On Extremal Problems of MPR-posets II

東海大学大学院 宮川 幹平 (Miyakawa Kampei) 東海大学短期大学部 成嶋 弘 (Narushima Hiroshi)

A mathematical theory for the subject on ancestral character-state reconstructions under the maximum parsimony in phylogeny has been developing [1-9]. In this paper, we show some extremal properties of $\sigma(r)$ -version MPR-posets, particularly, the lattice-theoretic properties of those posets.

We use the notations in [1, 4]. Let $T=(V,E,\sigma)$ be any undirected tree whose endnodes are evaluated by a weight function $\sigma:V_O\to\Omega$, where Ω expresses the linearly ordered character-states. From the viewpoint of enumeration, let Ω denote the set of non-negative integers. V is the set of nodes, V_O is the set of endnodes which are nodes of degree one, V_H is the set of internal nodes, and E is the set of branches. Note that $V_O\cup V_H=V$ and $V_O\cap V_H=\emptyset$. We call this tree an el-tree. For an el-tree T, we define an assignment $\lambda:V\to\Omega$ such that $\lambda|V_O$ (the restriction of λ to $V_O)=\sigma$, where $\lambda(u)$ is called a state of u under λ . This assignment is called a reconstruction on an el-tree T. For each branch e in E of an el-tree T with a reconstruction λ , we define the length l(e) of branch $e=\{u,v\}$ by $|\lambda(u)-\lambda(v)|$. Then the length $L(T|\lambda)$ of an el-tree T under the reconstruction λ is the sum of the lengths of the branches. That is, $L(T|\lambda)=\sum_{e\in E}l(e)$. Furthermore, we define the minimum length $L^*(T)$ of T by

$$L^*(T) = \min\{L(T|\lambda) \mid \lambda \text{ is a reconstruction on } T\}.$$

Note that $L^*(T)$ is well-defined. A reconstruction λ such that $L(T|\lambda) = L^*(T)$ is called a most-parsimonious reconstruction (abbreviated to MPR) on T. Note that generally an el-tree has more than one MPR. We denote the set of MPRs on T by $\mathbf{Rmp}(T)$. For each node u in V, the set $\{\lambda(u)|\lambda\in\mathbf{Rmp}(T)\}$ of states of u under λ such that $\lambda\in\mathbf{Rmp}(T)$ is called the MPR-set of u and written as S_u . The algorithms to get $L^*(T)$, $\mathbf{Rmp}(T)$, and S_u are given in [1, 4]. See [1, 4] for details.

For a given el-tree $T=(V,E,\sigma(r))$, we define a rooted el-tree $T^{(r)}$ rooted at any element r in V. If r is an endnode, i.e., $r \in V_O$ and s is its unique child, we denote the rooted el-tree $T^{(r)}$ by (T_s,r) . The parent-child relation $\{u,v\}$ in E in a rooted el-tree T is denoted by $u \to v$ which means u is a parent of v. Let I_i $(i \in A)$ be any family of closed intervals in Ω . Let the median two points of all the endpoints of I_i be $\langle x,y\rangle$. Then we define the median interval of I_i $(i \in A)$ by the closed interval [x,y] and denote by $\operatorname{med}\langle I_i:i\in A\rangle$. For each node u in the body of a rooted el-tree T, we assign a closed interval I(u) of Ω recursively as follows:

$$I(u) = \left\{ egin{array}{ll} [\sigma(u), \sigma(u)] & ext{if u is a leaf,} \\ \operatorname{med} \langle I(v) : u
ightarrow v
angle & ext{otherwise.} \end{array}
ight.$$

This interval I(u) is called the *characteristic interval* of a node u.

From a phylogenetic point of view, Minaka [2,3] has introduced the two partial orderings on $\mathbf{Rmp}(T)$ to investigate the relationships among MPRs. One is the usual ordering, and the other is a partial ordering that depends on a state of a specified root of a given el-tree. We now give a mathematically explicit formulation for those partial orderings. Let T be an el-tree. The usual ordering $\lambda \leq \mu$ on $\mathbf{Rmp}(T)$ is defineded by $\lambda(u) \leq \mu(u)$ for all u in V. Let T be a rooted el-tree (T_s, r) . A binary relation $a \leq_{\sigma(r)} b$ on Ω is defined by $\sigma(r) \leq a \leq b$ or $\sigma(r) \geq a \geq b$. Then, a binary relation $\lambda \leq_{\sigma(r)} \mu$ on $\mathbf{Rmp}(T)$ is defined by $\lambda(u) \leq_{\sigma(r)} \mu(u)$ for all u in V. It is easily shown that those relations are partial orderings. The partially ordered set $(\mathbf{Rmp}(T), \leq)$ is called a usual MPR-poset, and the $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ is called a $\sigma(r)$ -version MPR-poset. Note that a usual MPR-poset is uniquely defined for an el-tree, but a $\sigma(r)$ -version MPR-poset, depending on a specified root, is defined in several ways for an el-tree.

We first restate some previous results which relate paticularly to new results stated later. Let T be a rooted el-tree (T_s, r) . We define a reconstruction λ on T by $\lambda(u) = x$ in S_u satisfying $x \leq_{\sigma(r)} y$ for any y in S_u , that is, x is the least element of a subposet $(S_u, \leq_{\sigma(r)})$ in the poset $(\Omega, \leq_{\sigma(r)})$. This reconstruction λ is well-defined since it is easily seen that the least element of each subposet $(S_u, \leq_{\sigma(r)})$, and then this λ is particularly written as $\lambda_{\min}^{<\sigma(r)>}$. The following theorem answers for whether there exists the least element in a $\sigma(r)$ -version MPR-poset or not.

Theorem A. Let T be a rooted el-tree (T_s, r) . Then the reconstruction $\lambda_{\min}^{\langle \sigma(r) \rangle}$ is the least element of $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$. \square

It is known that $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ dosen't always have the greatest element. The following shows one of the requirements for a reconstruction λ in $\mathbf{Rmp}(T)$ to be a maximal element of the $\sigma(r)$ -version MPR-poset. Let T be a rooted el-tree (T_s, r) . We define two reconstructions $\alpha^{<\sigma(r)>}$ and $\beta^{<\sigma(r)>}$ on T by $\alpha^{<\sigma(r)>}(u)$ = the smallest element, under the usual ordering \leq , of maximal elements in the subposet $(S_u, \leq_{\sigma(r)})$ and $\beta^{<\sigma(r)>}(u)$ = the greatest element, under the usual ordering \leq , of maximal elements in the subposet $(S_u, \leq_{\sigma(r)})$.

Proposition B. Let T be a rooted el-tree (T_s, r) . Then, both $\alpha^{<\sigma(r)>}$ and $\beta^{<\sigma(r)>}$ are maximal elements of $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$.

The following shows a necessary and sufficient condition for a $\sigma(r)$ -version MPR-poset to have the greatest element.

Corollary C. Let T be a rooted el-tree (T_s, r) . $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ has the greatest element if and only if for any u in V_H , $\sigma(r) \leq \min(S_u)$ or $\sigma(r) \geq \max(S_u)$. \square

Using those results, we have some new results about the characteristics of MPR-posets. The following theorem shows the necessary and sufficient condition for an MPR to be a

maximal element of $\sigma(r)$ -version MPR-poset.

Theorem 1. Let T be a rooted el-tree (T_s, r) and λ in Rmp(T). λ is a maximal element of $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ if and only if for any u in V_H , $\lambda(u)$ is a maximal element of subposet $(S_u, \leq_{\sigma(r)})$. \square

Note that there exists an el-tree T such that the number of all maximal elements of $\sigma(r)$ -version MPR-poset is exponential for the number n of the nodes. For example, the rooted el-tree $T = (T_s, r)$ shown in Fig.1 has 6m+3 nodes, and the $\sigma(r)$ -version MPR-poset $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ has $2^m + 1$ maximal elements.

Fig. 1: A rooted el-tree with 6m + 3 nodes

We next show the followings which answer whether any $\sigma(r)$ -version MPR-poset forms a lattice or not.

Theorem 2. Let T be a rooted el-tree (T_s, r) . The $\sigma(r)$ -version MPR-poset $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ forms a lower semilattice. \square

Theorem 3. Let T be a rooted el-tree (T_s, r) . The $\sigma(r)$ -version MPR-poset $(\mathbf{Rmp}(T), \leq_{\sigma(r)})$ forms an upper semilattice if and only if for any u in V_H , $\sigma(r) \leq \min(S_u)$ or $\max(S_u) \leq \sigma(r)$ holds. \square

We here show some examples of the theorems stated above. Let (T_a, p) be an el-tree T rooted at p shown in Fig.2. From $\mathbf{Rmp}(T)$ shown in Table 1, we can construct a $\sigma(p)$ version MPR-poset $(\mathbf{Rmp}(T), \leq_{\sigma(p)})$ shown in Fig.3, whose maximal elements λ_1, λ_3 , and λ_6 assign a maximal element of $(S_u, \leq_{\sigma(p)})$ for each node u, and the poset forms a lower semilattice.

Fig. 2: a rooted el-tree (T_a, p)

We finally show the following, which is immediate from Corollary C, Theorem 2, and Theorem 3.

Corollary 1. Let T be a rooted el-tree (T_s, r) . Then the following three statements are equivalent:

- 1. The $\sigma(r)$ -version MPR-poset has the greatest element.
- 2. The $\sigma(r)$ -version MPR-poset forms an upper-semilattice.
- 3. The $\sigma(r)$ -version MPR-poset forms a lattice.

$\chi^{u}_{a} a b c d e f g h i j k l r$	n n o p
λ_1 3 3 3 3 3 6 3 2 5 6 8 1	$7\ 1\ 3\ 4$
$\lambda_2 3 3 3 4 4 6 3 2 5 6 8 1$	7134
λ_3 3 3 3 5 5 6 3 2 5 6 8 1	7134
$\lambda_4 334446425681$	7134
$\lambda_{\rm E} = 334556425681$	7134
$\lambda_6 3 3 5 5 5 6 5 2 5 6 8 1$	7134
$\lambda_7 444446425681$	7134
$\lambda_8 = 444556425681$	7134
$\lambda_9 445556525681$	7134

Table 1: $\mathbf{Rmp}(T)$

Fig. 3: $(\mathbf{Rmp}(T), \leq_{\sigma(p)})$

参考文献

- [1] M. Hanazawa, H. Narushima and N. Minaka, Generating most parsimonious reconstructions on a tree: a generalization of the Farris-Swofford-Maddison method, Discrete Applied Mathematics 56 (1995) 245-265.
- [2] N. Minaka, Parsimony, phylogeny and discrete mathematics: combinatorial problems in phylogenetic systematics (in Japanese: with English summary), Natural History Research, Chiba Prefectural Museum and Institute, Vol.2 No.2 (1993) 83 98.
- [3] N. Minaka, Algebraic Properties of the Most Parsimonious Reconstructions of the Hypothetical Ancestors on a Given Tree, Forma 8 (1993) 277-296.
- [4] H. Narushima and M. Hanazawa, A more efficient algorithm for MPR problems in phylogeny, Discrete Applied Mathematics 80 2–3 (1997) 227-234.
- [5] H. Narushima and N. Misheva, On a role of the MPR-poset of most-parsimonious reconstructions in phylogenetic analysis – A combinatorial optimization problem in phylogeny –, in: W. Y. C. Chen, D. Z. Du, D. F. Hsu, H. Y. Hap (Eds.), Proc. The International Symposium on Combinatoircs and Applications 28–30, June, 1996, Tianjin, P.R.China, pp. 306-313.
- [6] H. Narushima and N. Misheva, On characteristics of ancestral character-state reconstructions under the accelerated transformation optimization, preprint.
- [7] H. Narushima, On extremal properties of ACCTRAN reconstructions in phylogeny, preprint.
- [8] 成嶋 弘, 系統樹最節約復元問題の大域的最適解について (On globally optimal reconstructions of phylogenetic trees), 京大数解研講究録 992 『計算理論とその応用』(1997年5月), 5-11.
- [9] 成嶋 弘, 祖先形質の最節約復元順序集合について (On MPR-posets in phylogeny), 京大数解研講究録 1041 『アルゴリズムと計算の理論』 (1998 年 4 月), 44-49.
- [10] 宮川幹平, 成嶋 弘, 最節約復元順序集合の極値問題について (On extremal problems of MPR-posets), 京大数解研講究録 1041『アルゴリズムと計算の理論』(1998年4月), 50-55.