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1 Introduction

For a Riemann surface S, let End(S) denote the sct of all holomorphic en-
domorphisms of S. It is a secmigroup with the semigroup operation being
composition of maps. A rational semigroup is a subsemigroup of End(C)
without any constant clements. We define hyperbolic, sub-hyperbolic, and
semi-hyperbolic semigroups. We show that if G is a finitely generated ra-
tional semigroup and satisfics some semi-hyperbolicity, then there exists an
attractor in the Fatou sct of G for G(Theorem 3.12). In Scction 4, we will
consider the skew products of rational functions or C-fibrations. The “Julia
set” of any skew product is defined to be the closure of the union of the
fiberwise Julia scts. We will define hyperbolicity and semi-hyperbolicity.
We will show that if a skew product is semi-hyperbolic, then the Julia set is
equal to the union of the fiberwise Julia sets and the skew product has the
contraction property with respect to the backward dynamics along fibers.
The results in section 4 are gencralized to those of version of C-fibrations.

In Section 5, we will consider necessary and sufficient conditions to be
semi-hyperbolic. We will show that any sub-hyperbolic semigroup without
any superattracting fixed point of any element of the semigroup in the Julia
set is semi-hyperbolic.

We consider the Hausdorff dimension of the Julia sets of rational semi-
groups. To investigate that we construct the subconformal measures(Scction 6).
If a rational scmigroup has at most countably many clements and the -
Poincaré series converges, then we can construct §-subconformal measures.
We will sce that if G is a finitely generated semi-hyperbolic rational semi-
group, then the Hausdorff dimension of the Julia set is less than the expo-
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nent §(Theorem 6.7). To show those results, the contracting property of
backward dynamics will be used.

In section 7, for any finitely generated rational semigroup G = (fi, ... , frn)
we consider the skew product costructed by the generator system. we con-
struct the (backward) self-similar measure. That is, a kind of invariant mea-
sures whose projection to the base space(space of one-sided infinite words)
are some Bernoulli measures. We will show the uniqueness for any weight
without any assumption about hyperbolicity. Furthcrmore we caliculate the
metric entropy of those measures. We show that the topological entropy of
the skew product constructed by the generator system {fi,---, fm} is equal
to

log(X7L deg(f5))

and there exists a unique maximal entropy measure, which coincides with
the backward self-similar measure corresponding to the weight '

_deelf) o deglin)

' m )-

Z deg(f;) X, deg(fy)
j=

Hence the projection of the maximal entropy measure of the skew product

to the base space is equal to the Bernoulli moasuro corresponding to the

above weight ag. Applying this result if { f (J(G))}j=1,... m are mutually

disjoint, then we get a lower estimate of Hamdorff dlmemlon of the Julia

set of G.
This paper is a summary of a part of the author’s thesis([S5]).

2 preliminaries

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
~ composition of maps. A rational semigroup is a subsemigroup of End(C)
without any constant clements. We say that a rational semigroup Gisa
polynomial semigroup if each element of G is a polynomial.

Definition 2.1. Let G be a rational semigroup. We set
F(G) = {z € C| G is normal in a neighborhood of z}, J =C\ F(G).
F(Q) is called the Fatou set for G and J(G) is called the Julia set for G.

Definition 2.2. Let G be a rational semigroup and z be a point of C.
The backward orbit G=!(z) of z and the sct of exceptional points E(G) are
defined by:

“1(2) def {w € C| there is some g € G such that g(w) = z},



del

E(G) = {z€C |G () < 2}.

Lemma 2.3. Let G be a rational semigroup.

1. For any f € G,
f(F(G) CF(G), f71(J(@) C J(G),

F(G) C F({f), J({f) CJ(@)
2. Assume G is generated by a compact subset A of End(C). Then

J@&) = rue).

JEA
We call this property the backward self-similarity of the Julia set.

The Julia set of any rational semigroup is a perfect set, backward orbit
of any point of the Julia set is dense in the Julia sct and the set of repelling
fixed points of the semigroup is dense in the Julia set. In general, the Julia
set. of a rational semigroup G is not forward invariant under G and the
Julia set of a rational semigroup may have non-empty interior points. For
example, J((2?,2z2)) = {|z| < 1}. In fact, in [HM2] it was shown that if G
is a finitely generated rational semigroup, then any super attracting fixed
point of any clement of G' does not belong to J(G). Hence we can casily
get many examples that the Julia sets have non-empty interior points. For
more details about these properties, sce [HM1], [HM2], [S1] and [S2]. In this
paper we use the notations in [HM1] , [S1] and [S2].

Since the Julia set of a rational semigroup may have non-empty interior
points, it is significant for us to get sufficient conditions such that the Julia
set has no interior points, to know when the arca of the Julia set is equal to
0 or to get an upper estimate of the Hausdorff dimension of the Julia set.
We will try that using various information about forward dynamics of the
semigroup in the Fatou set or backward dynamics of the semigroup in the
Julia sct.

3 Hyperbolicity

Definition 3.1. Let G be a rational semigroup. We set

P@G) = U { critical values of g}.
gyeG

We call P(G) the post critical sct of G. We say that G is hyperbolic if
P(G) C F(G). Also we say that G is sub-hyperbolic if ${P(G) N J(G)} < oo
and P(G) N F(G) is a compact set.
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We denote by B(z,¢) a ball of center z and radius € in the spherical
metric. We denote by D(z,€) a ball of center z € C and radius € in the
Euclidian metric. Also for any hyperboplic manifold M we denote by H(z, €)
a ball of center z € M and radius € in the hyperbolic metric. For any rational
map g, we denote by By(z,€) a connected component of g !(B(z,¢)). For
cach open set U in C and each rational map g, we denote by c(U, g) the set
of all connected components of g=!(U). Note that if g is a polynomial and
U = D(z,r) then any clement of ¢(U, g) is simply connected by the maximal
principle.

For cach set A in C, we denote by A' the set of all interior points of A.

Definition 3.2. Let G be a rational semigroup and A a set in C. We set
G(A) = Ugeag(A) and G™'(4) = Ugecg ™' (A).

We can show the following Lemma immediately.

Lemma 3.3. Let G be a rational semigroup. Assume that {fy}iea s a
generator system of G. Then we have

U {critical values of g} = U (GU {Id})({critical values of fr}).
gelG A€A

Definition 3.4. Let G be a rational semigroup and N a positive integer.
We set

SHn(G) |
= {2z e€C|3(z) >0, Vg € G, VB,y(z,4(z)), deg(g : By(z,8) = B(z,0)) < N}

and UH(G) = C\ (UyenSHN(G)).

Remark 1. By definition, SHx(G) is an open set in C and g ' (SHN(G)) C
SHN(G) for cach g € G. Also UH(G) is a compact set and g(UH(G)) C
UH(G) for cach g € G. For cach rational map g with deg(g) < 2, any
parabolic or attracting periodic point of g belongs to UH(G).

Definition 3.5. Let G be a rational semigroup. We say that G is semi-
hyperbolic (resp. weakly semi-hyperbolic) if there cxists a positive integer

N such that J(G) C SHN(G)(xesp.0J(G) C SHy(G)).
Remark 2. 1. If G is semi-hyperbolic and N = 1, then G is hyperbolic.
2. If G is hyperbolic, then G is semi-hyperbolic.

3. For a rational map f with the degree at least two, (f) is semi-hyperbolic
if and only if f has no parabolic orbits and cach critical point in the
Julia set is non-recurrent([CJY], [Y]). If (f) is semi-hyperbolic, then
there are neither indifferent cycles, Siegel disks nor Hermann rings. In
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[CJY], it is shown that for a polynomial I” of degree at least two, PP
is semi-hyperbolic if and only if the basin of infinity of P is a John
domain.

Lemma 3.6 ([CJY]). For any positive integer N and real number r with
0 <7 <1, there emists a constant C' = C(N,r) such that if f : D(0,1) —
D(0,1) is a proper holomorphic map with deg(f) = N, then

H(f(20),C) C f(H(z0,7)) C H(f(20),7)
for any z9 € D(0,1). Here we can take C = C(N,r) independent of f.

Corollary 3.7 ([Y]). Let V be a simply connected domain in C, 0 € V, f:
V' — D(0,1) be a proper holomorphic map of degree N and f(0) =0, W be
the component of f~1(D(0,r)) containing 0, 0 < r < 1. Then there ezists a
constant K depending only on r and N, not depending on V and f, so that

Z1<K
Y

for all x,y € OW.

Lemma 3.8. LetV be a domain in C, K a continuum in C with diamgK =
a. Assume V. C C\ K. Let f : V —» D(0,1) be a proper holomorphic
map of degree N. Then there exists a constant r(N,a) depending only on
N and a such that for cach r with 0 < r < r(N,a), there exists a constant
C = C(N,r) depending only on N and r satisfying that for each connected
component U of f~1(D(0,r)),

diamg U < C,

where we denote by diamg the spherical diameter. Also we have C (N,7) =0
asr — 0.

Definition 3.9. Let G be a rational semigroup. We set

Ao(G) = G({z € C | 3g € G with deg(g) > 2, 9(z) =z and |¢'(z)| < 1.}),

Ao(G) = G({z € F(G) | 39 € G with deg(g) > 2, g(z) = z and |¢/(z)] < 1.})

b

AG)=G({z€C|3geG, g(z) =z and |¢'(z)| < 1.}),

A(G)=G({z € F(G) [ €G, g(z) =z and |¢'(z)] < 1.}),

where the closure in the definition of 4y(G) and A(G) is considered in C.
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Definition 3.10. Let G be a rational semigroup and U a open set in C.
We say that a non-empty compact subset K of U is an attractor in U for
G if g(K) C K for each g € G and for any open neighborhood V of K in U
and each z € U, g¢(z) € U for all but finitely many g € G.

Remark 3. By definition, Ag(G) C A(G)NP(G). Foreach g € G, g(Ao(G)) C
Ag(G) and g(A(G)) C A(G). We have also similar statements for Ay(G) and
A(G).

Lemma 3.11. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup and E a finite subset of C. Assume that cach x € E is not any
non-repelling fized point of any element of G. Then there exists an open
neighborhood V' of E in C such that for each z € V, if there exists a word
w = (wy,ws,...) €{L,...,m}N satifying that:

1. f()T B(I,Ch n, (fwn e fw] )(Z) € V’

2. (fw, * - fuw, (2)) accumulates only in E and

3. for eachn, (fw, " fu,)(C) € E and (fu, - fuw,)'({) # 0 where { is

the closest point to z in E,
then z 1s equal to the point ( € F.
By Lemma 3.8 and Lemma 3.11, we get the following result.

Theorem 3.12. Let G = {f1, fo,... , fm) be a finitely generated rational
semigroup. Assume that F(G) # 0, there is an element g € G such that
deg(g) > 2 and each element of Aut CNG (if this is not empty) is lozodromic.
Also we assume all of the following conditions;

1. Ay(G) is a compact subset of F(G),

2. any element of G with the degree at least two has neither Siegel disks
nor Hermann rings.

3. #(UH(G)NAJ(G)) < oo and each point of UH(G) N 8J(G) is not a
non-repelling fixed point of any element of G.

Then Ag(G) = A(G) # b and for each compact subset L of F(G),
sup{d(fi, - fi, (2), A(G)) |z € L, (in,...,51) €{1,...,m}"} =0,

as n — oo, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F(G) for G. Moreover we have that if (hy,) is a sequence
in G consisting of mutually disjoint elements and converges to a map ¢ in
a subdomain V of F(G), then ¢ is constant taking its value in A(G).



Remark 4. Let G = (f1, fo,... , fm) be a finitely generated rational semi-
group which is sub- or semi-hyperbolic. Assume that there is an element
g € G such that deg(g) > 2 and each clement of Aut C N G(if this is not
empty) is loxodromic. If F(G) # @, then all of the conditions in the assump-
tion in Theorem 3.12 are satisficd. Note that by [HM2] if 2 is an attracting
fixed point of some element of G, then z does not belong to 8J(G).

4 Rational Skew Product
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Definition 4.1 (rational skew product). Let X be a topological space.

If a continnous map f : X x C - X x C is represented by the following
form:

F((=,9) = ((z), 4.(v)),

where p : X — X is a continuous map and ¢, : C — C is a rational map with
the degrec at least 1 for cach z € X, then we say that f: X xC — X xC
is a rational skew product. In this paper we always assume that X is a
compact mectric space.

O.Sester investigated polynomial skew products(in particular, quadratic
casc) in [Se]. M.Jonsson investigated C-fibration in [J2].

Definition 4.2. For cachn € Nand z € X, we sct qa(c") = Qpn—1(3) 0" "0 Qy
and f; = f"]w_l({w}). We define the following sets. For each z € X,
X

d(z) = deg(q.),
F,={y € C|{¢™}, is normal in a neigborhood of y},
| Jo =C\ Fy, J, = {z} x J,.

Further we set

JH)=U & F(f)=(X xT)\ J(f).

zeX

C(f) = {(z,y) € X xT| g,(y) =0}, P(f) = | F(C(f)).

neN

C(f) is called the critical set for f and P(f) is called the post critical set
for f. Moreover we set

f™Y (=, ) = (@™ (y).

If (z,y) is a period point of f with the period n, then we say that (z,vy)
is repelling(resp. indifferent, attracting, etc.) if [(f*)((z,y))| > 1(resp.=
1, <1, ete.).



Lerpma 4.3. Let f : X xC = X xC be a rational skew product represented
by f((z,v)) = (p(z), q.(y)). Then the following hold.

2. if p: X — X 1s surjective, then f: X x C = X x C is surjective.

8. if p: X — X 1is a surjective and open map, then FLJg)) =
FUIH) = ().

Now we need some notations from [J2], concerning potential theoritic
aspects. Let f:X xC — X x C be a rational skew product represented
by f((z,y)) = (p(z), qz(3)). Let w be the spherical probability measure on
C. Let wy = (4,)«w for cach z € X where we denote by i, : C—- 7!')_(1({.'1‘})
the natural isomorphism. For ecach confinuom function ¢ on w)_(l({a:}) let
()*¢ be the continuous function on 7rx ({p"(z)}) defined by ((f7)* <p)( )=

> ¢(w) for cachn € N. Let p, ,, be the probability measure on 7, '{z})
J7(w)=z
defined by (f1q.n, (,0) = m( o (a , (f/™*@). For cach z € X, we

§=0

denote by R, : C2\ {0} — C?\ {0} the homogemous polynomial mapping of
degree d(z) such that q, o’ = 7’ o R, where 7’ : C2\ {0} — C is the natural
projection and sup{| R, (z,w)| | |(z,w)| =1} = 1. R, is determined uniquely
up to multiplication by a complex number of units. We can assume z — IR,
is. continuous. For each z € X and n € Nlet G, == ﬁn—_—rwlog |R%|
where R := Ryn-1(;) 0 -+ o IRy. Then the following results hold.

Proposition 4.4. Let f: X xC — X xC be a rational skew product
represented by f((z,y)) = (p(z), q.(y)) and assume d(x) > 2 for each
z € X. Then we have the following.

1. pan converges to a probability measure ji, on w(l({x}) weakly as n —
oo for each z € X.

2. Gy, converges to a continuous plurisubharmonic function G, locally
uniformly on C?\ {0} as n — oo for each z € X.

3. pig = (15 1)u(dd(Gy0s)) where s is a local section of n' : C2\ {0} — C.

FPurther G (z,w) < log|(z,w)|+0(1) as|(z,w)] = o0 and G.(Az, \w) =

G.(z,w) + log A for each A € C, for each z € X.
4. Gy o Ry = d(z) - Gy for each z € X.
if = 7' then Gy — Gy uniformly on C2\ {0}.

6. (F)etta = tpiays (o) Bpey = A(p(@)) - g for cach z € X.

N

7. 11z puts no mass on polar subsets of 71';1({:1“}) for each z € X.

33
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8. T >, 18 continuous with respct to the weak topology of measures in

X x C.
9. supp(ie) = J, for each z € X.
10. J, has no isolated points for each x € X.

11. © — J, 1s lower semicontinuous with respect to the Hausdorff metric
wn the space of compact subsets of X x C.

Proof. Since d(z) > 2 for cach z € X, we can show the statements in the
same way as that in section 3 in [J2]. O

Definition 4.5. Let G be a rational semigroup generated by {f,\},\eA Let
X=AN.Let f: X xC— X xC be the map defined by:

fl(z,y) = (p(x), fu (),

where p : X — X is the shift map and z € X is represented by: z =
(z1,22,...). Then we say that f : X x C — X x C is the rational skew
product constructed by the gencrator system { f}aea.

Let G = (fi,..., fm) be a finitely generated rational semigroup. Let f :

Y, XC = %, xC be the rational skew product constructed by the generator
system {fi,..., fn}, where &,, = {1,... ,m}N. Then f is a finite-to-one
and open map. We have that a point (w,z) € X,, x C satisfics fo, (@) #0
if and only if f is a homcomorphism in a small neighborhood of (w,z).
Morcover the following proposition holds.

Proposition 4.6. Let G = (fi, fa,... fum) be a finitely generated rational
semj_qroup. Let f: £,, x C— %,, x C be the rational skew product defined
by f((w,z)) = (o(w), fuw, (z)). Then the following hold.

1. FandJ are completely invariant under f. Fis open and J is compact.
F(Jw) = Jow. F(f) is equal to the set of all the points (w,z) € B,, x C
which satisfies that there exists an open neighborhood U of x and an
open neighborhood V' of w such that for each a € V the family of maps
{fan © -0 fu, } is normal in U.

2. J = Mo Of (2 X J(@)). ma(J) = J(G), where we denote by my :
Y X C — C the second projection.

J has no interior points or is equal to ,, x C.

If§(J(G)) > 3, then J is a perfect set.

™ S

o

If#(J(G)) > 3, ItNhen J is equal to the closure of the set of all repelling
pertod points of f.



35

6. Assume $(J(G)) > 3 and E(G) C F(G). Let K be a compact subset of
SHC\ E(@)). If U is an open set in %, x C satisfying U N J#0,
then there exists a positive integer N such that for each integer n with

n > N, we have f*(U) D K.

Definition 4.7 (hyperboh(:lty) Let f: X x C = X x C be a rational
skew product. We say that f is hyperbolic along fibers if P(f) c F(f).

Definition 4.8. Let f: X x € — X x € be a rational skew product. We
say that f is expanding along fibers if there exists a positive constant C' and
a constant A with A > 1 such that for each n € N,

inf_[|(f")'(2)|| > CA",
z€J(f)

where we denote by || - || the norm of the derivative with respect to the
spherical metric.

Definition 4.9 (semi-hyperbolicity). Let f:XxC > XxC bea
rational skew product. Let N be a positive integer. We say that a point
(x0,90) € X x C belongs to SHn(f) if there exists a neighborhood U of zg
and a positive number ¢ satisfying that for any z € U, any n € N, any

clement z,, € p~"(z) and any element V' of ¢(B(yo, 9), qg:)),
deg(q(™) : V. — B(yo, 6)) < N.

We set ) )

UH(f)= (X xC)\UnenSHN([).
We say that f is semi-hyperbolic along fibers if for any (o, Yo) € J(f) there
exists a positive integer N such that (zg,y0) € SHn(f).

Lemma 4.10. Let f : X x C = X x C be a rational skew product. If f is
hyperbolic along fibers, then it is semi-hyperbolic along fibers.

Lemma 4.11. Let G = {(f1, fo,... ,fm) be a finitely generated rational
' semigroup. Then G s semi- lm;perbolzc if and only if the rational skew prod-
uct f : X xC — X x C constructed by the generator system {fl,fQ, s fm}
15 semi-hyperbolic along fibers. G is hyperbolic if and only if f is hyperbolic
along fibers.

Definition 4.12 (Condition(C1)). Let f : X x C — X x C be a rational
skew product. We say that f satisfies the condition (C1) if there exists a
family {D,}zex of discs in C such that the following three conditions are
satisfied:

L Unzo f“({T} x Dy) C F(f)

2. for any # € X, wc have that diam(q,(c")(Dm)) — 0, as n — oco.



Now we will show the following lemma and theorem.

Lemma 4.13. Let f : X xC — X x C be a rational skew product satisfying
the condition (C1). Assume that there exists a point (zg,1yg) € X x C with
Yo € Fyy, a connected open neighborhood U of yo in C and a sequence (n;)
of positive integers such that R; := qﬁﬁj ) converges to a non-constant map
¢ uniformly on U as j — oco. Let (zj,y;) = fri (z0;90) and (Too,Yoo) =
limjyoo(zj,y;). Let S;; = "’ i) forl <1< 3. Let

V={yeC|Ie>0, limsup sup d(S; (6, &) =0}.

100 7> d(€,y)<e

Then V is a non-empty open set and for any y € OV, we have that
(2o, ) € J(f)NUH(f). (1)

Theorem 4.14. Let f : X xC — X xC be a rational skew product. Assume
f is semi-hyperbolic along fibers and satisfies the condition (C1). Then the
following hold.

1. Let (zo,y0) € X x C be any point with yg € F,,. Then for any open
connected neighborhood U of yo in C, there erists no subsequence of

(n)

(@2o’ )n converging to a non-constant map locally uniformly on U.

zeX

3. If there exists a disc D in C such that D, = D for all x € X in the
condition (C1), then there exist positive constants §, L and A\(0 < A <
1) such that for any n € N,

sup{diam U | U € c¢(B(y,5), ), (z,y) € J(f), zn € p~"(z)} < LA".

4. Assume d(z) > 2 for each x € X. Then we have that z — J, is
continuous with respect to the Hausdorff metric in the space of compact
subsets of X x C.

Assume d(z) > 2 for each x € X. Then for any compact subset K

of F(f), we have that Unsof"(K) C F(f) and there exist constants

C >0 and 7 < 1 such that for each n, qup I1(F) (2)] < Cr™.
z€K

<

To show Lemma 4.13 and Theorem 4.14, we need the following lemma.

36



Lemma 4.15. Let f : X xC — X x C be a rational skew product satisfying
the condition (C1). Assume (zg,y0) € SHy(f) for some N € N. Then there
exists a positive number by such that for each § with 0 < § < 0 there exists
a neighborhood U of zg in C satisfying that for eachn € N, each z € U and
each =, € p~"(x), we have that each element of c¢(B(yo,d), qg,:')) s simply

connected.

Proof. By Lemma 3.8 and condition (C1). O

Proof. (outline) of Lemma 4.13 and Theorem 4.14. We will show Lemma 4.13.

We will develop a method in [J1]. Since ¢ is non-constant, we have that V'
is non-cmpty. Take any point y € OV. By condition (C1), we can show
that (Zeo,y) € J(f). Suppose (Zo0,y) € SHy(f) for some N. Then by
Corollary 3.7 and Lemma 4.15 we can show that {S;;};>; is normal in a
neighborhood of y. But it implies that y € V and this is a contradiction.
Hence Lemma 4.13 holds. By this lemma the statement 1 of Theorem 4.14
holds. The statement 2 of Theorem 4.14 follows from Lemma 4.13 and the
condition (C1). The statement 3 of Theorem 4.14 follows from the statement
2 and some arguments on moduli of annuli. The statement 4 follows from
the statement 2 of Theorem 4.14 and 11 in Proposition 4.4. The statement
5 follows from Lemma 3.8, 11 in Proposition 4.4 and the statement 1 of

Theorem 4.14. O

Corollary 4.16. Let G = (f1, fa,... , fm) be a finitely generated rational
sémigroup which is semi-hyperbolic. Assume G contains an element with
the degree at least two and each element of Aut C N G (if this is not empty)
is lorodromic. Also assume F(G) # (. Then there exists a 6 > 0, a constant
L with L > 0 and a constant A with 0 < A < 1 such that

37

sup{diam U | U € ¢(B(z,8), fi, - fi,), z € J(G), (i1,...,3n) € {1,... ,m}"}

< LA", for each n.

Theorem 4.17. Let f : X xC — X xC be a rational skew product. Assume
f is hyperbolic along fibers and satisfies the condition (C1) with a family of
discs (Dy)sex such that there emists a disc D satisfying D, = D for all

x € X. Then f is expanding along fibers.

Remark 5. We can show that the results in this section are generalized to
the version of C-fibration. For the definition of C-fibration, see [J2].

5 Conditions to be semi-hyperbolic

Theorem 5.1. Let G = {(fi, fa,--- , fm) be a finitely generated rational
semigroup. Let zg € J(G) be a point. Assume all of the following con-

ditions:
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1. there exists a neighborhood U\ of zg in C such that for any sequence
(92) C G, any domain V in C and any point ( € Uy, we have that
the sequence (gy,) does NOT converge to ( locally uniformly on V.

2. there exists a neighborhood Uy of zy in C and a positive real number €
such that if we set

T={ceC|3j, fi(c) =0, (GU{id})(fj(c)) NUs # B}
then for each c € T NC(f;), we have d(c, (G U {id})(f;(c))) > €.
3. F(G) # 0.
Then zg € SHn(G) for some N € N.

Notation: For any family {gy}rea of rational functions, we denote by
F({gx}) the set of all points z € C such that z has a neighborhood where

the family {gx} is normal. We set J({ga}) = C\ F({g»}). F({g»}) is called
the Fatou set and J({gx}) is called the Julia set for the family.

Corollary 5.2. Let G = (fi, fa,..., fm) be a finitely generated rational
semagroup. Let zg € J(G) be a point. Assume all of the following conditions:

1. there exists a neighborhood Uy of zy in C such that for any sequence
(9n) C G consisting of mutually distinct elements and any domain
V in F((gn)), there exists a point x € V such that the sequence

U"{gn(x)} OE\ Ui 7& 0.

2. there erists a neighborhood Uy of 29 in C and a positive real number &
such that if we set

T={ceT| 3, fl(c) =0, (GU (id})(f;(c) NUs # 0
then for each c € T NC(f;), we have d(c, (GU {id})(f;(c))) > €.

3. F(G) # 0.

Then zy € SHN(G) for some N € N and there exists a neighborhood W of
zg i C such that for any sequence (g,) C G consisting of mutually distinct
elements, we have '

sup{ diam S | S € c(W,g,)} = 0, asn — oco.

We will consider the proof of Theorem 5.1. We may assume Uy = Uy = U
for some small disc U . By condition 1 and 3, we may assume oo € F(Q)
and g~!(U) C C for cach g € G. Now we will show the above theorem by
developing a lemma in [Mad] and using the methods in [KS]. The storics
arc almost same as those in [KS], except some modifications.



First we nced some new notations. An “square” is a set S of the form
S={2€C||R(z-p)| <4, [S(z—p)| <6}

The point p is called the center of S and § its radius . For cach £ > 0, given
a squarc S with center p and radius §, we denote by S k¥ the square with the
center p and radius k4. Take a ¢ > 0 such that U contains a closed square
Q' with the center a point in U and its radius 20. Let Q" = (Q')!/2. Q" is
called “admissable square at level 1.” We will define asmissable squares at
level n for cach n € N. Let Q be an admissable square at level n with the
radius a. Then Q is covered by 16 squares with the radius a/8. We have
20 squares with the radius a/8 adjacent to ). We call all these 36 squares
admissable at level n+1. These squares arc denoted by {Q,n+1}. The union
of these 36 squares is denoted by @), which is called the “square attached to
Q.” Each admissable and each attached square is a relative compact subset
of U.

Notation: For any open set V| and for any rational map g, if Vo €
c(Vi, g) then we set A(Vy, g) = #{z € Vi | ¢'(z) = 0}, counting the
multiplicity. ‘

We need some lemmas to show Theorem 5.1.

Lemma 5.3. For given € > 0 and N € N, there exists some ng € N such
that the following holds: If Q is an admissable square at some level n > ny,
Q the corresponding attached square, V an element of c(Q, f) for some
fe€G, and A(V,f) < N, then diam (K) < € for each element K € ¢(Q, f)

contained in V.

Now, let ¢t = §T, N = (_ max deg(f;))" and € < 3—6% We can assume
=1,...,M

K

that € is sufficiently small and diam U < €. Let ng € N be an integer in
Lemma 5.3 for these € and N.

Lemma 5.4. Let G be an element of the form f = fy, 0---0 fy,. Let B
be a simply connected subdomain of U, B' € c(B, f) an element such that
“A(B',f) > N. Then there exists some v € {0,... ,k— 1} such that if we set
B, = fu,_, -0 fu,(B'), then B, is simply connected, diam (B,) 2 &,

and
dcg(fwl O-- 'f’lllk_,,_l |Bu . By — B) S N_

Now we will show the Theorem 5.1.

Proof. Take €, € and N as before. Take ng in Lemma 5.3 for € and N.
Let % be the smallest integer such that there exists some admissable square
Q = Qun at level n > ng with diam (K) > € for some eclement K of
c(Q, fw, © -0 fu,) where (wi,... ,wy) is some word of length k. We have
k > 1. Let Q be the square attached to Q. By lemma 5.3, there exists an
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clement S € ¢(Q, fw, -0 fu,) such that A(S, f,, o0 f,,) > N. Take

a integer v with 1 < v < £ in Lemma 5.4. Then we have
diam (fo,_, 00 fy, (S)) > €
If we set S = Juwe_, ©++ 0 fu, (S) then

deg(fw] ©--+0 fwk—u——l IS’) S N

and

g C U(fwl 0:--+0 fwk_,,__])_l(Qu, n+l)-
I

By the minimality of k, we have that the diameter of each element of

C(Qu, n+l, fwl o ‘Ofwk—u—l) is less than e. Since deg(.f“)l o-: 'Ofwk—u—l |5‘) <
N, we have that

¢ < diam S < 36Ne.

This contradicts to € < ﬁ\,— Hence we have proved that for each admissable
square @, » with n > ng and cach g € G, each clement K € c(Qun, g) sat-
isfies that diam (K') < €. Since € is sufficiently small, K is simply connected.
By Lemma 5.4, we have that

deg(flr : K — Qun) <N +1.
Hence 29 € SHy 4. O
By Theorem 4.14 and Theorem 5.1, we get the following result.

Theorem 5.5 (criterion to be semi-hyperbolic). LetG = (f1, fa, ... fn)
be a finitely generated rational semigroup. Assume that there exists an ele-
ment of G with the degree at least two, that each element of Aut CNG (if this
is not empty) is lorodromic and that F(G) # 0. Then G is semi-hyperbolic
of and only if all of the following conditions are satisfied.

1. for each z € J(G) there exists a neighborhood U of z in C such that for
any sequence (gn) C G, any domainV in C and any point ( € U, we
have that the sequence (g,) does NOT converge to ¢ locally uniformly

onV

2. for each j=1,... ,m each c € C(f;) N J(G) satisfies

d(e, (GU{zd})(fi(e))) >0

Theorem 5.6 (expandihgness of sub-hyperbolicity). LetG = (fi, fo,...

be a finitely generated sub-hyperbolic rational semigroup. Assume that there
exists an element of G with the degree at least two, that each element of
Aut C N G(if this is not empty) is lozodromic and that there is no super
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attracting fized point of any clement of G in J(G). Then there exists a Rie-
mannian metric p on a neighborhood V' of J(G) \ P(G) such that for each
20 € J(G)\ G H(P(G)NJ(G)), if there exists a word w = (wy,wa,...,) €
{1,...,m}N satisfying (fu, - fu,)(20) € J(G) for eachn, then

1(fuwn -+« fun) (z0)l = 00, as n — oo,
where || - || is the norm of the derivative measured from p on'V to it.
Now we will give an application of Theorem 5.5.

Theorem 5.7. LetG = (fi, fo, ... , fm) be a finitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the de-

gree at least two, that each element of Aut C N G (if this is not empty) is

loxodromic and that there is no super attracting fized point of any element

of G in J(G). Then G is semi-hyperbolic.

Proof. We will appeal to Theorem 5.5. Since there is no super attracting
fixed point of any clement of G in J(G), the condition 2. in Theorem 5.5 is
satisfied. By Theorem 3.12, there exists an attractor K in F(G) for G. Let
2o be any point and U a neighborhood of 2z such that U N K = §. Suppose
that there exists a sequence (g,) C G, a domain V in C and a point ¢ € U
such that g, — ¢ as n — oo locally uniformly on V. We will deduce a
contradiction. We can assume that there exists a word w € {1,... ,m}
such that for cach n,
gn = Apfuw, 00 fu,

where a,, € G is an element. Then from Theorem 3.12 and that UNK = §,
we have that

fwn O"'o.fw] (V) - J(G)a (2)

for cach n. Hence (fi, 0+ 0 fu, )n is normal in V. Let z; € VNG~ (P(G)N
J(G)) be a point. By the backward self-similarity of J(G) and Lemma, 3.11,
there exists a sequence (n;) of positive integers and a neighborhood W of
P(G)N J(G) in C such that for each j,

fw"j O« O.fwl (Z]) € @\W
By Theorem 5.6, we have that
”(fw"- 0--+0 fwl)l(zl)” — 00, as j — 0o, (3)
J

where || - || denotes the norm of the derivative with respect to the spherical
metric. Since (fy,, 0«0 fu, )n is normal in V, this is a contradiction. Hence
the condition 1 in Theorem 5.5 is satisfied. By Theorem 5.5, we get that G
is semi-hyperbolic. O
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6 J-subconformal measures and Hausdorff dimen-
sion of the Julia sets

Definition 6.1. Let G be a rational semigroup and § a non-negative num-
ber. We say that a Borel probability measure p on C is §-subconformal if
for each g € G and for cach Borel measurable set A

u(g(A)) < /A ' ()P,

where we denote by || - || the norm of the derivative with respect to the
spherical metric. For each z € C and each real number s we set .

S(s,z) =Y Y. lldwl™*

9€G g(y)==
counting multiplicitics and
S(z) = inf{s | S(s, z) < oo}
If there is not s such that S(s, z) < oo, then we set S(z) = co.Also we set

so(G) = inf{S(z)}, s(G) = inf{d | i : é-subconformal measurc}

Theorem 6.2 (S2). Let G be a rational semigroup which has at most count-
ably many elements. If there exists a point x € C such that S(z) < oo then
there is a S(x)-subconformal measure. In particular, we have s(G) < so(G).

Definition 6.3. Let G = (fi, fo,..., fin) be a finitely generated rational
semigroup. We say that G satisfies the open set condition with respect to
the gencrators fi, fo,. .., fm if there exists an open set O such that for each
j=1,...,m, fj_] (O) C O and {fj”l(O)}j:],._.,m arc mutually disjoint.

Proposition 6.4. Let G = (f|, fa,... , fu) be a finitely generated rational
semagroup. Assume that G satisfies the open set condition with respect to
the generators fy, fo,... , fm and O\ J(G) # @ where O is an open set in
the definition of the open set condition. If there exists an attractor in F(G)

for G, then
s0(G) < 2.

Lemma 6.5. Let G be a rational semigroup. Assume that co € F(G),
$J(G) > 3 and for ecach x € E(G) there erists an clement g € G such that
g(z) = z and |¢/(z)| < 1. We also assume that there exist a countable set
E in C, positive numbers a; and as and a constant ¢ with 0 < ¢ < 1 such
that for each x € J(G) \ E, there exist two sequences (r,) and (R,) of
positive real numbers and a sequence (g,) of elements of G satisfying all of
the following conditions:



1. 1, = 0 and for ecach n, 0 < = < c and gn(z) € J(G).
2. for each n, gn(D(z,Ry)) C D(gn(z),a1).
3. for each n g,(D(z,7r,)) D D(gn(z),a2).

Let § be a real number with § > s(G) and j a §- subconformal measure. Then
d-Hausdorff measure on J(G) is absolutely continuous with respect to p such
that the Radon-Nikodim derivative is bounded from above. In particular, we
have

dimp (J(G)) < s(G).
By Theorem 4.14 and Lemma 6.5, we get the following result.

Theorem 6.6. Let G be a rational semigroup generated by a generator sys-
tem {fa}aen such that Uyea{fr} is a compact subset of End(C). Let f be
a rational skew product constructed by the generator system. Assume fis
semi-hyperbolic along fibers and satisfies the condition C1 with a family of
discs {Dy }rex such that D, = D, Yz € X with some D. Then we have

dimy (J(G)) < s(G).

Theorem 6.7. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup which is semi-hyperbolic. Assume that G contains an element
with the degree at least two, each element of Aut CN G (if this is not empty)
is lozodromic and F(G) # §. Then we have

dimp (J(G)) < 5(G) < s0(G).
Proof. By Theorem 6.6 and Theorem 6.2. . [

Remark 6. Let G = (f1, fa,..., fm) be a finitely generated hyperbolic ra-
tional semigroup which satisfies that { f]-”] (J(G))}j=1,..m are mutually dis-
joint . We assume that the degree of fi is at least two. By the results in
Theorem 3.2 and the proof, Theorem 3.4 and Corollary 3.5 in [S2], we have

0 < dimg J(G) = s(G) = 50(G) = §(G) < 2,

where we denote by §(G) the infimum of § which allows us the J-conformal
measure on J(G).

Example 6.8. Let n be a positive integer such that n > 4. We set G =
(z", n(z — 4) +4). Then G is a finitely generated hyperbolic rational semi-

7

group. By Theorem 6.7 and some arguments, we get

log(n + 1)

1 <dimg J(G) <
log(n)

43



44

Example 6.9. Let G = (f1, fo) where fi(z) = 22 4+ 2, fo(z) = 22 —
2. Since P(G) N J(G) = {2,-2} and P(G) N F(G) is compact, we have
G is sub-hyperbolic. By Theorem 5.7, G is also semi-hyperbolic. Since
£;71(D(0,2)) € D(0,2) for j = 1,2 andf;‘( (0,2)) N £, 1(D(0,2)) =0, G
satisfics the open set condition. Also J(G) is included in B = U2_1f (D(0,2)).
Since BN OD(0,2) = {2,-2,2:,—2i}, we get $(J(G) N (’)D(O 2)) < oo. By
Theorem 1.15 in [S6], we have mo(J(G)) = 0, where we denote by ms the
2-dimensional Lebesgue measure. By Theorem 6.7 and Proposition 6.4, we
have also |

dimpg (J(G)) < s(G) < s0(G) < 2.

7 backward self-similar measure

In the following sections we assume the following situation. Let m be a
positive integer and %,, = {1,... m}N. We denote by o : ¥, = X,, the
shift map, that is , (wy,...) — (11)2, ..)- Let G = (f1, fo,... fm) be a finitely
generated 1at10nal semigroup. Let f ¥, XC — 2, xC be the rational skew
product constructed by the gencrator system {fi,..., fm}. Hence for each
(w,2) € &y x C, f((w,z)) = (0w, fuw,x). We now consider about invariant
measures and self-similar measures on Julia sets. In the cases of iterations of
rational functions, Brolin’s and Lyubich’s studies are well known([Br], [L]).
Recently, D.Boyd investigated “invariant measure” (that is, the measure
(72)«/i in the notation in Theorem 7.1) in the case that each f; is of degree
at least two and have shown the uniqueness in [Bo).

Let G = (f1, fo,... fm) be a finitely generated rational semigroup. We
set d; = deg(f;) forcach j=1,... ;mand d = Zm d;. For cach compact

sct K of C we denote by C(K) all continuous complex valued functions
on K. It is a Banach space with supremum norm on K. Assume that K is
backward invariant under G. For cach j and for each element ¢ we set

Ao =7 3 0,
T ces )

where 2z is any point of K. Then Ajp is an element, of C(K) and A; is a
bounded operator on C(K). We set

W:{((I,l,... ,(J,n) ER" | Z(ZJ = ]_, (J,j ZO}
J

And for cach a € W we sct

a‘;o Za’] (AJSO)



Then B, is a bounded operator on C(K).

Similarly, let K be a compact subset of %, X C which is backward
invariant under f. We define an operator B, on C(K) as follows. For each
element ¢ € C(K) we set

(Ba(,B)(Z) ECEf l(z (C)"pa(C)

where 1, (¢) = 3"’1 if m11(¢) = (wy,wa,...).

- 'UII - -
B, is a bounded operator on C(K). Furtheremore, if m9(K) = K, then
we get :

73B, = B,7}
and 73; C(K) — C(K) is an isometry.

Theorem 7.1. Let G = (f1,..., fm) be a finitely generated rational semsi-
group. Assume that there erists an element go € G of degree at least two,
the exceptional set E(G) for G is included in F(G) and F(H) D J(G) where
H is a rational semigroup defined by H = {h™! | h € Aut (C)NG}.(if H is
empty, put F(H) = C.) Then all of the following hold.

1. For each a € W with a # 0 there exists a unique regular Borel proba-
bility measure ,ua on T, X C such that for each compact set K which
is ncluded n w5 {C\ E(®)) and backward invariant under 1,

”B (‘:0) - //Ja( )1”[? — 0,

as n — oo, for each ¢ € C(K), where we denote by 1 the constant
function taking its value 1. Similarly, there exists a unique reqular
Borel probability measure j1a on C such that for each compact set K
which is included in C\ E(G) and backward invariant under G,

|B; (¢) — tta(e)1]lx — 0,

as n — oo, for each ¢ € C(K).
Moreover, (79)«(jts) = pa- The support of [iq 15 equal to J and the
support of pq 1s equal to J(G).

2. For cacha € W with a # 0, we have that ji, is f-invariant and ( f,ita)
18 eract.

3. For each a € W with a # 0, we have that (71)«jlq s the Bernoilli
measure on ¥, corresponding to the weight a.
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4. For cach a € W with a # 0, we have that

ha () = H(l(H™e)

m ™m

= —Zajlogaj + Zaj log d;
j=1 j=1

= h(m)*ﬁa(a)—{—L logdy, (71)xfla(dw),

where we denote by € the partition of L., x C into one point subsets.

5. Let i = Jiq, whereag = (%—1‘—, cee ‘—i’f—) Then ji is the unique mazimizing

measure for f and we have

m

h(F) = hi(F) = log(Y  deg())).

J=1

Definition 7.2. We call ji, or p, the self-similar measure with respect to
the weight a.

To prove Theorem 7.1, we introduce some notations and results from [L].
Let A be a bounded operator in the complex Banach space B. The operator
A is called almost periodic if the orbit {A™p}S°_, of any vector ¢ € B is
strongly conditionally compact. The cigenvalue A and related cigenvector
are called unitary if |A| = 1. The sct of unitary cigenvectors of the operator
A will be denoted by spec,, A. We denote by B, the closure of the linear span

of the unitary cigenvectors of the operator A. And we set
By={p|A™p =0 (m — o0)},
here the convergence is assumed to be strong.

Theorem 7.3. ([L]) If A : B = B s an almost periodic operator in the
complex Banach space B, then B = B, @ By.

Corollary 7.4. ([L]) Let A : B — B be an almost periodic operator in the
complex Banach space B. Assume that spec,A = {1} and the point A =1
s a simple eigenvalue. Let h # 0 be an invariant vector of the operator A.
Then there exists an A* invariant functional p € B*, p(h) = 1, such that
A" = u(p)h  m — oo.

We need some lemmas to prove Theorem 7.1.

Lemma 7.5. Let G = (f1,..., fm) be a finitely generated rational semi-
group. Assume that there exists an element g9 € G of degree at least two
and F(H) D J(G) where H is a rational semigroup defined by H = {h™! |



h € Aut (C)NG}.( of H is empty, put F(H) = C.) Then there ezists a
§d>0 such that for each x € J(G), if we denote by F, s the family of maps
satisfying that cach element of it is a well-defined inverse branch of some
element of G on B(z,d8) where B(z,08) is a ball about x with the radius §
with respect to the spherical metric, then F, 5 is a normal family on B(z, d).

Proof. (outline) This lemma is shown by using a-theorem in [HM3] and the
assumption F(H) D J(G).
' O

Lemma 7.6. Under the same assumption as Theorem 7.1, let K be a com-
pact subset of m; ' (C\ E(G)) which is backward invariant under f. If Byp =
Ap, |\ =1, then A =1 and ¢ is constant. That 1s, (C(K))y =C-1.
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Lemma 7.7. Under the same assumption as Theorem 7.1, if K is a com- -

pact subset of my L€\ E(G)) which is backward invariant under f, then B,
is an almost periodic operator on C(K).

Proof. (outlinc) We will develop the mo’rhodq of key lemma about equicon-
tinuity of {B] ¢}n where ag = (‘d e d n) ¢ € C(K) in [Bo] Let a € W
with @ # 0. Let ¢ € C(K) be any clement. We have IB. ¢l < llellx
for each positive integer . By the Ascoli-Arzela Theorem, we have only to
show that the family {Ba <p}n is equicontinuous on K.
For cach t = (t1,... ,tm) € N™, we set
ted, 1
) = =7, r=1,...,m,
Tt

and a(t) = (aiy,... ;@my) € W. Then there exists a sequence (tl)l of ele-
ments of N™ such that a(t!) = a, as | — oo. For each i = 1,... ,m and
Il €N, we sct gﬁj = f;, j=1,...,t.. For each | € N we consider {gf]},-j as

a generator system and let fi: ) X C— Em(,) x C be the skew product
map constructed by that genera‘ror system in the same way as the begin-

ning of this section where m(l) = Y31, t.. For cach n, we investigate the
cardinality of “good” mverqo branches of fll devided by the cardinality of
all inverse branches of f, . It turns out that it is sufficiently small. By using

Lemma 7.5, we sce that {B"( ) ¢}n 1 is equicontinuous on K. Letting I — oo,

we get that {B"¢}, is equicontinuous.
We have to consider some long arguments and we will omit the detail of

the proof. O

Proof. of the statements 1, 2 and 3 of Theorem 7.1. By Corollary 7.4,
Lemma 7.6 and Lemma 7.7 we can show the statement about convergence
of the operator and that the support of [i, is included in J in the same way
as that in [L]. Since ji, is B*-mvarlan'r and inf,_; Ya(2z) > 0, by Proposi-

tion 4.6.6, we can show that the support of fi, is equal to J immediately.



It implies that the support of y, is equal to J(G). Hence the statement 1
holds. From the statement 1, the statements 2 and 3 follow.
O

To show the statements 4 and 5 in Theorem 7.1, we need some lemmas.

Lemma 7.8. Under the same assumption as Theorem 7.1, for anya € W
with a # 0, we have p, is non-atomic.

Lemma 7.9 (Ruelle’s inequality). Let G = (fi,..., fnm) be a finitely
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generated rational semigroup and f Y XC = %, xC the skew produ('f map |

constructed by the generator system {f1,..., fm.} Let p be an f invariant
probability measure on ., x C. Then we have

o) S 2max(o, [ tim g G (M)} + (o)

T XC n—oon

Let p be an f-invariant probability measure on Ym X C. As in p108 in
[Par], there exists a p-integrable function J, : ,, x C — [1, 00) such that

mﬂm=ﬁ¢mww,

for any Borel set 4 in ,, x C such that f| A is injective. Now we will general-
izc some Mané’s results([Mal]), using the methods in [Mal] and Lemma 7.9.

Lemma 7.10. Let p be an f—in1;ariant ergodic probability measure on ¥, X
C with h,,(f) > D) */,(0) Then there exists a measurable partition P
of L X C such that h,,(f P) < oo and P is a generator for (f,p) i.e.

1f_"( ) =€ (mod 0 ) where € denotes the partition of £, x C into one
poznf subsets.

Lemma 7.11. Let p be an f -invariant ergodic probability measure on T, X

C with h,,(f) > Niry),p(0). Then

m®=Lxg%%M@M=Lxclf(»)()

Proof. By Lemma 7.10, there exists a generator 'P with hp(f, P) < 0. By
Remark 8.10 and Lemma 10.5 in [Par], we get h,,( fz <clog J,(2z)dp(z).
O

Theorem 7.12. Let G = (fy,... , fu) be a rational semigroup and f : &,, x
C — =, x C the skew product map constructed by the generator system.
{f1,--., fm}. Then the toplogical entropy h(f) on %, x C satifies that

m

h(f) < log(D_ deg f;).

i=1



Proof. of Theorem 7.12 Suppose h( f) < logm. Then we have nothing to do.
Suppose h(f ) > logm. Let p be any f-invariant ergodic probability measure
on X, x C with h,,(f) > log m. Then since h(o) = log m, by variational prin-
ciple we get h,,(_f) > B(r,).p(0). By Lomma 10.5 in [Par] and Lemma 7.11, we
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have I(e|f~'€)(z) = log J,(z) and h,(f fz ><Clog J,,( z)dp(z). Since fisa -
d : 1 map whered = 3777, deg(f;) , wehavoI (elf~'e)(2) < log(3_7 deg(f5)).
Hence we get h,,(f) < log(3 7L, deg(fj)). By the Varlahonal principle, we
get h(f) < log(3_jm, deg(f;))- . O
Proof. of statements 4 and 5 in Theorem 7.1. By Lemma 7.8 and the
statement 1 of Theorem 7.1 , we get H(El(f = ——E ajloga; +
E;”:l ajlogd;. Since H(el(f)' 5. xT I(e|f~ ( )(z)dp(z), by Lemma 7.11

we get the statement 4 of Th001 cm 7 1.
Now we will show the statement 5 in Theorem 7.1. By the previous
paragraph and Theorem 7.12, we get h(f) = hu(f log(E"‘ deg(f;)).

Now assume there exists an f invariant probability measure p on Y, X C
with i # p and hp(f) logd where d = 777, deg(f;). We will show it
causes a contradiction. We can assume p is cr godl(' Since there exists an
clement g € G with the degree at least two, we have logd > logm. Hence
hy(f) > P(ryy.p(0). By Lemma 7.11, we have

ho(F) = [ 1o Jy(2)dp(z)

By Lemma 10.5 in [Par], we have I(e|f~'e)(2) = log J,(z). Since fisad:1
map, we have log J,(z) < logd for p almost all 2z € Ly, X C. Hence we get
log J,(2) = logd for p almost all z € &, x C. By Proposition 2.2 in [DUY,
we get that B (p) = p where a = ("51‘ Yo d’l") and B, denotes the operator
on C(%,, x C) defined in Section 7. If E(G) = §, then by the statement 1 in
Theorem 7.1, we get p = ji and this is a contradiction. Assume E(G) # 0.
Let V be the union of connected components of F/(G) having non-empty
intersection with E(G). Let ¢ € C(E,, x C) be any element with ¢(z) > 0
for all z € £,, x C. Let € > 0 be any number. Let A be the e-open
hyperbolic ncighborhood in V. Then K, = 7r2](C \ A.) is compact and
backward invariant under f. Then by the statement 1 in Theorem 7.1,

/ p()dp(z) = / (B (2)dn(2)
Y. xC EmXC
> /kc(B"go)(z)dp()

> k) [ e,
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as n — o0o. Hence we have for cach € > 0,

L _el)p) 2 K- [ p(@dica)

K

Since h,,(f) > h(r,).p(0) and p is crgodic, we have p(r51(B(G))) = 0. Let-
ting € = 0, we get

/ p(2)dp(z) > / () di2).
YmxC S XC

It implies that p > ji. Since p and ji are probability measures, it follows that
p = [t but it is a contradiction. O

The following result is shown by Theorem 7.1 and using Mafié ’s methods([Ma3)).

Theorem 7.13. Let G = (fi, fo,... fm) be a finitely generated rational
semigroup. Assume that F(H) D J(G) where H = {h~! | h € Aut(C)NG} (if
H =10, put F(H) =C.) Also assume that the sets { ' (J(G) )}j=1,....m are
mutually disjoint. Then '

log(E p deg(f;))
B fJ 1Og(llf’ll ) dp’

where pp = (79)jlg, a = (‘f—l', ,‘%) and f(z) = fi(z) ifz € fi_l(J(G)).

dimgy(J(G
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