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On some additive problerhs with primes and almost-primes

T. P. Peneva

§1. Introduction and statement of the result.

In 1937 I. M. Vinogradov [11] solved the ternary Goldbach problem proving that for
every sufficiently large odd integer N the equation

Pr+pa+ps=N ' B G))

has solutions in prime numbers p;, p2, ps.

Two years later van der Corput [3] used the method of I. M. Vinogradov and estab-
lished the existence of infinitely many arithmetic progressions of three different primes.
A corresponding result for progressions of four or more primes has not been proved yet.
In 1981, however, D. R. Heath-Brown [4] proved that there exist infinitely many arith-
metic progressions of four different terms, three of which are primes and the fourth is P,
(as usual P, denotes an integer with no more than r prime factors, counted according to
multiplicity).

Another famous and still unsolved number theory problem is the so-called prime twins
conjecture, which asserts that there exist infinitely many primes p, such that p+ 2 is also
a prime. The most-important achievement in studying this problem is due to Chen [2].
In 1973 he proved that there exist infinitely many primes p, such that p + 2 is P;.

In 1997 D. I. Tolev and the author [8] applied the Hardy-Littlewood circle method and
the Bombieri~Vinogradov theorem as well as some arguments belonging to H. Mikawa,
and proved that there exist infinitely many non-trivial arithmetic progressions of three
primes, such that for two of them, p; and p,, say, both the numbers p; + 2, p, + 2 are
almost—primes.

Later D. I. Tolev [9] obtained an extension of the above result by applying the vector
sieve developed by Iwaniec [5] and used also by Briidern and Fouvry [1]. He established
that the equation

P1+p2 = 2p3

has infinitely many solutions in different primes p;, ps, ps, such that p; + 2 = P,
p2+2=P5’,p3+2=P8.

Here we study the solvability of the equation (1) in primes p;, ps, p3, such that p; +2,
P2 + 2, p3 + 2 are almost—primes. We follow the approach of [9] putting emphasis on the
examining of the main term where we apply some arguments of [1] (for the other details
the reader may refer to [9]).

Our main result is the following
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Theorem. Suppose that N = 3 (mod 6) is a sufficiently large integer. Then there exist

infinitely many solutions of the equation (1) in primes p1, p2, ps, such that py +2 = P, -
p2+2=P5’7 p3+2=P8-

In fact, the proof yields that for some constant ¢y > 0 there are at least coN2(log N)~6
triplets of primes pq, pa, ps, satisfying (1) and such that for any prime factor p of p; + 2
or py + 2 we have p > N9%67 and for any prime factor p of p; + 2 we have p > NO16 -~
Notice that if N is a sufficiently large odd integer, not satisfying the hypothesis of the
Theorem, then for any solution of (1) we have 3| py pa p2 (D1 +2) (D2 +2) (p2+2). Therefore,
by modifying slightly the given proof, we may obtain that for such IV the equation (1)
has infinitely many solutions in primes p;, ps, ps, such that p; +2 = P, ps + 2 = F,
ps + 2 = Py. Here the extra prime factor in P, is 3.

Recently H. Mikawa (unpublished result) used the theory of ” well-factorable” functions
and showed that the power of N in the quantity D; (for the definition see formulas (2))
can be taken to be equal to 4/9 instead of 1/3. This enables us to prove the Theorem

We should also mention that by applying the method of [9], D. I. Tolev [10] proved
that if NV is a sufficiently large integer satisfying the congruent condition N = 5 (mod 24)
then the equation

PP +pi+pi+pi=N
has infinitely many sollutions in prime numbers p;, p2, p3, P4, ps such that each of the

numbers p; + 2, p2 + 2, p3 + 2 and ps + 2 has at most 6 prime factors and ps + 2 has at
most 7 prime factors.

§2. Notations.

Let N be a sufficiently large integer, such that N = 3 (mod 6) and o4, ag, a3 —
constants satisfying 0 < a;, as < 1/4, 0 < a3 < 1/6, which we shall specify later.

We put
z=N%, i=1,2,3, 2o = (log N)19%° = " Dy = exp ((log N)°) ,

Dy = Dy = N'2exp (—2(log N)*%), D3 = N"3exp (- 2(log N)*f), 2)

P(z) = H p, P(z0,2) = H P, 1=1,2,3.

2<p<20 205p<z;

Letters m, n, d, I, k, h, §, v, t, p denote integers; p, pi, Pg,...— prime numbers.
As usual u(n), ¢(n) and 7(n) denote Mébius’ function, Euler’s function and the number
of positive divisors of n, respectively; (my,...,my) and [m;,...,my] denote the greatest
common divisor and the least common multiple of m;,...,mk. Instead of m = n(mod k)
we write for simplicity m = n(k). The notation p*||n means that p*|n and p**' Jn. For
positive A and B we write A< B instead of AKX B<K A.
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For squarefree odd integers k;, ko, k3 and prime p we denote

Ty e es (N) = > log p1 log p2log ps , (3)

pr1+pa+pz=N
pi+2=0(k;) , i=1,2,3

[ 1/(p—1)> if p [kikoks, pIN;

~1/(p—1* if p [kiksks, p|N;

“1//((27— 1))2 ig P ”klkzllzs, P/I{’N-f-z;

_ 1 p—]. i D klkg 3, pN+2;

hk1,k2,k3(p) =9 1/(p___ 1) if p2||k1k2k3, p,{’N+4; (4)
-1 if pPllkikoks, p|N+4;

-1 if pPllkikoks, pIN +6;

L p—l if p3”k1k2k3, p|N+6;

. 1+ hiy ko k (P) | w(kl,kz,k3)
w(ky, ko, k3) = Ll A Q(ky, kg, k3) = : , (5
(s B ) p]k}lka 1+ hy1a(p) " (1, b ka) (k1) (k) (ks) (5)
s(V) =] (1+—1 5) [1(1—-—*—---——1 5) - (6)‘
vp,(N (p - 1) pIN (p - 1)
§3. Outline of the proof.
Consider the sum
= Z - logpilogpslogps .
p1+p2+p3=N

(pi+2»P(zi))=1’ i=1,2,3

Any non-trivial estimate from below of I' implies the solvability of (1) in primes, such
that p; + 2= Py, , h;=[0;'], i=1,2,3. We see that

I'= Y logplogpslogps AAsAsAgAsAg ,

p1+p2+p3=N
where
DY u(d) for i=1,2,3,
A _ | Ao iR
v pu(d) for i=4,5,6.
\ d|(p;—3+2,P(20))
Denote

( > ME(d) for i=1,2,3,
A:l: _ dl(pi+2,P(z0’zi)) (7)
el Me(d) for i=4,5,6;

\ d|(pi-3+2,P(20))
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where \f(d) are the Rosser’s weights of order D; , 0 < i < 3 (see Iwaniec [6], [7]). In
particular, we have

M@ <1, AE(d) =0 for d > D;, 0<i<3. (8)
We find that
Ay SASAf,  1<i<6

(for the proof see [7]). Consequently we may apply Lemma 3 of [9], which is the analogue
of Lemma 13 of [1], and we get

r>r,, ()

where

To= Y. logpilogpelogps (ATAFATATATAS+
p1+pa+ps=N

FATAGATATATAY + -+ + AFATATATAT A — BATATATATATAY) .
We use (3), (7) and change the order of summation to obtain

FO = Z K’(dla d2) d37 61) 62, 63) Id151,d262,d363 (N) 3 | (10)

di|P(20,2:) , i=1,2,3
61'.IP(ZO) y 1=1,2,3

where

Kf(dh d27 d3a 611 621 63) = )‘i— (dl)A;(dz)A;(d?)))‘a- (61)>‘3—(52)}‘3- (63)
B eSS O
+ A (d0)2g (d2)A3 (da) A (81)A5 (82)Aq (6)
—  5AT(d1)A3 (d2) A3 (da) A (81) A5 (82)Ag (6s) - (11)
By applying the Hardy-Littlewood circle method we find an asymptotic formula for

the sum Iy, k, k, (V) which we substitute in (10). Proceeding in the same way as in Lemma
11 and Lemma 13 of [9] we derive

N2
To=1N?6(N)W + 0O <log4 N) , (12)

where &(N) is defined by (6) and
W = ) k(dy, da, ds, 61, 63, 83) Q(d161, daba, dsbs) - (13)

d;|P(z0,2:) , i=1,2,3
&|P(z0) , i=1,2,3

By (4) it is obvious that for squarefree odd integers k1, k2, k3 we have

hi11(p) if p fkikoks ;

) hpaa(p) i p [|kikeks ;
hkhkz,ka(p)"' hp,p,l(p) if p2||k1k2k'3;
hp,p,p(i”) if P3||k1k2k3-

(14)
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Define ’ - '
wl(p) = w(pa 1, 1) ’ w2(p) = w(p, b, 1) 3 w3(p) = w(p>p,p) . ’ (15)

It is clear that if p > 2 then

( 1 if p|N; ( 5{—; if p|N;
wip)={ Foks i PIN+2; wp)={ 0 if p|N+4;
' —_ — . —~1)2 .
| BEER i pIN(N+2); | #m i PNV +4)
(16)
4 if p=3;
ws(p) =4 AHks if p|N+6, p>3;
0 if pfN+6.
By (4), (5), (14), (15) we get
wlky, by ks) =[] wu(D). (17)
p¥||k1koks .
1<v<3

The next statement is the analogue of Lemma 12 of [1]. The Lemma follows easily
from (16), (17).

Lemma 1. For squarefree odd k, let
w*(k) = [Jwi(p)
plk

If ki, ko, ks is a triplet of integers, we put klg = (k1, ko), k1,3 = (K1, ks), ko3 =
(kg,k;;) Then .

(i) there exists a function g of the three variables k; j, such that for any squarefree odd
k1, ko, k3 we have

w(k1, ko, ks) = w* (k1) w*(ka) w*(ks) g9(k1,2, k1,3, k2,3)

and .
9(k12, k13, ko,3) < 10 (max k; ) ;

(i) for any squarefree odd ky, k2, ks we have the inequality

w(ky, k2, k3) < 10 & (k1) w(ke) w(ks) ,
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where @(m) is the multiplicative function defined on squarefree odd m by

N 2 if p/N+6;
“(p) = {2p1/3 if p|N+6.

Suppose that the integers d,ds,ds, d1,08;, 03 satisfy the conditions 1mposed in (13).
Using (5) and (17) we easily get

~/ 1 C 1 < 7 ¢\ /1 1 7 le Y4

3N\ C < [ oY
36(U101, U202, U303 ) = sL\U1, U2,U3) 1LV, U2,U3) -

Note that (61, 62,83) is a symmetrical function with respect to 6;, 65, 63. Hence, we
obtain by (11), (13)

6
W = ZLZH'L - 5L7H7 N ) (18)
i=1
where
L = Z AT (d1)AS (d2) A3 (d3)U(dy, da, d3)
: diIP(Zo,Zi) ,1=1,2,3
L, = > A )M ()] (ds)Adh, da, ds)
di|P(z0,2;) , i=1,2,3
Ly = Yo X ()M (d2)A5 (da)2(ds, da, ds)
di|P(20,2i) , 1=1,2,3
Li=Ls=Le=1L; = S AN (d2)M (ds)dy, day ds)
diIP(ZOrzi) ,1=1,2,3
Hy=Hy=Hy=H; = S ()M (5)A (63)Q(61, 62, 83)
6i|P(ZO) ,1=1,2,3
H4 = H5 = Hs = Z ) )\6(61)A3_(52))\3'((53)Q(51,52, 53) .

61'“3('30) , 1=1,2,3
It is easy to prove the following \

Lemma 2. Suppose that ¢(ny,na,n3) is a function defined on the set of integers and such
that for any two triplets ny, ny, nz and ly, by, I3, satisfying (ninens, lilols) = 1, we have
d(n1ly, noly, n3ls) = ¢(ny, no,ns) ¢(l1, la, ls) . Then the function

®(n)= D ¢(d1,dy,ds)

dy,dz2,d3|n
is multiplicative.

Applying Lemma 1 and Lemma 2 we find asymptotic formulas for the sums H;. Define

HW = 5 pu(61) p(ba) u(bs) b1,62,63) - (19)

6;|P(z0) , i=1,2,3
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Lemma 3. We have
H;=H® £ O(logN)™), 1<:i<7,
and

H® < (log 2)~2 . (20)

Now we are able to estimate from below the quantity W, defined by (18). We put

wi(p)y log D; :
f(Zo,Z,;)= 1 - — , S; = y Z=1,2,3, (21)
ZOSI;‘[KZ,' ( b— 1) ].Og 2

where w;(p) is defined by (16). Suppose that c¢* > 0 is an absolute constant and let
0;,s, i=1,2,3 satisfy

Or+0:+6s=1, 6;>0,  f(s)) —26:F(s;) >c*, i=1,23,

where f and F' are the functions of the linear sieve. Following the arguments in the proof.
of Lemma 15 of [9] it is easy to establish that

W > H® f[ F(z0,2;) (i (f(s:) = 26:F(s3)) + O ((log N)-l/a)) . (22)
' j=1 i=1
Finally, we choose
=0y =0167,  az=0116, 6 =0,=0345,  63=0.1
and compute that for sufficiently large N we have
f(s;) — 20,-F(s,-) >10"°, i=1,2,3. (23)
Therefore, using (2), (20)-(23) we get

1

W>>log3N '

The last estimate and (9), (12) imply
2

F -
. >>log3N’

which suffices to complete the proof of the Theorem.
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