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Abstract A fundamental theory of the convergent linear iteraton is developed. All linear
iterative methods of the linear system Ax =b are considered instead of each individual.
The convergent iteration which is considered an inversion of A is equivalenﬂy expressed in
several ways. General monotonicity is introduced so as to extend the ordinary one.
Propositions on the convergent iteration are represented in terms of the general monotonicity.
A geometrical aSpect of the general monotonicity is helpful to make an intuitive image and
make simple proof of propositions. Based on the convergent splitting
A=C-R, (p(C'lRC) < 1), first necessary condition of A for convergent iteration is dealt
with as inherited properties of A from those of C and then sufficiency of the inherited
properties is discussed. A necessary and sufficient condition for the convergence of regular
and weak regular splittings is the i-monotonicity of A, and a condition for the convergent
Jacobi and Gauss-Seidel iterations for an Z-matrix A, is as well that A is i-monotone; which

is identical with the ordinary monotonicity: A™ > 0.

1. Intorduction

The linear iterative method has been studied with enormous effort [1]. The main subject
of the method is to supply a procedure of computaion in a short time. This paper is an
attempt to reconstruct a fundamental theory to elucidate mathematical concept of the iterative
method, present or latent in the numerical analysis. All the convergent iterative methods
are generally considered instead of each individual. To describe precisely, the iterative
method is defined and equivalent notions are introduced. The convergent iterative method
will be attributed to an inversion of matrix.

One of the important concepts in the iteration is the monotonicity of matrix. Due to the
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inversion of the convergent iteration, the monotonicity of the ofdinary use is related to such
a property as A~ = 0. This paper introduces new concept of general monotonicity which is
a canonical extension of the ordinary one. The general monotonicity is represented in a
way of geometry as a relation of pyramids spanned by column vectors of matrices in the
monotone relationship. This notion will make a concrete image of the monotonicity.
Discussion of the iteration is made based on the splitting A = C — R with a nonsingular
matrix C. First, heritage of properties from C to A is considered in the convergent splitting.
These inherited properties of A are necessary conditions for convergence of the iteration.
Next, consider whether the necessary conditions would be sufficient for the convergence or
not. Finally, is discussed necessary and sufficient condition for the well-known iterative
methods of Jacobi and Gauss-Seidel. Even for known propositions and theorems, original

or improved proofs are given throughout this paper.

2. Definition of Iterative Method

Let R" be the n-dimensional real space and f, (k=>1) be transformations of R". ¢, is
the identity transformation and ¢,,, is inductively defined as ¢,,, = f,,, °¢, for any
nonnnegative integer k. The transformation f, is called the kth iterative transformation.
An iterative method is to operate f,,, recursively on the kth iterate x* of R” with an initial
vector x°. Then, |

x*'=f (x") = (pk+1(x°).

Suppose that all f, are the same as f, = (H,d) (k=1) with an iterative matrix H in
M,(R) and d in R", where M (R) denotes a set of all matrices of order n with real
components. For any x e R", (H,d) is defined as

| (H,d)x=Hx+d .
Then,  x*'=(H,d)x"=(Hd)"'x"=H"'x"+(I+H++H)d .
The iterative transformation (H,d) defines a linear iterative method, which is called the
iterative method associated with the iterative transformation (H,d). The objective of this
paper is to consider all the linear iterative methods, hereafter simply called the iterative
methods, instead of each individual. v

The iterative method in the numerical analysis is a method to solve the system of linear

equations
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Ax=b, AeGL(nR) , o ¢))
where GL(n;R) is the group of all general linear transformations of R”, identified with the
group of all nonsingular matrices in' M,(R). The vector b is written with the coordinate

vectors e, (i=1,2,---,n) as

b= ibie,. .
The solutions ;l(i =1,2,---,n) of the equations Ax = e, yield a solution of eqn. (1) such as
X = zn:bixi . In fact, Ax = zn:biAx,. = ibiei =b. Let (x,), (e; ) be matrices with column
Vectcl)zrls X;, e (i=1, 2,---,n)z=rlespectivél=}lf. Then

A(x;)=(e; ),
with (e, )=/ (unit matrix). Thus, (x;)is the inverse matrix of 4, i.e., (x,)=A". The
iterative method is, therefore, regarded as a method to solve Ax=e,(i=12,---,n) or
AX =1, that is, an inversion of A. For a given linear system Ax =b, it suffices to find a set
of solutions x, (i =1,2,---,n) satisfying Ax; = e,, so that the iterative method is considered a
method depending only on the given matrix A € GL(n;R), regardless of b.

Let p(H) be the spectral radius of H and p(H)<1. The eigenvalues of I— H are
1-2, (i=1,2,--,n) with the eigenvalues A, of H. Then, it follows that |l — 4# 0 and that
I- HeGL(n;R). Let Cd=efA(I— H)". Then, CeGL(n;R) and H = C'R,, where R, is
given by

A=C-R.. (2)
Definition 1. Representation (2) with C € GL(n;R) is called the splitting of A.
Let define x” d:—f(l ~H)"d. From

(Ha)x =H(I-H)'d+d={H+(I-H)}(I-H)'d=x,
it follows that |

x* —x" =(H,d)x*" - (H,d)x" = H(x*"' -x") = H*(x* - x").
Since p(H) <1 leads to convergence of H* to O, x* converges to x* independently of x°,
as k tends to infinity. The vector d is taken so as to satisfy Ax" =e, . Then, d=C"'e, .
Definition 2. Splitting (2) is said to be convergent, if the iterative method associated with
the iterative matrix H = C™'R,. is convergent. -
Proposition 3. Splitting (2) is a convergent splitting, if and only if p(C'ch) <l

Proof. The sufficiency of p(C"lRC) <1 is mensioned above. Conversely, the convergent
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iterative method makes x**' = Hx" +d converge to a vector, say %, forany x°. Let A be
any eigenvalue of H and u be its corresponding eigenvector. Then, H*u=A‘u. By
setting x’ =u+%, H'u= H"(XO —-i) =x*—% tends to 0 as k — . Then, [A|]<1. Thus,
p(H)<1. : - ]
Consider the set defined as |
=, ";f{c_e GL(mR)|p(C'R.) <1}.

A matrix C in &, gives a convergent splitting of A. By Prop. 3, a convergent splitting is
the splitting A = C— R, with p(C'lRC) <1. Then, C belongs to '&.,. Therefore, &, is
equivalent to the set of all the convergent splittings of A. By Def. 2, the set & of all the

convergent iterative methods of the linear system Ax =b is furthermore equivalent to 'R ;
that is, & ~ YE’CV, where ~ denotes equivalence of the two sets or implies existence of a

bijection from the one set to the other.

Definition 4.

e d=f{H € M,(R)| p(H) < 1}

o =B |p(H) <1, He M,®R)}
Proposition 5. ;

oF ={Fy € GL(5R)|F, = (£7),£" = (H,&,)§", p(H) <1, H € M, (R)}

- {FH € GL(mR)|F, = (£7),£" = leN(H, e,)'t", p(H)<1,He Mn(R)} :

Proof. The first equality is shown from

(I-Hf'=e, = f'=(He)",
and the second from
lim(H,e,) £ = lim{ H*E" + (1 + H+--+ H e, } = (1- H) e, . i

k—yo0

o is the set of all matrices whose column vectors are fixed points of the convergent

iterative transformations (H ,ei) (i=12,- “h).
Proposition 6.
&~ Ry~ ~ .
Proof. @& ~'%., is shown above. The rest equivalences are derived by the following
bijections @, V.
By DI D
C »H BF,.
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Here, @, ¥ are mappings satisfying
&(C)=H=C'R, , C=0"'(H)=A(I-H)"
W(H)=F,=(I-H)'=A"C, H=¥(F,)=I-F". 0

3. Géneral Monotonicity
The mohotonicity is generalized. The ordinai'y definition of monotonicity is the following
inverse monotonicity. '
Definition 7. Let Ae M (R). Matrix A is said to be normally monotone or simply
n-monotone, if x>0 leads to Ax >0, and inversely monotone or i-monotone, if Ax>0
leadsto x =0.
Proposition 8.
A:n-monotone < A=0.
Proof. =). Since x=¢, 20 (i=12,--n), a, = Ae, >0 and so A=(a,)2 0.
&). Ax20is shown from A>0 and x>0. ’ 1
The following corollaries are readily obtained from this proposition.
Corollary 9. Let A be n-monotone. If A< B, then B is n-monotone.
Corollary 10. IfI1< A, then A is n-monotone.
Proposition 11.
A:i-monotone < (Ax<0=x<0)
| & (Ax>0=>x20,x#0) and (Ax=0=>x=0)
& (Ax<0=>x<0,x#0) and (Ax=0=x=0)
o (Ax2y=x2y)
Proof. By taking —x instead of x, (Ax =0 =>x > 0) is equivalent to (Ax < 0=>x<0).
From the i-monotonicity of A, Ax>0 leadsto x20. If x=0, Ax=0, so that Ax> 0=
x2>20,x#0. If Ax=0, then Ax>0 and Ax <0. It follows that x>0 and x <0 and that
x=0. Conversely, (Ax>0=x20,x#0)&(Ax=0=x=0) implies that Ax20
= x >0. Similarly, the i-monotonicity of A is equivalentto (Ax<0=x<0,x#0)&
(Ax = 0= x = 0) and, moreover, to (AX2y=>x2Yy) by (A(x—y)20=>x—y20). [
Corollary 12.
Aci-monotone = AeGL(mR)

Proof. If A is i-monotone, Ax =0 leads to x = 0. Then, the linear transformation 7, of
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R" to R" defined as T,x = Ax is injective. Let
YaTf=0, aeR (1,2,-,n),
i=1

with a basis of R”, (f.f,,---,f,).

n

n

Since T, is an injection, TA[Eaiﬂ) = ( implies Zaif,. =0. The vectors (fl,fz,-'-,f ) are
: i=1

i=1

linearly independent. Then, @, =0(i=12,---,n). Thus, the set of (T,f,T,f,,--, T,f,) is

another basis of R", so that T, is surjective. Therefore, T, is a bijection, i.e., A € GL(n;R).

[

Proposition 13.

A:i-monotone < AeGL(mR) and A7 >0

& AeGL(mR) and A™'; n-monotone.
Proof. Let y=Ax. Then, x=A""y. By the definition of i-monotonicity,
. Ax20 = x20,

which is equivalently expressed as

y20 = Aly>0;
namely, A™ is n-monotone. By Prop. 8, A™ > 0. I

Definition 14. Let A€ M,(R), Be GL(n;R). Matrix A is said to be normally left or right
monotone over B or simply n-1 or r-monotone/ B, if B"'A or AB™' is n-monotone, and to be
inversely left or right monotone over B or simply i-1 or r-monotone/ B, if B"'A or AB™! is
i-monotone, respectively. If both left and right monotonicities are valid, the monotonicity
is employed without specification of left and right.
If B=1, the left and right monotonicities are the same. In this case A is further said to be
n- or i-monotone omitting "over I”, which is identical with the previous definition of n- or
i-monotonicity. |
Proposition 15.

A: i-l or rmonotone/B = A e GL(n;R). ,
Proof. Since B™'A or AB™ is i-monotone, B"'A, AB™ € GL(n;R) (Cor. 12). Combined
with Be GL(n;R), A= B(B"'A)=(AB™)BeGL(n;R). 0
Proposition 16.

A: n-l or rmonotone/B < B'A or AB"' >0

& (x"B20" = x"A207) or (Bx20=> Ax 20),



93

respectively.
Proof. By Prop. 8, the n-1 or r-monotonicity of A/ B is equivalent to B"'A or AB™ >0,
respectively." B'A >0 is eqﬁivalently represented as (x” 20" = x"BA> OT). By setting
x’ =y’B, (xT 20" =>x"B'A> OT) implies (y"B20" =>y'A> 07). Similarly, by setting
X = By, (xZO:}AB"IXZO) implies(By =2 0 = Ay 2 0). [
Hereafter, proof is given only for the right monotonicity, in case the left is readily shown
quite similarly to the right.
Corollary 17. (Transitivity of n-monotonicity) Let Ae M, (R), B,C e GL(n;R).

A: n-monotone/B and B: n-monétone/ C = A:n-monotone/C.
Proof. AB" 20, BC"20. Then, AC" =(AB™")(BC™)2 0. U
Corollary 18.

A: n-monotone , B:i-monotone = A: n-monotone/B
Proof. A>0 and B 20 gives AB™ 0. | O
Proposition 19. (Duality of Monotonicity) Let A,B € GL(n;R).

A: n-monotone/B &  B:i-monotone/ A
Proof. It is readily shown from AB™ >0 and (BA™)" = AB™. 0
Corollary 20. .

A: i-monotone & A:i-monotonell

& I: n-monotonel A.

Proof. A™=(AI")" =1A"" i
Corollary 21. (Transitivity of i-monotonicity) Let A € M,(R), B,C € GL(n;R).

A:i-monotone/B and B:i-monotone/C = A:i-monotone/C.

Proof. It follows from the transitivity of n-monotonicity and from the duality of monotonicity.

]
Proposition 22. Let A, B e GL(n;R).
1) AT <B', A:i-monotone = B:i-monotone.
2) A7 <B', A:n-monotone = B:i-monotone/A.
3) A<B , A:i-monotone = B:n-monotone/A.

Proof. 1) Since A'>0 and A7 <B!, B'>0.
2) A20and 0<I=AA"<AB" =(BA™)".
3) A'>0and O<I=AA"<BA™. U
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Definition 23. Let a, (i =1,2,---,n) be linearly independent vectors.
n def n LIRS , def
.= = a. 2> = . =R"
Va, {x x=) xa,, x,_o} Z;R a, , R"=R u{o}?

i=1
which is called a pyramid spanned by a, (i=12,---,n).

The following proposition is easily obtained. ‘

Proposition 24.

\n/(—a,.)=—i\2ai :

i=1

Theorem 25. Let Ae M,(R), Be GL(n;R), A=(a,) and B=(b,).

1) A:n-lor rmonotone/B < Va,cVb, or Va < Vb,

i=1 i=1 i=1 i=1

2) Avi-lor rmonotone/B < Vb,cVa, or .\ZbiTC.\ZaiT :

i=1 i=1

respectively.

Proof. 1) Let P= (pl.j) =B"'A. Then, A=BP, or a;, = Zpﬁbj. Thus, it follows that

j=1

P >0 implies a, € }rzbi. For the r-monotonicity, P = (p,]) =AB™'. Then, A" =B"P7, or
a” =2 p,.jbjT. Thus, it follows that P> O implies a," € {Cbir. Quite similarly, 2) is
j=1 =

verified. ‘ . [
Corollary 26.

n n
1) A:n-monotone < Va,CVe,.

i=1 i=1

n n
2) A:i-monotone << Ve ,cCVa, .
i=1 i=1

Proof. 1) IP=P= (pu) =AI''=A. a,=) p.e, . 2)is shown similarly to 1). i
i=1

Let S be a set. The set of all interior points of S is denoted by S°.

Corollary 27. Let A=(a,).

n

A:i-monotone = a, ¢ [\n/ e, U \n/(—ei)]o = (\n/' e,.)o U (V(—ei))o
i=1 i=1 i=1 i=1 :
(i=12-n).

Proof1. Ve, c _\Zai is equivalent to 2(_e‘) c 2(—31) . If there exists a, such that

i=1

aie[i_\_’leiui:\/l(—e,.)} =(i_\_’1e,.) U(,-Yl(_ei))’

. n n n
either Ve,cVa, or V(-e)c
i=1 i=1 i=1

<=

(—a;) does not hold according to aie(\n’eij or

i=1

a, e (ifl(—ei))o. o I

Proof 2. Suppose that there exists a, satisfying

1
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n o n °
a, e(Vei) U(V(—ei)) ,ie,a, >0ora, <0.
0 i=1 (] 0

where @, is the (ji) cofactor of A™. From
@Gy Gp Gy
Lo ey ay, oa
~ % 12 1n
Zaikaiok =
pe
Ay Gyy 7 Gy,

with the i,th row missing and the first row equal to the ith row, the determinant is equal to 0
in case i#i, Furthermore, a, = IAI(&;OI,&;.OZ,----,Zz;.on)T >0 or <0, then, a, =0 for
k=1,2,---,n. Thus, A”'is singular. This contradicts that the i-monotone matix is nonsingular.
| 0
4. Heritage from Preconditioner
In the splitting A=C—R,, C is called the preconditioner. This section deals with
problems on the properties of A inherited from the preconditioner C in the convergent
"splitting or convergent iterative method. |
Proposition 28.
‘ C2R. & A:n-monotone.
This is obvious.
Proposition 29.
CeRy = AeGL(mR),Ae R, .
Proof. p(C'R.)<1 asserts I—C"'R. € GL(m;R) (Section 2). Then, A=C(I-C"'R;)
eGL(%R). Since R, =A—A=0, AR, =0 and p(A”'R,)=0<1. Thus, Ac R,,. [
Corollary 30.
AeGL(nR) & Ae®, & &B,#0.
Proof. From A e GL(n;R); it follows p(A’lRA) =0<1. Then, Ae B, and so R, #J.
Proposition 29 asserts that &, # & leads to A € GL(n;R). [
To discuss the convergent iterative method, %, # & is a priori assumed. The corollary

says that &, # & automatically implies A € GL(n;R). Then, hereafter A is assumed to be
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nonsingular.
Proposition 31. Let Ce'&,.
1) C'R.20 = AR, 20.
2) C: i-monotone with C"'R. 20 = A: i-monotone.

Proof. Let H=C'R.(20). Then, A’C=(I-H)" =Y H*20.
k=0

Thus, 1) AR, =A'C-C'R.20,and2) A =A"'C-C" 20. 0
In this proof, the following is shown.
Corollary 32. Let Ce B, and H=C'R..

H: n-monotone = I— H: i-monotone .
Definition 33.

B, d=ef{c e GL(mR)|C" 2 0,R, 2 0}

B {C € GL(m;R)| C: i — monotone, R, :n— monotone} .
B, ={CeGLR)|C" 20,C7R, 20}
= {C € GL(m;R)| C: i — monotone, R, : n—1- monotone/ C}.

B d;f{C € GL(n;R)l C'R.2 0} ={CeGL(n;R), R, :n—1-monotone/ C}.
T, By and B, are the set of all matrices associated with the regular, weak regular and
nonnegative splittings, respectively. &, is called a regular splitting set, and matrices in &
are called regular splitting matrices. Ry, Ry are weak regular, nonnegative splitting sets
and their matrices are weak regular, nonnegative splitting matrices, respectively. The
following proposition is readily derived from the definition.
Proposition 34.

BBy C By -
Proposition 31 is alternatively represented as
Proposition 35.

CeRyNByr = A:i-monotone and A"R.20 .
Proposition 36. Let Ce &,

1) Ce®, = Ae®
2) CeRyy = AR, .

Proof is obvious. Combined with Ae &, this is further written as

Proposition 37.
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) ZNnB, 20 © Ae®,

2) BpnBy2D & AcR,.
Ae B implies only A€ GL(n;R). Then, Ce BgN'Ty = AR, and BN Ry =D
S AeR; . ’

Inherited properties of A are necessary conditions for the convergent iteration. Now,
consider sufficiency of the inherited properties for C € &,.
Lemma 38.

0<x<y = [x|<]|y| ( Euclidean norm) .

Proof. If x=0, proof is trivial. By the assumption, (y —x,x)20. Here, (a,b) is the

54)

(v.x)2x . O

inner product of two vectors a, b. Thus, (y,x) > |x|*. [y]|= ﬁ
X

Proposition 39. (Weak Regular Splitting Theorem)
A: i-monotone & DR R, .
Proof. <). Obvious from Prop.35.
=). From A: i-monotone, A€ &,;. Then, Rz #J. Now prove B, cR.,. Let
CeRyy. Then, C'20, H=C'R.20,and C"' =(I- H)A™". Thus,
o< (i Hf]c—1 =(I-H"")A" <A™,

Jj=0
whence

j=0

0< (C'I)T(Z(HT y ] <(a)". (3)
Since H™ 2 O, there exists an eigenvector u (# 0,>0) of H" corresponding to the eigenvalue

p(H ™). From p(H")=p(H), H"u= p(H)u. Equation (3) and Lemma 38 asserts that
S otay ey o<l
=0

From u#0, l!(C‘l)Tul'>O. If p(H)=1; (m+1)

< oo,

(C’l )Tu“ < II(Afl)Tu” < oo, for any m. This

m . m+l
is contradiction. If p(H)>1, 2 p(HY = B%—l—l From the same reason as p(H)=1,
=0 plt)—

contradiction is attained. Then, p(H)<1. i
Corollary 40. (Regular Splitting Theorem)
A: i-monotone & DR R, .
Proof. =). Ae%;. Then, &, # . Proof of the rest is evident from Prop.39.
~ ¢=). Trivial from Prop.35. 0
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Corollary 41. ,
A, C:i-monotone, C2Aor R.20 = Ce%&, .
Proof. C'20, R.20 & Ce®,. 1

The following is readily obtained.
Proposition 42.
A:i-monotone & AeR, & AeB,
& D*rRprcRy & DrRCBRrcRy
o B c®y
o FNRyzED & BpnRyz0.
N.B. Proposition 42 does not imply that Ry N Ry =T N Ry
Theorem 43. Let Ce Ry;,, H=C'R, and F,=(I-H)". The following properties are
equivalent.
0) CeRy.
1) A'C >0, i.e., C: n-l-monotone/A, I— H: i-monotone or F,,: n-monotone.
2) A‘IRc 20, i.e., R.: n-I-monotone/A.
3) A'R.2C'R..

_ p(C'R ' ) p(A™'R

Proof. 0)=1)=2) is shown in the proof of Prop. 31.

2)e3). (A'-C")R.={A"(C-A)C"}R. =(A"R,C")R.=A"R. - C"'R, 2 0.
Conversely, AR, 2C'R, 2 0.

2)=1). A'R.20& (,gr’ c i/la,.) with R.=(r;) . Let C=(c;). ¢,;—a,=r,eVa, .

Then, ¢, =a, +r1, € i=\nfla,. . Thus, iz\nflci ci’lai Jie, AT'C>0.
1)=0)=4). Since Ce B, H=C'R.20. Then, p(H) is an eigenvalue of H. Let u
be an eigenvector corresponding to p(H) and u>0. Thus,

(I-Hju=(1-p(H)u,
whence 1— p(H) is an eigenvalue of I— H. From the assumption of Ce X, I-H
becomes i-monotone (Cor. 32) and so nonsingular. Then, all eigenvalues of I — H are
nonzero. Thus, 1— p(H)# 0 and, moreover,

(1-H)“u=1 u, @

- p(H)
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aﬁ (I-H)" u=—p(H) u
d (I-H) H - p(H)

Assuming 1), (I—H)" 20 . Combined with u>0, eqn. (4) leads to p(H) <1, which is
the property 0). Next, assuming 0), the property 2) holds as already proved. Then,

AR, = A"C-C R, =(I-HY'H>0. With u20, then 2550 . since LH)._
| - 1-p(H) * T-p(H)

is an eigenvalue of AR, _pH) <p(A'R.) . All eigenvalues of AR, are expressed
l—p(H) p C C

in the form of -1% with the eigenvalue A of H. From p(H)2|A| and

0<1-p(H)<1-|A| £|t1-2], is shown %1 |' p( 7 . Thus, p(A*lRC) 16(13[)

A—l . .
4)=0). It follows immediately from p(C"RC) = —p—(—_lf-f)— <1. [
| 1+ p(A7R;)
Definition 44.

IIS‘.,

B ={CeGL(R)|A"C20} .
CeGL(m;R)|A™R. 20} .
== | }

{c € GL(mR)|A"R. 2 C'R,} .

8‘
o

Il<‘v1

B, ={C € GL(n;R)‘ p(A7R,)= f%% JH= C”RC} .

The following is easily obtained.
Proposition45. Let H=C 'R, F,=(I-H)", A=(a;), C=(c,) and R.= (r,).
1) B ={CeGL(mR)|C:n-1 -monotone/ A}
= {C € GL(n;R)' i\illci c i\Zai}
={CeGL(mR)|A:i-1-monotone/ c}
={C e GL(n;R)|I - H: i — monotone}
= {C e GL(m;R)|F, :n- monotone} .
2) E={CeGL(n;R)|RC:n—l-monotone/A}
= {C € GL(n;R)‘ i\:fnlri c i’lai} .
Theorem 43 implies
Theorem 46.

By NBe=BNB ((=12,3,4).
Corollary 47.

RBAR, C Ry (i=1,2,3,4).
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If A is i-monotone and R. 20, then Cc'®,. Thus, B,c BN RB,. Accordingly, the
regular splitting theorem is proved in the other way than the proof based on the weak

regular splitting theorem.

3. Convergence Condition of the Jacobi and Gauss-Seidel Iterations
Definition 48.
oM tf{A € M,(R)| A:i—monotone}
& ‘t—f{A eM,(R)|A< DA} D, fdiag(au,azz,---,ann)
€={Ae|a,>0(i=12L 1)}
oH = E&nNchH
B={BeM,[R)|B=1-D, A, Ac & }=&,nq,
where &%, =-& , < ={AeM,(R)|D,=0}.
CAH" denotes the set of all i-monotone matrices, & the set of all Z-matrices, & the set of
all L-matrices and €4 the set of all M-matrices. |
Let A= D, — L-U with the strictly lower and upper triangular matrices L, U > O.
Lemma 49.
Acech = Aek.

Proof. It suffices to say that a; >0 (i=1,2,---,n). A e e#f is equivalent to \n/e,. c \n/a,.

i=1 i=1

n
and Ae&. Suppose the existence of i, such that a,;, <0. Since e, = z p;a; with
j=1

p;20 (j=12,-,n), the i;th component of both sides gives 1=Y. p.a; , the righthand

iy ?
side of which is nonpositive. This is contradiction. - [

In case Ae&, a necessary and sufficient condition for convergence of the Jacobi
iteration is given by
Proposition 50. (Condition for Convergent Jacobi Iteration)

Let Ac &, C=D, .
A €A orA: i-monotone & AeL,Ce R, .

Proof. From Lemma49, C"' =D, 2 0. Then, Cis i-monotone. R.=L+U>0.
=>). Then, C € |. Thus, Cor. 40 (Regular Splitting Theorem) asserts C € R, . Conversely,

Aeei follows from Prop. 35. In fact, C"' 20 from Ae&L and R,>0. Then,
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Ce®y CcRyr- v 1
The following supplies a necessary and sufficient condition for convergence of the Gauss-
Seidel iteration for A € L.
Proposition 51. (Condition for Convergent Gauss-Seidel Iteration)
Let Ae &, C=D,-L.

A et or A: i-monotone < AeL,CeR, .
Proof. Since (D,"'L)" =0,

(1-D,"L)|1+ D, L++(D, L) =1 .
Thus,

(1-D,'L)" =1+D,'L+-+(D,"L)"".
From D,"L20, C=D,(I-D, L) is i-monotone. =>). Obviously, R.=U20. Then,
Ce'R. Thus, AceH = CeR,. The converse is shown from Prop.35. In fact, Ae L
gives D,"L>0. Then, C'20. With R. 20, Ce B C Ryp. [

6. Concluding Remarks

A general aspect of the iterative method is presented for the linear system of Ax=Db.
The iterative method is reasonable if it converges. The convergent iteration is considered
an inversion of A. Equivalent concepts of the convergent iterative method are described.
The convergent splitting, the iterative matrix H with its spectral radius less than 1 and the
matrix (I — H) are equivalent to the convergent iterative method.

A concept of the general monotonicity is introduced. The so-called monotonicity of A is
identical with the inverse monotonicity of A. A geometrical representation of the general
monotonicity facilitates to make an intuitive image of the monotonicity.

From the viewpoint of the convergent splitting, a necessary and sufficient condition for
convergence of the Jacobi and Gauss-Seidel iterations is that A is an M-matrix in case A is a
Z-matrix or equivalently an L-matrix. The following bibliography is the list referred to

during preparation of this paper for the sake of confirming its originality.
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