(Mar+ -+ Apan)|| = 0 for X\ € R

In the proof of Theorem 1 that the domain of f is the right half real line is not essential.
We can get the same result as above even if the domain of f is a half line with end point
0 in C. More generally we show

Theorem 4. Let X be a unital Banach algebra, set D={2€ C: a<argz< B, 0<
a < 2n}. If a function f : D — X satisfies f(0) = 1 and f'(0) = a, that s,

f(z) - f(O) al| -0 (z€D,z—0),

|=————=
then for every z € D, ||f(£)" —exp zal]| - 0 (n — o).

Proof. In the same way as the proof of Theorem 1 one can easily show that ||f (z)||T%f is
bounded on a neighborhood of 0 € D, and that , for fixed z € D,

Ilf(g) el <l|f ) —en?| ZM e Zllalyh-1-m

m=0

from which the theorem follows. , O
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Section 2.

Let A and B be bounded selfadjoint operators on a Hilbert space. The followmg cele-
brated inequality was found by Furuta in [4] and simply proved in [5].

A>B>0 1mph% A(P-H‘)/q > (Ar/2BpA-r/2)1/q (1)
forP>0 g>1,r >0such that (1+r)g>p+r.

Ando [1] showed the following theorem in the case of s = p = r with a splended idea.
Then Fujii, Furuta, Kamai [2], by making use of Ando’s result, proved that A > B implies
(2).

Theorem A. A > B implies that forp >0, r >s>0
e > (e5AcPBe5A) s | . @
In [1] Ando also showed the converse :
Theorem B. If
et > (e $APBeiA) TG for  every t>0,
then A > B. "

The aim of this note is to give a new way to get exponential inequalities from operator
inequalities like (1), and to extend Theorems A, B.
We start with a quite simple proof of Theorem A This techmque seemns to be very effective
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to study operator inequality.

Another proof of Theorem A. For sufficiently large n we have 1+ 4 A > 1 -I— B > 0. By
substituting np and nr to p and r of (1), respectively, we get, -

Since for selfadjoint operator X, (1+ %)" converges to eX in the operator norm as n — oo,
we gain (2) by setting s = 2. _ O

We slightly extend Theorem A by using itself.
Proposition 1. A > B implies
et > {eihelt4 PP i A} TR &)
forp,q,r,swith0<s<r, 0 Sp,p—}- q; and0 <p+q+r.

Proof. If p+ q = 0, then e(#4+PB) is contractive, so that the above 1nequa11ty follows.
Therefore we assume that p + q > 0. Since :

gd+pB _ 4
qg+p

by using (2), we gain (3). a
Now we extend Theorem B:
Theorem 2. If there are p,q,r,s withp > 0,p+q > 0,r > s > 0 such that
StA > { e%’Aet(qAHJB) e%A}m
for every t > 0, then A > B.

Proof. If p+ g+ r = s, then the above inequality implies that €'#4+P) is contractive
because of p + ¢ = 0. Hence A > B. Suppose p+ q+r > s. Set

f(t) —e ”A —t(gA+pB) e',;‘A g(t) — —StA

Then we get , » ‘
(fO) Tz, 2) > (9(t)z,2) (=] =1, t>0),



155

from which it follows that
(f(t)z, z) @ > (g(t)z,z) (¢t >0)

because of Jensen’s inequality. Since the values of both sides of the inequality above at
t = 0 are 1, the right derivative of the left hand side at ¢t = 0 is greater than or equal to
the one of the right hand side. Since the norm derivative of €'T at ¢ = 0 is generally T', we -

have
s

(P+q+r)
Hence we gain A > B. )

(- ’"A (¢A+pB) — —A):z: ) > (—sAz, 7).

We end this note with referring to an exponential inequality which appeared in [3]:
IfA—B>6>0, then et4 —etB > §/2 > 0 for some t > 0.

This seems to be useful, so that we give a more generalized result, which we can see by
a simple calculation.

Let f(t),g(t) be selfadjoint operator valued functions defined in a neighborhood of t =
If £(0) = g(0) and f'(0) —¢'(0) = & > 0, where the derivative is in the sense of norm, then
f(t) —g(t) > 8/2 fort in a neighborhood of 0.
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