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A new method to compute zeros of polynomials

REFHR (HipEO MUTO) * i%*‘%'iﬁ(Tomoﬁmo Svzukr)t
$ARMBRRK (TosHio SuzUKI)

1 Imtroduction

Let f(z) = 2 +a12P" ... + ap, ap # 0 be a polynomial with complex coefficients of orderp which has

distinct s zeros, that is, f(z) = H(z—zk)”". The root finding problem for f has a long history and many - .

k=1
kinds of methods are known. Among them the Newton’ s method (or its stable version) is most popularly

used because of its rapidness and rehablhty. We can see thousands of papers in McNamee’s on-line
blbhography available at http://www.elsevier.nl/local.cam, in which the general subject of polynomial

root finding is divided into 29 categories.
. f() 1 (=1 . . .
Putting ¢(z the r-th derivative ¢(")(z — ————f"——— is analysed in Henrici ([3]) as
84(2) = Fr5, @(z) = ; Ry PR y (B)
a formula to give an approximation of the nearest zero to z as r — co. On the other hand we consider

the Fourier coefficient T'(z, 7, m; f) of ¢(z) using m points on a circle in the complex plane with center
3
23

z and radius ||, satisfying the following representation formula: T'(z,7,m; f) = E W
k=1

will be proved in section 2. It is easy to see that T(z,7,m; f) as well as ¢(")(2) has information on the

, which

location of the nearest zero to z.

Our new method is considered to be derived from the error terms of the numerical integral of the

following integral:
f'(2)
27rz v F(z)

where T is a circle on the complex plane. It is well known that the integral (1.1) gives the number of

&, (1.1)

zeros of f enclosed in I'. Taking m points on I', we use a modified form of the numerical integral of (1.1).
If m is small then it has a large error as a numerical integral. But we can show in this paper that it has a
critical information on zeros of f. The main feature of our method is in giobal convergence which cannot

be realized in the simple Newton algorithm.
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- Because of the usage of the modified numerical integral, our theory may look like similar to the papers
(eg. Delves & Lynes [2]) in the category of ‘5. Integral method, esp. Lehmer’s’ at a glance. But the

values of it are used in quite different ways; Their methods use anyway the value of the numerical integral
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as accurate as possible while our method essentially needs the error of it. So, our new method dose not -

belong in any one of the 29 categories cited above. Among the 29 categories, only ‘2. Newton’s method’
has a relation with ours through the fact that, if the numerical integral in our method is carried out with
m=1, our inethod is essentially reduced to the Newton’s method.

In section 2, we study the basic theory, from which a,lgbrithms fof finding zeros of f are derived. We

can prove that our fundamental algorithm is generally convergent. Our algorithm for computing zeros-

are stated in two ways in section 3 with some remarks. The results of numerical experiments are shown
in section 4 with the fact that our method is comparable with the Newton’s method in its effectivity.

Concluding remarks are stated in section 5.

2 Basic theory

Let f be a polynomial of degree p with zeros 2, k = 1,- -, 5, of multiplicity ny. For A €C,7€C and

a positive integer m, we set 6 = 6, = 2& and define T'(\, 7,m; f) and S(A, 7, m; f) as follows:

. 78 ] 2m -1 A i85
T\, r,m;f) = Z f((’\i—rewj)e,gj’ S, r,m;f)= Z f((,\ :::m)) e2b7

Denoting v = 2z — A, we have the following lemma.

Lemma 2.1 If ™ 75 vit for all k, then we have T\, r,m; f) = Z g and S(A, 7, m; f) =

(-‘i)'"
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We can derive the second‘equa.lity by the similar way. il
Now we consider zeros of f. Put T = T(A, 7,m; f). Let z; be the nearest zero to A. 'Expressing that

A
= —-—ﬁ—l_(" yw + 6, we can solve z; = A 47 (T———l——}'f_d“a) ™. So if the parameters A, 7 and m can be set

properly so that § is small enough, then we have an approximation formula A + 7 ( I—},ﬂl)% for 2.

. - n | ng 1 — (&)™
Since T=Zl~(l)m= (J)m{1+2nk1_§_&§m}

k=2
- {2 () EER)

putting A = ’ Tk (-‘-/—l-)m -l——t&_:i);-, we have
k=2 n1 \Vk 1~ (71:) )

T-ny _ TRE O \™ -1

(1) {1+ (;1-) Ab 144y,

Choosing a proper branch in the complex plane, the following proposition is derived formally from this
equality .

.

. L ’
e ‘ T—ni\"™ — m 1T
Proposition 2.1 A+r( T ) n=n [(1 +( ) A) (1 +‘A)

Throughout this paper, let each zero of f be numbered according to the distance from A in the complex

- 1] _holds.

plane, that is, [11| < |v2| € -+ < |vs|. Here we have the following theorem.

- Theorem 2.1 If |r| < |v1| < |v3| then there exists a positive integer N such that, for all m > N, the
kY
" " T— m 16,
inequality |\ + r(—T"l) -z < —,—n}’-l—_j'%lﬁ- holds.
If ] < |7l < |v2| then there ezists a positive integer N such that, for all m > N, the inequality
T~ = 16 1% T2 ™
A+ 7 ()™ -z < —,;Fr:r;%;"ra - holds,

m
v
V2

1v2

" Proof It is easy to derive the inequality |A] < pl%lml_-l'f—fﬁ'v so we can choose an positive integer N
such that |A| < 1 for all m > N. First, we consider the case |7| < |v1| < |v3|. Since

- (_1:1&)-1- { [1 + (DA (- (DA + ]
[1+ —A+ ———(-— - 1)A2 ]}

-1 1 ‘ T
= ! (1~ ___m Il Sl — (—)2m A2 }’
we have, for m > N, '

A+ (T;";)# -—Z1|.= 2y <1+(1—2—)"‘A)% (T—-:—A)m -1




1 1 1 :

< | ———— { Z2JA| + —2|A]2 }
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1
As for the case || < |7| < |va|, considering that A = Z - (——) , and |(1 - (&)™Al <

(”k )m

2!-——[’" JA|, we can prove the second inequality by the sumlar way for the first case. il

Remark 2.1 Since the measure of the set {A € C||v1| = |v2|} is equal to zero, the sequence {\p, =
s

At T (Tﬂ'} T";’Z',',f‘,}'"‘) with |r,| < |V1l for each m} converges to z; for almost all A € C.

Remark 2.2 Let C be a circle with center A and radius |7], then we have

llmDo T(A,7,m; f) = 27rz ';'((z))dz and hm S rym; f) = 27”% f,(z.)f((i’)”~ A)d

provided that no zero of f is situated on C. We should note that the first one is zero or ny correspondmg

to the cases: |r] < |V1| or IV1| <l < |l

- v 1= |
Put A= —kzﬂ (_k.)m’ B = kz;él T (_h)m dC = - e Then we have the following

proposmon directly from Lemma 2.1.

e o S\ _ . wnA-B
Proposn;mn 2.2 2y = ()t + T) =C 1-C4 holds.

Theorem 2.2 Assume that o polynomzal J(z) satisfies the followzng conditions (1)-(4): (1) 0 < |z1—
ALl < 7, (2) mingg1jzx — A > R2 > 7, (3) R3 > maxy Izk -}, (4) (E—)"‘ < (2—}-,—_—-. Then, putting
k = max{|7|, |21 — M|}, we have
- 8 2p(Rs + &) ( K )”’
n—-A+ )< - —-—) .
| I 1 ( T)t—ll_(zp_l)(}%_)m R,
Proof From the definitions of A, B and C we have :
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And
|Av, = B|
= ICTIA] -
|vi] + Rs -1 17 \m-
< — N ) ——
=TI - nl)—g—l( T R

2p(|V1| + R3) ( )
1-(2p-1)(g)™ Ra

l2s = (A + )I <ICl3

e |

IA

Remark 2.3 The second case of Theorem 2.1 is not easy to check, so A + —% can be used as a comple-

mentary value for that case.

3 Algorithms for finding zeros of f

In this section we prop'osé algorithms to compute zeros of f, based on the theory de.veloped in the
preceding section. We assume hereafter that the numerical computation in our algbrithm is carried out
under double precision arithmetic of 16 decimal places. We set a value € such that if |f(z)] < & then z is
considered to be a zero of f numerically. ‘
For almost all fixed A € C, we can get z; by the following algorithm as is stated in Remark 2.1.

Algorithm 1: Fundamental algorithm for computing z;.
(step 1) Check that |f(A)|' >e. Put Ry = min(pl;l(()\)) JFO )|1/p)
(step 2) Set initial parameters: m = 2, Tmag = Ry, Timin =0, 7= Ry /p
(step 3) Compute T' = T(A,r,m; f).
(step 4) If T} < 107% then Tmin = 7, 7 = Imaxtlmis and go to (step 3).

If|T| > .99 then Tpag = 7, 7 = ImasfTmin and go to (step 3).
(step 5) Put n; = 1. Get m values of (T—TTEL)# as {21,-+,Zm}. Choose z from {z1,-+,2Zm} sﬁc'h that
IF(A + 72)| = ming |f(A + T2¢)|- Put 2z = A + 2.
(step 6) If |f(2)] > ¢ then m = m x 2 and go to (step 3).
(step 7) z is a zero of f. End.
Remark 3.1 R, is set as a value such that |z; — A| < Ry (cf. [3], p454 Theorem 6.4e).

Remark 3.2 For fixed A, m and f, T(7) = T(X, 7, m; f) is a continuous function of 7. When |r| varies

from 0 to over fin], |T(7)| dose from 0 to over n; continuously as is seen from Remark 2.2. So (step 4)
can be passed after at most several times returns to (step 3). Practically |r| can be any value as far as
it can pass the criterion in (step 4).

Remark 3.3 If z; may be of multiplicity greater than 1, for example, of multiplicity 3, then it would
be better that n; of (step 5) is set to range over three cases: ny = 1,2,3 and that  is chosen from 3m

values of (L},’h)%’ ny =1,2,3.
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"Remark 3.4 Since the less |-

more practical algorithm by replacing A with a better approximation. So we propose the following more
practical algorithm, though the convergence of which is nbt proved yet.
Algorithm 2: Applied algorithm which converge to a zero of f .
(stép 1) Take A € C . Check that |f(A)] > e. Let R; = min(p

(0

Tmaz = Ri, Tmin = 0 and 7 = R, /p.
(step 2) Compute T= T(X,r,m; f).
(step 3) If T} < 1075 then Tnip = 7, 7 = ImssfTmin and go to (step 2).

If |T| > .99 then Tyqp = 7, T = Ima=fimin and go to (step 2).
(step 4) Get the 3m valueé of (I—T‘,-,ﬂl)% as {27, -+, 2M}, ny = 1,2,3. Choose  from {z7*,--- ,wm}
such that |f(A + 72)| = min | f(A + 723)]. _

If | f(A + 72)| > |£(A)] then let m = 2m and go to (step 2) else let A = A+ 7z..

I {£(A)| < £ then stop -

else let Ry = min(p l%(-(:%‘ AFOVIMP), Tmaz = Ri, Tmin = 0 and 7 = Ry /p.

Let m=5+M, if r>107?
or let m=3+M, if 1072>r>10"°

or let m=1 if 107°>r

(step 5) Go to (step 2). .

- Remark 3.5 We should remark that 7 may be decided easily, satisfying |7| < |11|, as far as |T'| is not too

| small. In fact for polynomials of lower order, we can set 7 more roughly, say || = | f(A)I The criterion

" to determine the parameters m and 7 in (step 3) is suitable for the polynomials of order less than 50. As
is seen from Theorem 2.1, we had better to take m larger than this case for polynomials of higher' order.
Remark 3.6 We assume here that the multiplicities of zeros are rarely greater than 3. So we set
ny = 1,2,3. H the multiplicity or the pumber of close zeros is guessed to‘be tp then it will be more
effective to set ny; = 1,2,---,t. If z is chosen from {z1,..-,z} } then it does not need to compute for
ny 2 2 in the following iterations. | )

Remark 3.7 The case of m = 1 is essentially coincide with the Newton’s method. 4
Remark 3.8 When 7 and m are fixed, this algorithm is not generally convergent as is proved in McMullen
[4] that there is no gener'a.lly. convergent purely iterative algorithm, rational over C, for finding roots of
polynomials of degree > 4. There are examples which does not converge to a zero of f. In fact Professor
Sugiura of Nagoya Univ. gave examples of triples (f(z), m, 7') each of which guarantees the existence of
a region D such that if the initial A is taken in D then the iteration of this algorithm for fixed m and 7

gives a sequence that approaches to two different values periodically.

19—)|,|f(x)1*/f’) m=5L=1,

41

is the more effective this algorithm is, we would be able to get the
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Remark 3.9 When a clﬁster of very close zeros apart from other zeros exists, we can easily see from
Lemma 2.1 that X+ -1'?,— yields a certain weighted mean of zeros contained in the cluster by taking a small
circle with center A and radius |7| which enclose the cluster and exclude all the other zeros. Then the
value of T gives the number of zeros contained in it. Moreover considering the weighted mean like a
multiple zero z;, the estimate in Theorem 2.2 can be applied to this case. That is, a set of very close

zeros is treated as a multiple zero in the formula of A + %

4 Results of numerical experiments

Numerical experiments were carried out for many examples. Algorithm 1 was testified to work well; That
is, Algorithm 1is generally convergent and the errors of test computations are theoretically reasonable
values, except machine errors. So we show only a f,éw results which characterize how Algorithm 1 works.

The polynomial for the experiment to test Algorithm 1is f(z) = 23 — 32 +3 Whos;e 2eros are z; =
1.051-+.40.565 -+ 4, 25 = 1.051..-—0.565---4 and z3 = —2.103‘- -++40i. We denote the theoretical'errorv ‘
bound stated in Theorem 2.1 by E, ie. E = 1.4 " Letz=A +T (T—LT‘—l)J':

ml_;’%m

(2%
vz

Table 1-1 by Algorithm 1- f(z)=23-32+3
The case |21 — | € |za = Al A= 1.051+.566i J2=3} = 1.045 x 103

T m |21 — 2| E |f(=)|
0.001 | 2 | 7.09x10"10 1.03 x 108 2.57 x 10~°
0.001 | 3 | 834x10°13 719 x 10712 - 3.02x 10712
0001 4 | 142x10-5 | 5.63x10-1 3.13 x 10-18

Table 1-1 shows that if A is a good approximation of zero then Algorithm 1 cbnverges even for small m.

Table 1-2 by Algorithm 1 fz)=2>-32+3
 The case |71 — Al ~ |za = Al. A= 2.0+ 0.001i j’z—:i} = 0.9991
T m lz1 - 2| E | £ ()1
1.1016 | 512 | 3.89 x 103 2.97 x 10~2 1.41 x 10-2
1.1016 | 1024 | 5.57 x 10~4 7.23 x 1073 2.02 x 10-2
1.1016 | 2048 | 7.97 x 10~% 1.30 x 10-3 2.89 x 10~
1.1016 | 4096 | 5.95 x 10~ 9.64 x 10-3 2.16 x 105

We can seee in Table 1-2 that if E;—:%l- ~ 1 then, though it' needs a large amount of coinputation, it
converges very slowly. ’ | ‘ ‘

As for the examples for Algorithm 2, we tried some polynomials of order higher than 100 with
satisfactory results, added to many ones of lower order. Here we show some results which illustrate

how the convergent process of Algorithm 2 is. In these experiments roughly determined 7 such that
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frl = O(|f(2)]) is used. Table 2-1 shows that Algorithm 2 converges even if |v;| = |v3|. Table 2-2 is the
result for f(z) = z%° + 1 which has simple zeros distributed on the unit circle. Table 2-3 is the result for
a polynomial which has double zeros. We set the range of n; {1,2,3} in these experiments. It is easily
seen from our theorems fhat if |z — A| < |r| then A + % approximates z; better than A + 1'(21‘7—."-&)"3»' So

we added to the result of Algorithm 2 the value [F(A+ %)! in the following tables to compare two values. ‘

Table 2-1 by Algorithm 2 f(2)=23-3z+3
iteration k | my T ny M £ () FQe-1+ )|
0 / / / 20 50 o
1 -5 0.1 9 | 1.0876---~0.6620.--i | 4164x 10! | 1.363 x 10°
2 3 0.01 1 | 1.0519---—0.5652---i | 7.343 x 10~% | 2.161 x 10~3
3 4 | 7.34%x107% |1 | 1.0519---—0.5652---i | 2.003 x 10~1% | 4.089 x 10~16
4 1 | 1.0x10"° | 1 |1.0519-- —0.5652---i | 4.089 x 10~1¢ | 3.624 x 10~°
A = 1.051901701367768 — 0.5652358516771708i, |z — A| = 5.99 x 10~16 |
Table 2-2 by Algorithm 2 _ f(z)=20+1
iteration £ | m;y Tk ny Ak [ £(Ax)] If(Ak=-1+ %)I
0 / / /| 0.4+ 0.5i 1.000080 - - -
1 5 | 10x 1071 | 3 | 0.7466--+0.1402---i | 9.97 x 10~ | 101 x 10°
2 3 |10x1072 | 3 |0.5237---+05338--i | 9.97x 10~ | 9.72 x 10~!
38 4 110x1072 | 1 |0.7214---+0.7165---i | 4.02x 10! | 9.27x10~!
4 3 101x10"2| 1 |0.7071---+0.7071--i | 2.68 x 105 | 2.12 x 10~3
5 4 [01x105 | 1 |0.7071---4+0.7071--i | 1.52 x 10~12 | o(1. x 10-16)
6 1 101x10-| 1| 07071+ 4+07071--i | 2.94 x 10~ | 2.00 x 10-#
A = 0.7071067811865476 + 0.7071067811865476i, - |21 — Ag| = 1. x 10716

Ag in Table 2-2 is eqaul to the exact zero to the full digits. Note that Ay + ‘79.- in Table 2-1 and A4 + % in
Table 2-2 can be considered to be the numerical solutions. _ :
Remark 4.1 Since Ax_; + % can be computed cheaply by adding one process to Algorithm 2, we can

expect that such a device combining two algorithms will give another more efficient algorithm.

Table 2-3 by Algorithm 2 £(2) = (z = 2)%(z + 1)*(z — 0.5)(z — 0.501)(z — 0.503)

iteration k | my T ny Ar | F(Ar)] 1F(Ag-1+ %)I
0 / / / -543 356755.7-- | '
1 5 Lx1070 | 3 | —08138-..+02347.:i | 171x10° | 2.90 x 10°
2 3 1. % 10°2 2 | —0.9990---+0.0015---i | 9.64x10~% | 2.27x10"2
3 4 | 964x10"® | 2 | A=-1.0000---—0.0000--- | 412 x 10-16 | 5.93 x 10-16
Az = —1.000000000003040 — 1.91 x 10~13{, |21 — As} = 3.05 x 10~12
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Table 2-3 shows that in the case of zeros of multiplicity greater than 1, our method has the advantage of

rapidity and of accuracy over Newton’s method.

5 Concluding remarks

Remark 5.1 The feature of our algorithm 1 and 2 is inbthe usage of the error of the numerical integral
. of (1.1). Our root finding method is a new one which we cannnot find in preceding papers cited in
McNamee’s biblography.

Remark 5.2 Our fundamental algorithm is proved to be globally convergent for almost all initiel' values,
while our applied algorithm is not proved, yet. But we have the conjecture that Algorithm 2 is globally
convergent from the theoretical situation and the results of the numerical experiments.

Remark 5.3 Comparing with the Newton’s method Algorithm 2 is comparable in ra.pldlty and is equal
or better in accuracy, especially for zeros of multlphcn;y greater than 1.

Remark 5.4 Connecting Algorithm 2 and the value A 4+ =, the more rapid and reliable algorithm will

T )
be realized. Comparing the two kinds of estimates in two theorems, we can expect to find the method to

distinguish the multiple zeros from the close ones.
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