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1 Introduction
In our series of articles ([KT1], [AKT2], [KT2]) T. Kawai (RIMS, Kyoto Univ.),
T. Aoki (Kinki Univ.) and the author have developed the exact WKB analysis for
Painlev\’e equations with a large parameter. Making use of several results obtained
there, we want to discuss the global behavior of solutions of Painlev\’e equations in
this report.

Thanks to the well-known Painlev\’e property, the analytic continuation of any
solution of a Painlev\’e $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ is unique except at fixed singular points of the
equation. This immediately implies that the (nonlinear) monodromy group can be
naturally defined for Painlev\’e equations. At the same time the (nonlinear) Stokes
multipliers are also defined at each irregular-type singular point. The goal of our
study is to give an explicit representation of these objects by using the exact WKB
analysis. As the final answer has not been obtained yet, we report only our present
situation as well as some intermediate results here.

The author sincerely thanks Professors T. Kawai and T. Aoki for the stimulating
discussions with them. This work is supported by Grant-in-Aid for Scientific Re-
search for Encouragement of Young Scientists (No. 09740101), the Japanese Ministry
of Education, Science, Sports and Culture.

2 Formal solutions of Painlev\’e equations
To discuss the monodromy group and the Stokes multipliers, we need formal solu-
tions of Painlev\’e equations. In this section we review the construction of formal
solutions of Painlev\’e equations with 2 free parameters.
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First of all, let us list up the Painlev\’e equations $(P_{J})(J=\mathrm{I}, \ldots,\mathrm{V}\mathrm{I})$ with a large
parameter $\eta$ .

Table 1

$(P_{\mathrm{I}})$
$\frac{d^{2}\lambda}{dt^{2}}$

$=$ $\eta^{2}(6\lambda^{2}+t)$ .

$(P_{\mathrm{I}\mathrm{I}})$
$\frac{d^{2}\lambda}{dt^{2}}$ $=$ $\eta^{2}(2\lambda^{3}+t\lambda+C)$ .

$(P_{\mathrm{I}\mathrm{I}1})$
$\frac{d^{2}\lambda}{dt^{2}}$ $=$ $\frac{1}{\lambda}(\frac{d\lambda}{dt}\mathrm{I}^{2}-\frac{1}{t}\frac{d\lambda}{dt}+\eta 2[16c\infty\lambda 3+\frac{8c_{\infty}’\lambda^{2}}{t}-\frac{8c_{0}’}{t}-\frac{16c_{0}}{\lambda}]\cdot$

$(P_{\mathrm{I}\mathrm{V}})$
$\frac{d^{2}\lambda}{d\mathrm{t}^{2}}$

$=$ $\frac{1}{2\lambda}(\frac{d\lambda}{dt})^{2}-\frac{2}{\lambda}+\eta\frac{3}{2}\lambda+4\mathrm{t}\lambda+(2t+8c_{1})\lambda-\frac{8c_{0}}{\lambda}]2[322$ .

$(P_{\mathrm{V}})$
$\frac{d^{2}\lambda}{dt^{2}}$ $=$ $( \frac{1}{2\lambda}+\frac{1}{\lambda-1})(\frac{d\lambda}{dt})^{2}-\frac{1}{t}\frac{d\lambda}{dt}+\frac{(\lambda-1)^{2}}{t^{2}}(2\lambda-\frac{1}{2\lambda})$

$+ \eta^{2}\frac{2\lambda(\lambda-1)2}{t^{2}}[(c_{0}+c_{\infty})-\frac{c_{0}}{\lambda^{2}}-\frac{c_{2}t}{(\lambda-1)^{2}}-\frac{c_{1}t^{2}(\lambda+1)}{(\lambda-1)^{3}}]$ .

$(P_{\mathrm{V}\mathrm{I}})$
$\frac{d^{2}\lambda}{dt^{2}}$ $=$ $\frac{1}{2}(\frac{1}{\lambda}+\frac{1}{\lambda-1}+\frac{1}{\lambda-t})(\frac{d\lambda}{dt})^{2}-(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{\lambda-t})\frac{d\lambda}{dt}$

$+ \frac{2\lambda(\lambda-1)(\lambda-t)}{t^{2}(t-1)^{2}}[1-\frac{\lambda^{2}-2t\lambda+t}{4\lambda^{2}(\lambda-1)2}$

$+ \eta^{2}\{(c_{0}+c1+C_{t}+c_{\infty})-\frac{c_{0}t}{\lambda^{2}}+\frac{c_{1}(t-1)}{(\lambda-1)^{2}}-\frac{c_{t}t(t-1)}{(\lambda-t)^{2}}\}]$ .

Note that each Painlev\’e equation has the following structure in common:

$\frac{d^{2}\lambda}{dt^{2}}=G_{J}(\lambda,$ $\frac{d\lambda}{dt},t)+\eta^{2}F_{j}(\lambda, t)$ ,

where $F_{J}$ and $G_{J}$ are rational functions. In view of this expression of equations,
we easily find that $(P_{J})$ has the following formal power series solutions denoted by
$\lambda_{J}^{(0)}(t)$ :
(1) $\lambda_{J}^{(0)1}(t)=\lambda_{0}(t)+\eta^{-}\lambda 1(t)+\eta^{-2}\lambda 2(t)+\cdots$ ,
where the top term $\lambda_{0}(t)$ satisfies

(2) $F_{J}(\lambda_{0}(t), t)=0$

and the other $\lambda_{j}(\mathrm{t})(j\geq 1)$ can be determined in a recursive manner. Furthermore,
we can construct the following formal solutions $\lambda_{J}(t;\alpha, \beta)$ of $(P_{J})$ containing 2 free
parameters $(\alpha, \beta)$ :

(3) $\lambda_{J}(t;\alpha, \beta)=\lambda_{0}(t)+\eta^{-}\lambda 1/21/2(t, \eta)+\eta-1\lambda_{1}(t, \eta)+\cdots$ ,
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where $\lambda_{0}(t)$ is a solution of (2) and $\lambda_{j/2}(t, \eta)(j\geq 1)$ is of the following form:

$\lambda_{1/2}(t, \eta.)$
$=\mu_{J}(t)(\alpha\exp\Phi_{j}+\beta\exp(-\Phi_{j}))$ ,

$\lambda_{j/2}(t, \eta)$ $=$ $\sum_{k=0}^{j}b(j/2k-(j2))t\exp((j-2k)\Phi_{j})$ $(j\geq 2)$ ,

where
$\Phi_{J}(t, \eta)=\eta\int t\sqrt{\frac{\partial F_{J}}{\partial\lambda}(\lambda_{0}(s),S)}ds+\alpha\beta\log(\theta J(t)\eta^{2})$

and $\mu_{J}(t)$ and $\theta_{J}(t)$ are some appropriate functions of $t$ . (For their precise expres-
sions, see [T1].)

The construction of the 2-parameter formal solution $\lambda_{J}(t;\alpha, \beta)$ was first done in
[AKT2] by using the multiple-scale analysis. On the other hand, to discuss global
problems we need to analyze its behavior near fixed singular points of $(P_{J})$ and
for that purpose it is more convenient to employ another construction based on a
singular-perturbative reduction of the associated Painlev\’e Hamiltonian system to
its “Birkhoff normal form” (cf. [T2]). Here let us explain an outline of the latter
construction.

As is well-known, the Painlev\’e equation $(P_{J})$ is equivalent to the Painlev\’e Hamil-
tonian system

$(H_{J})$ $d\lambda/dt=\eta\partial K_{J}/\partial\nu$, $d\nu/dt=-\eta\partial K_{J}/\partial\lambda$

(cf., e.g., [O]). For this Hamiltonian system there exists a formal power series
solution $(\lambda_{J}^{(0)(}(t), \nu_{J}0)(t))$ corresponding to the solution (1) of $(P_{J})$ . We consider the
following localization of $(H_{J})$ at this formal power series solution:

(4) $\lambda=\lambda_{j}^{(0)}(t)+\eta-1/2U$, $\nu=\nu_{J}(0)(i)+\eta^{-}1/2V$,

that is, we transform the unknown function of $(H_{J})$ from $(\lambda, \nu)$ to $(U, V)$ . Then we
find that $(U, V)$ must satisfy another Hamiltonian system:

(5) $dU/dt=\eta\partial H_{J}/\partial V$, $dV/dt=-\eta\partial H_{J}/\partial U$.

The system (5) can be reduced to its “Birkhoff normal form” in a singular-perturbative
manner. To be more specific, we can prove

Proposition 1 There exists a formal canonical transformation $(U, V)\mapsto(\tilde{U},\tilde{V})$

of the form
(6) $\{$

$U$ $=$ $u_{0}(\tilde{U},\tilde{V})+\eta^{-1/2}u1(\tilde{U},\tilde{V})+\cdots$ ,
$V$ $=$ $v_{0}(\tilde{U},\tilde{V})+\eta^{-1/2}v1(\tilde{U},\tilde{V})+\cdots$ ,
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where $u_{j}$ and $v_{j}$ are $homogeneou\mathit{8}$ polynomials of degree $j+1$ in $(\tilde{U},\overline{V})$ (whose
coefficients are formal power series in $\eta^{-1/2}$ with coefficients being $funCtion\mathit{8}$ of $t$),
so that the Hamiltonian $sy\mathit{8}tem(\mathit{8})$ may be taken into the following normal form:
(7) $d\tilde{U}/dt=\eta\partial\tilde{H}_{J}/\partial\tilde{V}$, $d\tilde{V}/dt=-\eta\partial\tilde{H}_{J}/\partial\tilde{U}$ ,

where
(8) $\tilde{H}_{J}=\sum_{=l0}^{\infty}\eta-lf^{(l)}(t, \eta)(\tilde{U}\tilde{V})^{l+1}$

and each $f^{(l)}(t, \eta)=\Sigma_{j>0}\eta^{-}fj/2(l)(j/2t)i\mathit{8}$ a formal power series in $\eta^{-1/2}$ with coeffi-
cients being functions $\mathit{0}\overline{f}t$ . In particular, the following $equalitie\mathit{8}$ hold:

$f_{0}^{(0)}(t)=\sqrt{\frac{\partial F_{J}}{\partial\lambda}(\lambda_{0}(t),\mathrm{t})}$, $f_{1/2}^{(0})(t)=0$ .

Since the reduced Hamiltonian $\tilde{H}_{J}$ depends only on the product $\tilde{U}\tilde{V}$ , the system (7)
can be easily solved. As a matter of fac.t, the product $\tilde{U}\tilde{V}$ becomes independent of
$t$ and hence

(9) $\{$

$\tilde{U}=$ $\alpha\exp(\eta\int^{t}\sum\eta^{-l}(l+1)f(l)(s, \eta)(\alpha\beta)ldS)$

$\tilde{V}=$ $\beta\exp(-\eta\int^{t}\sum\eta^{-l}(l+1)f^{(l})(s, \eta)(\alpha\beta)^{l}dS)$

gives a solution of (7). Substituting (9) into (6), we can obtain formal solutions of
$(H_{J})$ with 2 free parameters.

The monodromy groups and Stokes multipliers of $(P_{J})$ should now be represented
as a transformation in the space of parameters $(\alpha, \beta)$ contained in the formal solution
$\lambda_{J}(t;\alpha, \beta)$ . In subsequent sections let us consider the problem: What is an explicit
description of such transformations?

3 Stokes multipliers of $(P_{\mathrm{I}})$

We first study the first Painlev\’e equation $(P_{\mathrm{I}})$ . In the case of $(P_{\mathrm{I}})t=\infty$ is the
unique singular point and it is of irregular-type. This implies that the monodromy
group of $(P_{\mathrm{I}})$ is trivial and hence it is sufficient to discuss the Stokes multipliers at
$t=\infty$ .

To compute the Stokes multipliers we apply the exact WKB analysis. The WKB-
theoretic structure of $(P_{\mathrm{I}})$ is quite simple; there exists only one turning point at the
origin $t=0$ and the Stokes curves consist of five straight lines $\{t|\arg t=\pi+2n\pi/5\}$

(where $n$ is an integer) emanating from the origin. These five lines divide the complex
$t$-plane into five sectors. Let us take a 2-parameter solution $\lambda_{\mathrm{I}}(t;\alpha, \beta)$ in one sector
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and consider its analytic continuation across a Stokes curve. Such an analytically
continued solution should, in general, have a different expression $\lambda_{\mathrm{I}}(t;\tilde{\alpha},\tilde{\beta})$ in an
adjacent sector and the relation between the parameters $(\alpha, \beta)$ and $(\tilde{\alpha},\tilde{\beta})$ amounts
to the Stokes multipliers of $(P_{\mathrm{I}})$ at $t=\infty$ .

To describe the relation explicitly we introduce some notations. Since there is no
essential distinction among the five Stokes curves due to the symmetry of $(P_{\mathrm{I}})$ , we
only discuss the problem on the Stokes curve $\gamma=\{t|\arg \mathrm{t}=3\pi/5\}$ . Let $\lambda_{\mathrm{I}}(t;\alpha, \beta)$

be a solution of $(P_{\mathrm{I}})$ in the sector $\{t|\pi/5<\arg t<3\pi/5\}$ and $\lambda_{\mathrm{I}}(t;\tilde{\alpha},\tilde{\beta})$ its analytic
continuation across $\gamma$ . Let $a$ (resp., $b$) denote $\alpha e^{4i\pi\alpha\beta}$ (resp., $\beta e^{-4i\beta}$)$\pi\alpha(\tilde{a}$ and $\tilde{b}$ are
defined similarly) and let us define $S_{j}(a, b)$ and $\tilde{S}_{j}(\tilde{a},\tilde{b})$ by

(10) $\{$

$S_{1}(a, b)$ $=ie^{-i\pi E/}-2ibe^{-}i\pi E/_{\chi(E}2-)$ ,
$S_{2}(a, b)$ $=$ $-ae^{i\pi E}/4x(E)$ ,
$S_{3}(a, b)$ $=ib\chi(-E)$ ,
$S_{4}(a, b)$ $=$ $ie^{-i\pi E/2}+ae^{-i\pi E}/4x(E)$ ,
$S_{5}(a, b)$ $=ie^{i\pi E/2}$ ,

(11) $\{$

$\tilde{S}_{1}(\tilde{a},\tilde{b})$ $=$
$ie^{-i\pi\tilde{E}/2}$ ,

$\tilde{S}_{2}(\tilde{a},\tilde{b})$ $=ie^{i\pi\tilde{E}/2}-\tilde{a}e^{i\pi\tilde{E}}\chi/4(\tilde{E})$ ,
$\tilde{S}_{3}(\tilde{a},\tilde{b})$ $=i\tilde{b}\chi(-\tilde{E})$ ,
$\tilde{S}_{4}(\tilde{a},\tilde{b})$ $=$ $\tilde{a}e^{-i\pi\tilde{E}}/4x(\tilde{E})$ ,
$\tilde{S}_{5}(\tilde{a},\tilde{b})$ $=ie^{i\pi\tilde{E}/2}-i\tilde{b}e^{i}\chi\pi\tilde{E}/2(-\tilde{E})$ ,

where $E=-8ab=-8\alpha\beta,\tilde{E}=-8\tilde{a}\tilde{b}=-8\tilde{\alpha}\tilde{\beta}$ and $\chi(z)$ denotes $\sqrt{\pi}2^{z/4+1}/\Gamma(z/4+1)$

($\Gamma(z)$ : the Gamma function). T.hen an explicit description of the $\mathrm{S}\mathrm{t}\mathrm{o}$.kes multiplier
on $\gamma$ is given by the following

Proposition 2
(12) $S_{j}(a, b)=\tilde{S}_{j}(\tilde{a},\tilde{b})$ ,

that is,
(13) $S_{j}(\alpha e, \beta 4i\pi\alpha\beta e^{-})4i\pi\alpha\beta=\tilde{S}_{j}(\tilde{\alpha}e,\tilde{\beta}4i\pi\tilde{\alpha}\overline{\beta}e-4i\pi\tilde{\alpha}\tilde{\beta})$

$(j=1,2,3,4,5)$ .

(Concerning previous results for the Stokes multipliers of $(P_{\mathrm{I}})$ , see [JK], [KK] etc.)
If we conventionally define $S_{j}(a, b)$ (resp., $\tilde{S}_{j}(\tilde{a},$ $\tilde{b})$) for every integer $j$ by requir-
ing $S_{j+5}(a, b)=S_{j}(a, b)$ (resp., $\tilde{S}_{j+5}(\tilde{a},\tilde{b})=\tilde{S}_{j}(\tilde{a},$ $b)$ ), we find the following cyclic
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relations:

$1+s_{j-1}(a, b)s_{j}(a, b)+iS_{j+2}(a, b)$ $=$ $0$ ,
$1+\tilde{S}_{j-1}(\tilde{a},\tilde{b})\tilde{s}_{j}(\tilde{a},\tilde{b})+i\tilde{s}_{j+2}(\tilde{a},\tilde{b})$ $=$ $0$ ,

$(j=0, \pm 1, \pm 2, \ldots)$ . These relations imply that among the five relations (13) only
two of them are independent. Hence, when $(\alpha, \beta)$ is given, the relations (13) deter-
mine $(\tilde{\alpha},\tilde{\beta})$ almost completely.

Remark The Stokes multiplier on the other Stokes curves is described as follows:

$S_{j}(\tau^{k}(a, b))=\tilde{S}_{j}(\tau^{k}(\tilde{a},\tilde{b}))$ $(j=1,2,3,4,5)$ ,

where $k$ is an appropriately chosen integer which depends on the Stokes curve in
question and $T$ is a linear transformation (in the space of parameters $(a,$ $b)$ ) defined
by $T(a, b)=(-ib, -ia)$ .

Let us explain just a sketch of the $\mathrm{p}\mathrm{r}\dot{\mathrm{o}}$ of of Proposition 2 here. A key idea is the
relationship between $(P_{\mathrm{I}})$ and isomonodromic deformations of some linear equation
of the form
(14) $(- \frac{\partial^{2}}{\partial x^{2}}+\eta Q2\mathrm{I}(X, t, \lambda, \nu, \eta)\mathrm{I}^{\psi \mathrm{o}}=\cdot$

(Cf. [JMU], $[0]$ etc.) As a matter of fact, $(P_{\mathrm{I}})$ (more precisely, $(H_{\mathrm{I}})$ ) describes
the condition that the Stokes multipliers of (14) should be independent of $t$ . By
using the exact WKB analysis we can compute them in an explicit manner and
consequently we find that $S_{j}(a, b)$ and $\tilde{S}_{j}(\tilde{a},\tilde{b})$ are nothing but the Stokes multipliers
of (14) when $t$ belongs to the sectors $\{t|\pi/5<\arg \mathrm{t}<3\pi/5\}$ and $\{t|3\pi/5<\arg t<$

$\pi\}$ respectively (cf. [T1]). Then the relation (12) immediately follows from the
isomonodromy property mentioned above.

4 Connection problem for $(P_{J})$

For the other Painlev\’e equations we have not yet obtained the final results. In this
section we report our present situation and some intermediate results.

In the WKB-theoretic computation of monodromy groups of second-order linear
ordinary differential equations the following ingredients play an important role (cf.
[AKTI] $)$ :

(i) Stokes geometry, i.e., configuration of turning points and Stokes curves,

(ii) Connection formula at a (simple) turning point,
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(iii) Local behavior of WKB solutions at a (regular) singular point.

The situation is more or less the same for Painlev\’e equations; we are required to
analyze the above three properties for $(P_{J})$ . As is shown in [KT2], we know that
$(P_{\mathrm{I}})$ gives a normal form at a simple turning point for any $(P_{J})$ . To be more
specific, any 2-parameter solution $\lambda_{J}(t;\alpha, \beta)$ of $(P_{J})$ is transformed to a 2-parameter
solution $\lambda_{\mathrm{I}}(t;\alpha^{J}, \beta’)$ of $(P_{\mathrm{I}})$ near a simple turning point. This result implies that the
connection formula for $\lambda_{J}(t;\alpha, \beta)$ at a simple turning point should, in principle, be
obtained by Proposition 2. (Note that the relation (13) can be regarded as the
connection formula for $\lambda_{\mathrm{I}}(t;\alpha, \beta)$ at the turning point $t=0.$) In this sense the
property (ii) has been well investigated for $(P_{J})$ . We can also analyze the property
(i) by numerical computations (though we have not yet tried seriously). Thus, what
remains to be analyzed is the property (iii).

Concerning the local behavior of $\lambda_{J}(t;\alpha, \beta)$ at a regular-type fixed singular point
of $(P_{J})$ , let us consider the following particular case here: As a singular point we
take $t=0$ of $(P_{\mathrm{V}\mathrm{I}})$ . Further we take a solution $\lambda_{0}(t)$ of $F_{\mathrm{V}\mathrm{I}}(\lambda_{0}(t), t)=0$ with the
local behavior $\lambda_{0}(t)=a_{1}t+a_{2}t^{2}+\cdots$ (where $(1-1/a_{1})^{2}=c_{t}/c_{0}$) near $t=0$ and
the corresponding 2-parameter solution $\lambda_{\mathrm{V}\mathrm{I}}(t;\alpha, \beta)$ of $(P_{\mathrm{V}\mathrm{I}})$ which is obtained by
solving the reduced system (7)$-(8)$ and by substituting its solution (9) into (6) and
(4). Then, for the local behavior of the reduced system (7)$-(8)$ we can prove the
following

Proposition 3 Every $f^{(l)}(t, \eta)$ in (8) has a simple pole at $t=0$ and

(15)

(Cf. [T2].) Proposition 3 indicates that the solution $\lambda_{\mathrm{V}\mathrm{I}}(t;\alpha, \beta)$ has a similar behav-
ior at $t=0$ with the following local convergent solution constructed by Takano (cf.
[Tka] $)$ :

$\lambda(t;c_{12}, C)=\sum_{kj,\geq 0}ajk(t)(c_{1}t\kappa_{1}+\hslash_{2C}1c_{2})^{j}(c_{2}t^{-}\hslash 1-\kappa 2c1C_{2})^{k}$

( $\kappa_{1}$ and $\kappa_{2}$ are some fixed constants determined by the equation and $c_{1}$ and $c_{2}$

are free parameters). This also suggests that our 2-parameter solutions $\lambda_{J}(t;\alpha,\beta)$

of $(P_{J})$ should have a nice structure at regular-type fixed singular points just like
WKB solutions in the case of linear equations. However, our investigation is not
sufficient to conclude that; we have several equations, several singular points, and
several families of 2-parameter solutions (according to the choice of solutions of
$F_{J}(\lambda_{0}(t), t)=0)$ . More complete description of the local behavior of $\lambda_{J}(t;\alpha, \beta)$ at
fixed singular points will be discussed in our forthcoming papers.
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