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Numerical Solution of
Two Dimensional Sine-Gordon Equations
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1 Introduction

In this paper, we use the finite element method to numerically solve two dimensional sine-
Gordon equations. For theoretical and numerical treatments of weak solutions of siné-Gordon
equations we refer to [1], [6], [2] and [3]. The FEM of non-linear two dimensional problems
is complicated as one has to assemble these equations over the domain which needs a lot of
numerical integrations techniques. For simplicity of calculations, we divide the domain €2 into
triangular elements that will be used as subdomains to find the solution over them. After
the assembly, we impose the initial and boundary conditions, solve the systems of equations,

postprocess the solutions and show the results graphically.

2 Two dimensional sine-Gordon equation

Let © = (0,1) x (0,1). Consider the problem of finding the numerical solutions to the two

dimensional sine-Gordon partial differential equations :
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with initial and boundary conditions given as

u(z,,0) = sin(ra) sin(ry), 2-u(r,,0) =0, (x,y) € O

u(z,y,t) = (z,y,t) € a0 x 0,7),

on

where, o, 8 > 0,and y are physical constants, and f € L2 (Q x (0,T)).
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3 Steps of the numerical solutions

We study the sine-Gordon equations based on FEM discussed in [4] and [5]. The major steps

of the FEM numerical solutions of the above equations are as follows:

. Discretization of the domain.
. Weak formulation.

. Development of the FEM using the weak form.

. Impositions of the boundary conditions.

1
2
3
4. Assembly of finite element to get the global system.
. _ .
6. Numerical solutions of the equations.
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. Post-computation of numerical solutions.
In what follows, we will explain about each steps.

¢ Discretization of the domain. We devide the domain 2 into equally spaced subdo-

mains, that will be used to approximate the solution over them.

o Weak formulatlon Let Q¢ be an arbitrary element in . We develop FEM on it.
Multlplylng (2.1) by an arbitrary function w and mtegratmg
0= w[ﬂ+aﬂ—ﬁAu+’ysin(u)—f]dzdy : - (3.1)
Qe

Using integration by parts and divergence theorem, (3.1) becomes

0= / [wit + awt + BVwVu + ywsin(u) — w f] dw'dy - B¢ wqds. (3.2)
3 y Fe

Here, g¢= [ Ou Ou)

nxé— + ny 5—] and ng , ny are the components of the unit normal vector
z Y
and ds is the arclength of an infinitesimal line element along the boundary. We shall call

u = primary variable, and ¢ = secondary variable.

e FEM models. Suppose that u is approximated over a typical element Q¢ at time ¢ by

the expression
u(z, y,t) = U*(z, 3, 1) ij J5(z,y), (3.3)

Here, §; is the value of U® at jth node of the element at time ¢, and ¥7 is the Lagrange
1nterpolat10n functlons, with the property (ks (:cj, yj) = 6” By substituting (3.3) in (3.2),

we have Z &g +a Zfef/i +ﬁ§§e i tvsi — f§ = Baj, where ¥0f; = (47,95), ¢ =
(45, ¢5), s5 = ((sin ;Eiwf)ﬂ/)f), f5=(f%45) and q¢f = (g% ¢;).
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e Interpolation functions. The linear interpolation functions for the triangular element

are

e 1 e e e .
1:[)1' = 24 (ai +/81,z +’Yzy) (7' = 17273)7 (34)
e

where A, is the area of the triangle, and of, 3¢ and 7 are the geometric constants

of = afyf — afyt i#i#hk,
B = vi—vi i, &k
= —(z§— ) permute in natural order.

The linear interpolation functions have the properties

¢f(m§,y§) = 0j; (4,5 =1,2,3)

3

. 2 ayg s

o Assembly. The assembly of finite element equations is based on the following two prin-
ciples (cf. 5 ):
1. Continuity of primary variables.

2. “Equilibrium” of secondary variables.

S: = side j of element i, (i = 1,2) and (j = 1,2,3).

X 1: Assembly process of two elements



The element equations of the two elements are :

1. First triangular element

(Whél +w1Es + vlaéd) + a(whiél +vhE + st
FB(Bh el + 0hel + olotd) +(sin(iel +whe +vied), vl) = £ + Bal,
< (3 €1 + 383 + Vha&3) + (5 €t +130€s + ¥3363)
+B(OhEL + Bt + katd) +v(sin(plel +vieh + i) vi) = 13 + bed.
($hEL + Phdh + Visds) + alwhél + 956 + ¥5d)
| +B(0hiEd + 6hath + #heed) +(sin(wiel + v3eh +wied) v3 ) = £3 + Bab.
(3.5)

9. Second triangle

(WhE + 958 + vhaé3) + (¥} €} + ¥hE + ¥aél)

FBERE + 8] + $1s8) + 1 (sin(@3E + v +v3Ed),vi) = 7 + Ak,
(W31€2 + 45,3 + 13:€3) + oy, & + vhd + vdefd)+

B2 + 6hatE + 63583) + 7 sin(w3e + v3E + v3Ed), v3) = £3 + 6,
(W€ + 0l + VD) + a(Whiél +v5E + vhdd)

| 88087 + 08 + ¢3s83) + v sin(3EE +u3ed + v3ED), v]) = £3 + Bdd.
(3.6)

From the connectivity of primary variables (5}, i=1,2 and j = 1,2,3), we have the

correspondence between the local and global nodal values is (see Fig. 1) :
wl=U;, ul=u=0p, WB=U, ui=u}="Us. (3.7)
Froin the balance of the secondarylvariables (g), we have:
(@2-3=(}s-1  or (gV2-3=(-¢")3—1
ie.,
Gy +als=0, gnp+gs=0 (3.8)

From (3.8), we must add the second equatioﬁ of element 1 to the first equation of element

2, and also the third equation of element 1 to the third equation of element 2 :

23
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( [(1/’;1511 + 928 + ¥3083) + (WHET + €] + ¢f3§§)] + 0‘[("/’;15} + 3283 + ¥5s€3) + (PhE] + s + "P%sﬁg)]
+B[($3&] + Okl + 03s83) + (B1E] + $18E + 9%aeD)] [ (sin(piel +wled + pied), vi)
+(sin(wie} + w33 +v3ed), wl)] = (3 + Bad) + (7 + Bad),

[(Wh1} + Va8 + wheld) + BE + V5ol + w3 + o [(Whié] + 6hath + whel) + (Whil + ¥hoé] + vhdd)]
+B[($3:6] + 933 + 63€3) + (D161 + 8583 + 03563)] + [ (sin(wle} +wded + pied), pd)
| +(sin(iel + 9363 + 360, 0)] = (53 + Bad) + (3 + Ba).

Using eq.(3.7) equation the above equation becomes

( [¢;1£1 + (Y32 + ¥11)é2 + (P33 + 91a)Es ‘*‘»'lﬁfzg‘l] +a [@151 + (22 + ¥31)E + (Y32 + ¢§3)§-3 + ¢%2é4]
+8[ghi61 + (Bh + ST + (9hs + Bls)Es + 8aka] + [ (sin(pies + pdta +wis), 0)
+(sin(iz +y36s + v3a), v3)| = (F +65) + (al + Bed),

{1/%151 + (P32 + Y316 + (¥3s + ¥3a)és + 1/’?2,254] + a['/’élf.l + (P + P31)62 + (s + P3a)és + ¢§254]
+B[0hi€1 + (Bka + 9362 + (ks + BBs)Ea + dhata| + [ (sin(ples +piga + pita), d)
| +(sin(v2 + 36+ v3€2), 93) | = (3 + 2) + (Bai + Bad),

where £; denotes the global variables.
For the 2-element mesh in fig.1, the assembled equations are

(v b vis 0] (& vh b vls 0] (&)
31 Vi +Yh Y +9l Y 52 ta Va1 Va + U Y+t Yh §2
Vi Y3 U5 Yk Y3 Y5, §3 V31 Vo + U5 Vi3 + U5 V3 §3

0 P3 P33 V3] \& 0 Vi )33 V3, &4
611 12 13 0 &1 '
P31 P30+ Piz+ 1 | | &

Y ok ot dh shtel | |
0 ¢ 83 0%l \&) ,
(sin(pi& + 36 + 3é3),41) F
Y (sin(¥i& + i +i&s), vi) + (sin(¢f§2+¢§€4 +1p283),93) _ F} + F}
(sin(yi&n + 9362 +¥363), ¥3) + (sin(vis + P3€s + ¥363),93) F} + F}
{ (sin(92&; + ¥3€, + ¥383),%3) F}

(3.9)

Here, Fi = fi+ ¢}, i=12 j=1,2,3.

e Evaluation of element matrices and vectors.
1. Area coordinates. For triangular elements, it is possible to construct

3-nondimensionalized coordinates Lj;, (z =1,2,3),

A; -
Li:j’ | A:ZAZ’ L1:A1/A:S/h,

Hence 1; = L; represents the interpolation function for linear triangular element.



2. Coordinate transformation. For rectangular ), we can define a transformation
Q. — Qe, ), = master element = (g,m) : 0 < p <n<1. The relation between (z,y)

coord. system and (u,n) coord. system is: -

3 ' 3
o=y @i, y= )y m). (3.10)
j=1

j=1

3. Evaluation of the integral in the (u,7n). After the tranéformation, intégrals on Qr

have the form B '
- Glumdudn = | G(y, o, La)dLadLs,
Qp Qr

which can be approximated by the quadrature formula

. ) N
N 1 -
G(Ll,Lg,Lg,)dleLQ =~ —2— E W[G(S[).

Qr i=1

Here W and Sy denote the weights and integration points of the quadrature rule.

o Integrating the sine functions. To evaluate the integral

_ fh R
I= / / Gz, y)dady,
3

where G(z,y) = (sin( 3] §f¢f),¢;) j =1,2,3, we use Gauss-Legendre method of order
1

’ . L= 8 - . ..
m. We start by deviding the interval [z;, z;41] in z dirction into m points and [y;; yi+1] in

y direction, then
m m .
I > WuG(zk ), Wi=WiW,
k=11=1
where (zx, ;) = quadrature points and Wy = weights.

Let us denote

(2,9 = (s (,1)€0), 95 (@,9) ),

where ipé:(x,y) is given by equation (3.4). Applying G-I scheme of order m, the j-th

component of s§ becomes

LNSLINS B | : e
$56) =) = Wn (sm(m(af + Bfak +5F) €8) (of + Biaf +'r§*’yf))

m m R
— . 1
= 3> 5 Waa(sin (o (of + BF2f +960) €) 05 + Bt +50f) ).
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Then, the sine functions in equation (3.9) are approximated by

1
51

83+ 82
3+ 8%
s

Hence, equation (3.9) becomes
!

n

0 -1
BT 1d o

(1]

0
= ~ ) 3.11
F —~5(5) (3.1

(1]
(1-

which is a first-order differential equation to be solved by using Runge-Kutta method.

¢ Postprocessing the solution. After the solving the equations, we get the solutions
array (variables values at all nodes) of dimension ng x ny, where ny is the number of
elements in the z-direction and also n, in the y-dirction. This array should be partition

according to the number of nodes in z-direction repeatedly n, times.
4 Numerical simulation results.

We use a rectangular mesh consists of 15 elements in the z-direction and 15 elements in the
y-direction, one element of length 0.07, hence we get 456 triangular elements consists the
domain solution moreover the gaussian quadrature pointes are chosen to be 6 points for
the element and the intial condition is yo(z,y) = sin(7z) sin(my). The simulation results
shown here are taken every 10 times due to the size of each run, i.e., we skip 10 graph

after each. The results are shown on the next pages.
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a = 0.001, 8 =0.0001,~ = 1
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