On the uniqueness theorem for nonlinear singular partial differential equations

田原 秀敏 (Hidetoshi TAHARA) (Dept. of Math., Sophia University, Tokyo)

In this note, I will discuss the uniqueness of the solution of nonlinear singular partial differential equations

$$(t\partial/\partial t)^m u = F(t, x, \{(t\partial/\partial t)^j (\partial/\partial x)^\alpha u\}_{j+|\alpha| < m, j < m}).$$

Notations. $t \in C$, $x = (x_1, ..., x_n) \in C^n$, $N = \{0, 1, 2, ...\}$, $N^* = \{1, 2, ...\}$, $m \in N^*$, $j \in N$, $\alpha = (\alpha_1, ..., \alpha_n) \in N^n$, $|\alpha| = \alpha_1 + ... + \alpha_n$,

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n},$$

and $N = \#\{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n; j + |\alpha| \leq m \text{ and } j < m\}$. We denote by $\mathcal{R}(\mathbb{C} \setminus \{0\})$ the universal covering space of $\mathbb{C} \setminus \{0\}$.

§1. Equations and assumptions.

Let

$$t \in \mathbf{C}, \quad x = (x_1, \dots, x_n) \in \mathbf{C}^n, \quad Z = \{Z_{j,\alpha}\}_{j+|\alpha| \le m, j < m} \in \mathbf{C}^N,$$

and let F(t, x, Z) be a function in (t, x, Z). In this note I will discuss the uniqueness of the solution of the following equation

(E)
$$\left(t\frac{\partial}{\partial t}\right)^m u = F\left(t, x, \left\{\left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^\alpha u\right\}_{j+|\alpha| \le m, j \le m}\right)$$

with an unknown function u = u(t, x).

The main assumptions are as follows:

(A₁) F(t, x, Z) is holomorphic in a neighborhood of (t, x, Z) = (0, 0, 0);

$$(A_2)$$
 $F(0, x, 0) \equiv 0 \text{ near } x = 0;$

(A₃)
$$\frac{\partial F}{\partial Z_{j,\alpha}}(0,x,0) \equiv 0 \text{ near } x=0, \text{ if } |\alpha|>0.$$

We denote by $\lambda_1(x), \ldots, \lambda_m(x)$ the roots of the equation in λ :

$$\lambda^{m} - \sum_{j < m} \frac{\partial F}{\partial Z_{j,0}}(0, x, 0)\lambda^{j} = 0$$

and call them the characteristic exponents of (E).

Examples. The followings are typical examples of our equation:

(1)
$$t\frac{\partial u}{\partial t} = \lambda u + u(\frac{\partial u}{\partial x}),$$

(2)
$$\left(t\frac{\partial}{\partial t}\right)^2 u = 3u\left(\frac{\partial^2 u}{\partial x^2}\right),$$

(3)
$$\left(t\frac{\partial}{\partial t}\right)^2 u + \left(t\frac{\partial}{\partial t}\right) u = (2u + x + 1)\left(\frac{\partial u}{\partial x}\right)^2$$
.

§2. Some results by Gérard-Tahara (1993).

Gérard-Tahara [2] proved the following result on the existence of holomorphic solutions.

Theorem 1 (holomorphic solutions). Assume (A_1) , (A_2) and (A_3) . If $\lambda_i(0) \notin \{1, 2, 3, \dots\}$ for $i = 1, \dots, m$, the equation (E) has a unique holomorphic solution u(t, x) near the origin of $\mathbb{C} \times \mathbb{C}^n$ satisfying $u(0, x) \equiv 0$.

Moreover, about the uniqueness of the solution of (E), Gérard-Tahara [2] has proved Theorem 2 below.

Definition 1. We denote by S_+ the set of functions u(t, x) satisfying the following: u(t, x) is a holomorphic function on $\{(t, x) \in \mathcal{R}(\mathbb{C} \setminus \{0\}) \times \mathbb{C}^n ; 0 < |t| < \varepsilon, |\arg t| < \theta \text{ and } |x| \le \delta \}$ for some $\varepsilon > 0, \theta > 0, \delta > 0$ and satisfies

$$\max_{|x| \le \delta} |u(t, x)| = O(|t|^a) \text{ (as } t \longrightarrow 0)$$

for some a > 0.

Theorem 2 (Uniqueness of the solution). Assume (A_1) , (A_2) and (A_3) . If

$$\operatorname{Re} \lambda_i(0) \leq 0 \quad (i = 1, \dots, m)$$

holds, the uniqueness of the solution of (E) is valid in S_+ .

Since in this case the equation (E) has a unique holomorphic solution, the above uniqueness theorem yields .

Corollary. Assume $(A_1),(A_2),(A_3)$ and

Re
$$\lambda_i(0) \leq 0 \quad (i = 1, \dots, m).$$

Then, if u(t,x) is a solution of (E) belonging to S_+ , u(t,x) is holomorphic in a neighborhood of the origin.

Thus, from the uniqueness theorem we can get the result on removable singularities of the solution of (E).

§3. New uniqueness theorem.

3.1. Class of solutions.

A function $\mu(t)$ on (0,T) is called a weight function if it satisfies the following conditions $\mu_1 \sim \mu_4$:

- μ_1) $\mu(t) \in C^0((0,T)),$
- μ_2) $\mu(t) > 0$ on (0,T) and $\mu(t)$ is increasing in t,
- μ_3) $\int_0^T \frac{\mu(s)}{s} ds < \infty$,
- μ_4) $\mu(t+ct) = O(\mu(t))$ (as $t \longrightarrow +0$) for some c > 0.

By μ_2) and μ_3) the condition $\mu(t) \longrightarrow 0$ (as $t \longrightarrow +0$) is clear. The following functions are typical examples:

$$\mu(t) = t^a, \frac{1}{(-\log t)^b}, \frac{1}{(-\log t)(\log(-\log t))^c}$$

with a > 0, b > 1, c > 1.

Definition 2. For a > 0, we denote by $S_a(\mu(t))$ the set of functions u(t,x) satisfying the following: u(t,x) is a holomorphic function on $\{(t,x) \in \mathcal{R}(\mathbf{C} \setminus \{0\}) \times \mathbf{C}^n ; 0 < |t| < \varepsilon, |\arg t| < \theta \text{ and } |x| \le \delta \}$ for some $\varepsilon > 0$, $\theta > 0$, $\delta > 0$ and satisfies

$$\max_{|x| \le \delta} |u(t,x)| = O(\mu(|t|)^a) \text{ (as } t \longrightarrow 0).$$

Remark 1.

$$\mathcal{S}_{+} = \bigcup_{a>0} \mathcal{S}_{a}(\mu(t) \equiv t).$$

Note that $\mu(t) \equiv t$ is a weight function.

3.2. A conjecture.

About the uniqueness of the solution of (E) in $S_a(\mu(t))$, I have one conjecture:

Conjecture. Assume (A_1) , (A_2) and (A_3) . Let $\mu(t)$ be a weight function. If

Re
$$\lambda_i(0) \le 0 \quad (i = 1, ..., m)$$

holds, the uniqueness of the solution of (E) is valid in $\mathcal{S}_m(\mu(t))$.

In the case m=1 this is already proved (see [1]). But in the case $m\geq 2$ this is still open. In the next section I will report a weaker result.

3.3. A weaker result.

Theorem A ([5]). Assume (A_1) , (A_2) and (A_3) . Let $\mu(t)$ be a weight function. If

$$\operatorname{Re} \lambda_i(x) \leq 0 \quad (i = 1, \dots, m)$$

holds in a neighborhood of x = 0, the uniqueness of the solution of (E) is valid in $S_m(\mu(t))$.

Example 1. Let us consider

$$(e_1) \qquad \qquad \left(t\frac{\partial}{\partial t}\right)^2 u = 3u\left(\frac{\partial^2 u}{\partial x^2}\right)$$

where $(t, x) \in \mathbb{C}^2$. The characteristic exponents are $\lambda_1 = 0$ and $\lambda_2 = 0$. In this case we have:

- 1) $u(t,x) \equiv 0$ is the unique holomorphic solution of (e₁) under the condition $u(0,x) \equiv 0$.
- 2) By Theorem A we see that the uniqueness of the solution of (e_1) is valid in $S_2(\mu(t))$ for any weight function $\mu(t)$.
- 3) Since $S_a(\mu(t)) \subset S_2(\mu(t))$ holds for $a \geq 2$, the uniqueness of the solution of (e_1) is valid in $S_a(\mu(t))$ for any $a \geq 2$ and any weight function $\mu(t)$.
 - 4) Note that (e₁) has a family of non-trivial solutions

$$u(t,x) = \frac{x^2 + \alpha x + \beta}{(C - \log t)^2}$$
 $(\alpha, \beta, C \in \mathbf{C}).$

This implies that if 0 < a < 2 the uniqueness is not valid in $S_a(\mu(t))$ for $\mu(t) = 1/(-\log t)^c$ with $1 < c \le 2/a$.

3.4. Another uniqueness theorem.

In case $S_a(\mu(t))$ with a < m, what happen? About this we have:

Theorem B ([4],[5]). If for some p with $0 \le p \le m-1$ the characteristic exponents of (E) satisfy

$$\begin{cases} \operatorname{Re} \lambda_i(x) \leq 0 & \text{for } i = 1, \dots, p, \\ \operatorname{Re} \lambda_i(0) < 0 & \text{for } i = p + 1, \dots, m \end{cases}$$

in a neighborhood of x = 0 and if a > p, then the uniqueness of the solution of (E) is valid in $S_a(\mu(t))$.

Example 2. Let us consider

(e₂)
$$\left(t\frac{\partial}{\partial t}\right)^2 u + \left(t\frac{\partial}{\partial t}\right) u = (2u + x + 1) \left(\frac{\partial u}{\partial x}\right)^2$$

where $(t, x) \in \mathbb{C}^2$. The characteristic exponents are $\lambda_1 = 0$ and $\lambda_2 = -1$. In this case we have:

- 1) $u(t,x) \equiv 0$ is the unique holomorphic solution of (e₂) under the condition $u(0,x) \equiv 0$.
- 2) By Theorem B we see that if a > 1 the uniqueness of the solution of (e₂) is valid in $S_a(\mu(t))$ for any weight function $\mu(t)$.
 - 3) Note that (e₂) has a family of non-trivial solutions

$$u(t,x) = \frac{x+1}{(C-\log t)}$$
 $(C \in \mathbf{C}).$

This implies that if 0 < a < 1 the uniqueness is not valid in $S_a(\mu(t))$ for $\mu(t) = 1/(-\log t)^c$ with $1 < c \le 1/a$.

4) In the case a=1 it is still unknown whether the uniqueness of the solution of (e₂) is valid in $S_1(\mu(t))$ for any weight function or not.

References

- [1] R. Gérard and H. Tahara: Holomorphic and singular solutions of non-linear singular first order partial differential equations, Publ. RIMS, Kyoto Univ. 26 (1990), 979-1000.
- [2] ——: Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. RIMS, Kyoto Univ. 29 (1993), 121-151.
- [3] ——: Singular nonlinear partial differential equations, Aspects of Mathematics, E 28, Vieweg, 1996.
- [4] H. Tahara: Uniqueness of the solution of non-linear singular partial differential equations, J. Math. Soc. Japan, 48 (1996), 729-744.
- [5] —— : On the uniqueness theorem for nonlinear singular partial differential equations, preprint.