Formal Microlocalization

Violaine Colin

(Univ. Paris VI/RIMS, Kyoto Univ. with a J.S.P.S. fellowship)

Formal Specialization and Asymptotic Expansions (see [C])

First, let X be a real analytic manifold with \mathcal{C}_X^{∞} the sheaf of complex valued C^{∞} -functions on X. Let U be a subanalytic open subset and Z a subanalytic closed subset of X. Recall that the Whitney functor, $\overset{\text{w}}{\otimes} \mathcal{C}_X^{\infty}$, defined by Kashiwara and Schapira [KS1], is characterized by:

$$\mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_X) \ o \ \mathbf{D}^{\mathrm{b}}(\mathcal{D}_X)$$

 $\mathbb{C}_U \mapsto \mathcal{I}_{X,X \setminus U}^{\infty}$, the subsheaf of \mathcal{C}_X^{∞} consisting of sections vanishing at infinite order on $X \setminus U$,

 $\mathbb{C}_Z \mapsto \text{the sheaf of complex valued functions } C^{\infty} \text{ on } Z \text{ in the sens of Whitney.}$

Recall that a C^{∞} -function on a subset A of \mathbb{R}^n in the sense of Whitney (see [W]) is a family $F = (F^k)_{k \in \mathbb{N}^n}$ of continous functions on A such that: $\forall m \in \mathbb{N}, \quad \forall k \in \mathbb{N}^n, |k| \leq m, \quad \forall x \in A, \quad \forall \varepsilon > 0$, there is a neighborhood U of x such that $\forall y, z \in U \cap A$

$$\left| F^k(z) - \sum_{|j+k| \leqslant m} \frac{(z-y)^j}{j!} F^{j+k}(y) \right| \leqslant \varepsilon. dist(y,z)^{m-|k|} \tag{1}$$

Let M be a submanifold of X, and \tilde{X} the normal deformation of X along M. We follow the notations of [KS2]:

$$T_{M}X \xrightarrow{s} \tilde{X} \longleftrightarrow \Omega = \{t > 0\}$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{p}$$

$$M \xrightarrow{i} X$$

Definition 1. – Let $F \in \text{Ob}(\mathbf{D}^{\text{b}}_{\mathbb{R}-c}(\mathbb{C}_X))$. We set:

$$w\nu_{\mathcal{M}}(F, \mathcal{C}_{X}^{\infty}) = s^{-1}R\mathcal{H}om_{\mathcal{D}_{\tilde{X}}}(\mathcal{D}_{\tilde{X}\to X}, (p^{-1}F)_{\overline{\Omega}} \overset{\text{\tiny w}}{\otimes} \mathcal{C}_{\tilde{X}}^{\infty}), \tag{2}$$

and call it the Whitney specialization of F along M.

From now on, X will be a complex analytic manifold. We denote by \overline{X} the complex conjugate of X, and by $X_{\mathbb{R}}$ the real underlying manifold. Recall the definition of the functor of formal cohomology: $F \otimes \mathcal{O}_X = R\mathcal{H}om_{\mathcal{D}_{\overline{X}}}(\mathcal{O}_{\overline{X}}, F \otimes \mathcal{C}_{X_{\mathbb{R}}}^{\infty})$.

Definition 2. – Let M be a submanifold of $X_{\mathbb{R}}$ and $F \in \text{Ob}(\mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}_X))$. We set:

$$w\nu_{M}(F, \mathcal{O}_{X}) = R\mathcal{H}om_{\tau^{-1}i^{-1}\mathcal{D}_{\overline{X}}}(\tau^{-1}i^{-1}\mathcal{O}_{\overline{X}}, w\nu_{M}(F, \mathcal{C}_{X_{\mathbb{R}}}^{\infty})), \tag{3}$$

and call it the formal specialization of F along M. If $F = \mathbb{C}_X$ or $F = \mathbb{C}_{X \setminus M}$, we denote it by $w\nu_M(\mathcal{O}_X)$ and $w^o\nu_M(\mathcal{O}_X)$, respectively.

Proposition 3. - Let $F \in \text{Ob}(\mathbf{D}^b_{\mathbb{R}_{-c}}(\mathbb{C}_X))$ and $v \in T_M X$. Then:

$$H^k(w\nu_M(F,\mathcal{O}_X))_v \simeq \varinjlim \mathrm{R}^k\Gamma(X; F_{\overline{U}} \overset{\mathrm{w}}{\otimes} \mathcal{O}_X),$$

where U ranges through the family of subanalytic open subsets of X such that $v \notin C_M(X \setminus U)$.

Actually we obtain the asymptotic expansions. Let U be an open subanalytic relatively compact regular contractible subset of X and $f \in \mathcal{O}(U)$. We say that f admits an asymptotic expansion in U along M if it verifies one of the three equivalent following propositions:

- (i) $\nu_M f \in \Gamma(V(U); w\nu_M(\mathcal{O}_X)),$
- (ii) For all proper subsector U' of U, $f|_{U'}$ is extendible to a C^{∞} -function on X,
- (iii) In a local coordinates system $(z)=(x,y)\in\mathbb{R}^{n-p}\times\mathbb{R}^p$, where M is defined by $\{x=0\}$, there is formal serie $\sum_k a_k(y)x^k$ with coefficients C^∞ in an neighborhood of $\overline{U}\cap M$ in M such that for all proper subsectors U' of U, and for all multi-indices $N\in\mathbb{N}^{n-p}$, there is a constant C>0, such that

$$\forall z \in U', \quad \left| f(z) - \sum_{k < N} a_k(y) x^k \right| \leqslant C|x^N|.$$

Then considering the distinguished triangle:

$$w^{\circ}\nu_{M}(\mathcal{O}_{X}) \to w\nu_{M}(\mathcal{O}_{X}) \to \mathbb{C}_{M} \overset{\mathsf{w}}{\otimes} \mathcal{O}_{X} \overset{+1}{\longrightarrow}$$

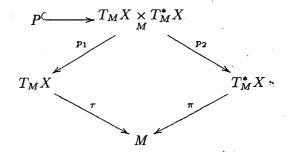
with $X = \mathbb{C}$ and $M = \{0\}$ we reobtain a result of Malgrange [Mal] and Sibuya [Si].

Unfortunately we have yet construct a formal specialization along an analytic subset. But using the method we hope to find the strongly asymptotically developable function of Majima [Maj]. In that case, the equivalence of (ii) and (iii) is already proved by Zurro [Z].

Formal Microlocalization

Let us consider the inverse Fourier-Sato transform of the formal specialization. We denote by p_1 and p_2 the first and second projections from $T_M X \times T_M^* X$.

Let
$$P = \{(x, y) \in T_M X \times_M T_M^* X / < x, y > \geqslant 0\}.$$



Definition 4. – We set:

$$w\mu_M(F,\mathcal{O}_X) = (w\nu_M(F,\mathcal{O}_X))^{\vee} = Rp_{2!}(p_1!w\nu_M(F,\mathcal{O}_X))_P \tag{4}$$

and call it the formal microlocalization of F along M.

Proposition 5. - Let $F \in \text{Ob}(\mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}_X))$ and $p \in \dot{T}^*_M X$. Then:

$$H^{k}(w\mu_{M}(F,\mathcal{O}_{X}))_{p} \simeq \varinjlim_{U} H^{k+l}(F_{U} \overset{\text{w}}{\otimes} \mathcal{O}_{X})_{\pi(p)}$$
 (5)

where U ranges through the family of subanalytic open subsets of X such that $p \in int(C_M(U)^{oa})$, the interior of the polar set to U and l is the codimension of M in X.

We denote by Δ the diagonal of $X \times X$. Let q_1 and q_2 the first and second projections defined on $X \times X$, Let us identify $T^*_{\Delta}(X \times X)$ with T^*X by the first projection from $T^*(X \times X) = T^*X \times T^*X$.

Definition 6. – Let $F \in \mathrm{Ob}(\mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_X))$. We set:

$$F \overset{\mathsf{w}}{\underset{}{\overset{}_{\omega}}} \mathcal{O}_{X} = R\mathcal{H}om_{\pi^{-1}\mathcal{D}_{X\times X}}(\pi^{-1}\mathcal{D}_{X\times X}\overset{q_{1}}{\underset{}{\overset{}_{\omega}}}_{X}}, w\mu_{\triangle}(q_{2}^{-1}F, \mathcal{O}_{X\times X})). \tag{6}$$

Proposition 7. – Let M be a submanifold of $X_{\mathbb{R}}$ and k the immersion of T_M^*X in T^*X . Then:

$$\mathbb{C}_M \overset{\mathrm{w}}{\underset{\mu}{\otimes}} \mathcal{O}_X \simeq k_* w \mu_M(\mathbb{C}_X, \mathcal{O}_X) \tag{7}$$

Proposition 8. - Let $F \in \text{Ob}(\mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}_X))$ and $p \in T^*X$. Then:

$$H^{k}(F \overset{\mathsf{w}}{\underset{\mu}{\otimes}} \mathcal{O}_{X})_{p} \simeq \varinjlim_{U,V} H^{k}(Rq_{1!}(q_{2}^{!}(F_{\overline{U}}))_{V} \overset{\mathsf{w}}{\otimes} \mathcal{O}_{X})_{\pi(p)}$$
(8)

where U ranges through the family of neighborhood of $\pi(p)$ in X and V ranges through the family of subanalytic open subsets of $X \times X$ such that $(p^a, p) \in int(C_{\Delta}(V)^{\circ a})$.

Proposition 9. - Let $F \in \text{Ob}(\mathbf{D}^{b}_{\mathbb{R}-c}(\mathbb{C}_X))$. Then:

$$R\pi_*(F\overset{\aleph}{\otimes}\mathcal{O}_X) \simeq F\overset{\aleph}{\otimes}\mathcal{O}_X,$$
 (9)

$$R\pi_!(F\overset{\mathbf{w}}{\underset{\mu}{\otimes}}\mathcal{O}_X) \simeq F\otimes\mathcal{O}_X,$$
 (10)

and we have the distinguished triangle:

$$F \otimes \mathcal{O}_X \to F \stackrel{\mathbf{w}}{\otimes} \mathcal{O}_X \to R\pi_* (F \stackrel{\mathbf{w}}{\otimes} \mathcal{O}_X|_{T^*X}) \xrightarrow{+1} .$$
 (11)

Let X and Y be two complex manifolds. We denote by p_X and p_Y the first and second projection from $T^*(X \times Y)$ to T^*X and T^*Y . Let $\mathcal{M} \in \mathbf{D}^{\mathrm{b}}(\pi^{-1}\mathcal{D}_{X \times Y})$, $\mathcal{N} \in \mathbf{D}^{\mathrm{b}}(\pi^{-1}\mathcal{D}_Y)$, $F \in \mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_X)$ and $K \in \mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_{X \times Y})$. We denote:

$$\mathcal{M} \underset{\mathcal{D}_{Y}}{\circ} \mathcal{N} = Rp_{X!}(\mathcal{M} \underset{\mathcal{D}_{Y}}{\otimes} p_{Y}^{a^{-1}} \mathcal{N})$$
$$K \circ F = Rq_{Y!}(K \otimes q_{Y}^{-1} F).$$

Using the morphism constructed in the last chapter of [KS1]:

$$Thom(F, \mathcal{O}_X) \underset{\mathcal{O}_X}{\otimes} (F \otimes G) \overset{\mathbf{w}}{\otimes} \mathcal{O}_X \to G \overset{\mathbf{w}}{\otimes} \mathcal{O}_X,$$

we obtain a morphism for integral transformation with the functor $\mathcal{T}\mu hom$ defined in [A].

Theorem 10. – Let $F \in \mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_X)$ and $K \in \mathbf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_{X \times Y})$. Then we have a natural morphism:

$$\mathcal{T}\mu hom(K, \mathcal{O}_{X\times Y}^{(0,d_Y)}[d_Y])^a \underset{\mathcal{D}_Y}{\circ} ((K\circ F) \overset{\text{w}}{\underset{\omega}{\otimes}} \mathcal{O}_Y) \to F \overset{\text{w}}{\underset{\omega}{\otimes}} \mathcal{O}_X. \tag{12}$$

From this theorem, with X = Y and $K = \mathbb{C}_{\Delta}$, we get a natural morphism:

$$(\mathcal{E}_X^{\mathbb{R},f})^a\otimes (F\overset{\mathrm{w}}{\otimes}\mathcal{O}_X)\to F\overset{\mathrm{w}}{\otimes}\mathcal{O}_X.$$

In particular, $H^j(F\overset{\otimes}{\underset{\mu}{\otimes}}\mathcal{O}_X)_p$ has a structure of $(\mathcal{E}_X)_p$ -module for any p in T^*X .

References

- [A] E. Andronikof, "Microlocalisation tempérée", Mémoires Soc. Math. France 57 (suppl. Bull. 122), (1994).
- [C] V. Colin, "Spécialisation du foncteur de Whitney", C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 4, pp 383-388.

- [KS1] M. Kashiwara and P. Schapira, "Moderate and formal cohomology associated with constructible sheaves", Mém. Soc. Math. France 64, suppl. Bull. S.M.F. tome 124 fasc. 1 (1996).
- [KS2] M. Kashiwara and P. Schapira, "Sheaves on Manifolds", Grundlehren Math. Wiss. 292, Springer-Verlag (1990).
- [Maj] H. Majima, "Asymptotic analysis for integrable connections with irregular singular points", Lecture Notes in Math. 1075, Springer-Verlag (1984).
- [Mal] B. Malgrange, "Remarques sur les équations différentielles à points singuliers", Lecture Notes in Math. 712, Springer-Verlag (1979).
- [Si] Y. Sibuya, "Linear ordinary differential equations in the complex domain: Problems of analytic continuation", Progress in Math. Trans. of Math. Monogrphs, vol. 82, A.M.S. (1990).
- [W] H. Whitney, "Analytic expansion of differentiable functions defined in closed sets", Trans. of A.M.S., vol. 36 (1934), pp 63-89, and "Functions différentiable in the boundary of regions", Ann. of Math. 35, no 3, (1934), pp 482-485.
- [Z] M. A. Zurro, "A new Taylor type formula and C^{∞} extensions for asymptotically developable functions", Studia Math. 123 (1997), no. 2, 151–163.