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On Extremal Problems of MPR-posets II

HRFERZERE B %% (Miyakawa Kampei)
RERFELHRFE g 54 (Narushima Hiroshi)

A mathematical theory for the subject on ancestral character-state reconstructions under
the maximum parsimony in phylogeny has been developing [1-9]. In this paper, we show
some extremal properties of o(r)-version MPR-posets, particularly, the lattice-theoretic
properties of those posets. v

We use the notations in [1, 4]. Let T = (V, E, o) be any undirected tree whose endnodes
are evaluated by a weight function ¢ : Vo — Q, where Q expresses the linearly ordered
character-states. From the viewpoint of enumeration, let  denote the set of non-negative
integers. V' is the set of nodes, Vj is the set of endnodes which are nodes of degree one,
Vi is the set of internal nodes, and E is the set of branches. Note that Vo U Vg = V
and Vo N Vg = 0. We call this tree an el-tree. For an el-tree T', we define an assignment
AV — (2 such that A[Vo (the restriction of ) to Vo) = o, where A(u) is called a state of
v under A. This assignment is called a reconstruction on an el-tree T. For each branch e
in E of an el-tree T with a reconstruction )\, we define the length l(e) of branch e = {u,v}
by [A(u) — A(v)|. Then the length L(T|)) of an el-tree T under the reconstruction ) is the
sum of the lengths of the branches. That is, L(T|\) = 3 ,cz l(e). Furthermore, we define
the minimum length L*(T) of T by

L*(T) = min{L(T|)\) | X is a reconstruction on T}.

Note that L*(T) is well-defined. A reconstruction A such that L(T|)\) = L*(T) is called
a most-parsimonious reconstruction (abbreviated to MPR) on T. Note that generally an
el-tree has more than one MPR. We denote the set of MPRs on T by Rmp(T'). For each
node u in V, the set {\(u)|A € Rmp(T)} of states of u under ) such that A € Rmp(T) is
called the MPR-set of u and written as S,. The algorithms to get L*(T), Rmp(T), and
Sy are given in [1, 4]. See [1, 4] for details.

For a given el-tree T = (V, E, o(r)), we define a rooted el-tree T(") rooted at any element
rin V. If r is an endnode, ie., r € V and s is its unique child, we denote the rooted
el-tree T) by (T, 7). The parent-child relation {u,v} in E in a rooted el-tree T" is denoted
by v — v which means u is a parent of v. Let I; (i € A) be any family of closed intervals
in . Let the median two points of all the endpoints of I; be (z,y). Then we define the
median interval of I; (i € A) by the closed interval [z,y] and denote by med(J; : 5 € A).
For each node u in the body of a rooted el-tree T, we assign a closed interval I(u) of Q
recursively as follows:

_ | lo(w), o(u)] if u is a leaf,
Iw) = { med(I(v) : u — v) otherwise.



This interval I(u) is called the characteristic znterval of a node u.

From a phylogenetic point of view, Minaka [2,3] has introduced the two partial orderings
on Rmp(T) to investigate the relationships among MPRs. One is the usual ordering, and
the other is a partial ordering that depends on a state of a specified root of a given el-tree.
We now give a mathematically explicit formulation for those partial orderings. Let T be
an el-tree. The usual ordering A < p on Rmp(T) is defineded by Alu) < p(u) for all
uin V. Let T be a rooted el-tree (Ty,7). A binary relation a <,() b on Q is defined
by o(r) < a < bor o(r) > a > b. Then, a binary relation A <,y s on Rmp(T) is
defined by A(u) <o() p(u) for all w in V. It is easily shown that those relations are partial
orderings. The partially ordered set (Rmp(T),<) is called a usual MPR-poset, and the
(Rmp(T), <) is called a o(r)-version MPR-poset. Note that a usual MPR-poset is
uniquely defined for an el-tree, but a o(r)-version MPR-poset, depending on a specified
root, is defined in several ways for an el-tree.

We first restate some previous results which relate paticularly to new results stated later.
Let T be a rooted el-tree (Tj,r). We define a reconstruction A on T by A(u) = z in S, |
satisfying  <,(;) y for any y in Sy, that is, z is the least element of a subposet (Sy, <¢(r))
in the poset (€, <y(m). This reconstruction A is well-defined since it is easily seen that
the least element of each subposet (Su, <,(r)), and then this ) is particularly written as
)\;ﬁrb_ The following theorem answers for whether there exists the least element in a
o(r)-version MPR-poset or not.

Theorem A. Let T be a rooted el-tree (T, 7). Then the reconstruction )\:,,Ifr)> is the least
element of (Rmp(T),<or)). O

It is known that (Rmp(T), <s()) dosen’t always have the greatest element. The fol-
lowing shows one of the requirements for a reconstruction A in Rmp(T) to be a maximal
element of the o(r)-version MPR-poset. Let T be a rooted el-tree (T;,r). We define two
reconstructions a<°™> and B<¢()> on T by a<?")>(u) = the smallest element, under
the usual ordering <, of maximal elements in the subposet (Su, <s()) and B<em>(y) =
the greatest element, under the usual ordering <, of maximal elements in the subposét
(Sua Sa(r))-

Proposition B. Let T be a rooted el-tree (Ts,r). Then, both a<°("> and <> are
mazimal elements of (Rmp(T), <¢(r)). O

The following shows a necessary and sufficient condition for a o(r)-version MPR-poset
" to have the greatest element.

Corollary C. Let T be a rooted el-tree (T, ). (Rmp(T), <o(r)) has the greatest element
if and only if for any u in Vi, o(r) < min(Sy) or o(r) = max(S,). O

Using those results, we have some new results about the characteristics of MPR-posets.
The following theorem shows the necessary and sufficient condition for an MPR to be a
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maximal element of o(r)-version MPR-poset.

Theorem 1. Let T be a rooted el-tree (Ty,r) and X in Rmp(T). X is a mazimal element
of (Rmp(T), <o(r)) if and only if for any u in Vg, AM(u) is a mazimal element of subposet
(S'u., Sa(r))- a

Note that there exists an el-tree T such that the number of all maximal elements of
o(r)-version MPR-poset is exponential for the number n of the nodes. For example, the
rooted el-tree T' = (T, r) shown in Fig.1 has 6m+3 nodes, and the o(r)-version MPR—poset
(Rmp(T), <s()) has 2™ + 1 maximal elements.

r 4

Fig. 1: A rooted el-tree with 6m + 3 nodes

We next show the followings which answer whether any o(r)-version MPR-poset forms
a lattice or not. '

Theorem 2. Let T be a rooted el-tree (Ts,r). The o(r)-version MPR-poset (Rmp(T), <(r))
forms a lower semilattice. O

Theorem 3. Let T be a rooted el-tree (T,,r). The o(r)-version MPR-poset (Rmp(T), <o)
forms an upper semilattice if and only if for any u in Vg, o(r) < min(S,) or max(S,) <
o(r) holds. O

We here show some examples of the theorems stated above. Let (T,,p) be an el-tree T
rooted at p shown in Fig.2. From Rmp(T) shown in Table 1, we can construct a o(p)-
version MPR-poset (Rmp(T'), <, () shown in Fig.3, whose maximal elements A;, A3, and
A¢ assign a maximal element of (Sy, <,(p)) for each node u, and the poset forms a lower
semilattice.
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Fig. 2: a rooted el-tree (T, p)

We finally show the following, which is immediate from Corollary C, Theorem 2, and |

Theorem 3.

Corollary 1.

Let T be a rooted el-tree (Ts,r). Then the following three statements are

equivalent:

1. The o(r)-version MPR-poset has the greatest element.

2. The o(r)-version MPR-poset forms an upper-semilattice.

3. The o(r)-version MPR-poset forms a lattice. O
Yabcdefghijklmnop A1 A3 A6
Al333336325681 7134
Mi333446325681 7134
Az

A
As
A6
A7
Ag
Ag

333556325681 7134 N \
334446425681 7134 2 9
334556425681 7134

335556525681 7134 Al s
444446425681 7134

444556425681 7134

445556525681 7134

Table 1: Rmp(T) Fig. 3: (Rmp(T), <o)
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