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Learning DNF by Approximating Inclusion-Exclusion Formulae

Jun Tarui (FEH &) *

1. Introduction

Probably Approzimately Correct learning algorithms
generalize a small number of examples about an un-
known concept into a function that can predict a future
observation. More formally, let X ‘and Y be the in-
stance and outcome spaces, respectively. Then a PAC
algorithm observes randomly drawn ezamples (z, f(z))
about an unknown concept f : X — Y. These exam-
ples are independently and identically distributed ran-
dom variables governed by an arbitrary and unknown
distribution over X. With and only with these train-
ing examples, the algorithm aims to find a hypothesis
h : X — Y that approximates the target concept f
with respect to the same distribution. Hence it mea-
sures “goodness” of the hypothesis h by the probability
acc(h) = Prob.ex{h(z) = f{x)} called the prediction
accuracy.

Valiant introduced the PAC model in a series of
papers [12, 13], which is currently one of the most
standard platforms for invention of polynomial-time
learning algorithms. The PAC theory aims to learn
as much general concept classes as possible, be-
ginning from simple structures, e.g. depth-one or
depth-two Boolean circuits. Valiant proved that
Boolean conjunctions are polynomial-time learnable,
and left the learning problem of the class DNF =
{polynomial-size Disjunctive Normal Form formulae}
for the future research. Here, as usual, a DNF formula
is a disjunction of a amily of conjunctions of Boolean
literals. These Boolean conjunctions are commonly
called the terms of the DNF formula. The size of a
DNF formula is the number of its (distinct) terms.
Since then, a lot.of literatures have proved learnability
of subclasses of DNF by specifying either structural
parameters of formulae or the distribution for the
training examples ([1] provides a list of literatures).
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However, in spite of much effort, Valiant’s original .
problem still remains unresolved. )

Recently, Bshouty obtained a 20(vFilem®) time
PAC algorithm for learning DNF. More strongly, he
proved a similar upper bound in the exact non-proper
learning model using equivalence queries. * The cur-
rent paper is devoted to give a further understanding to
this learning time in the PAC model: roughly speak-
ing, we show that Bshouty's leaning time 200V is
possible and best possible to be attained 2, if learn-
ing algorithms search hypotheses in the order of their
“succinctness”.

In more detail, we analyze upper and lower bounds
on size of Boolean conjunctions necessary and suffi-
cient to approximate a given DNF formula by accuracy
slightly better than 1/2 (here we define the size of a
Boolean conjunction as the number of distinct variables
on which it depends.) Such an analysis determines the
performance of a naive search algorithm that exhausts
Boolean conjunctions in the order of their sizes. In
fact, our analysis does not depend on kinds of symmet-
ric functions to be exhausted: instead of conjunctions,
counting either disjunctions, parity functions, majority
functions, or even general symmetric functions, devives
the same learning results from similar analyses.

Naive search algorithms find only weakly accurate
hypotheses, so they need to be boosted on accuracy
to complete the PAC learning process. Schapire [11]
and later on Freund [4] invented efficient algorithms
that boost the accuracy of a given weak algorithm (in
sense of [10]) under a given distribution, which we re-
fer to as general boosters. In this paper. we study the
performance of naive search algorithms in the frame-
works of general boosters. On the other hand, if the
target distribution is specified as the uniform distri-
bution, naive search algorithms have been widely ap-
plied to learn DNF cooperating with specific boosters.
In fact, Verbeurgt'[14] showed that naively searching
Boolean conjunctions learns the class DNF in quasi-
polynomial time. Linial, Mansor and Nisan [8] showed,

! Angluin’s proof [2] provides a similar lower bound on the
number of proper equivalence queries.

20(t(n)) = Ur»00(t(n) log*(t(n)))-



moreover, that even so does the class AC? by searching
short parity functions.

In 1989, Linial and Nisan [9] showed positive and
negative results about approximating the inclusion-
exclusion formula by a linear combination of the sizes
of short intersections. Qur analysis is built on some of
their results.

Our positive results for approximating and learning
" DNF are:

Theorem 1.1. For any s-term DNF formula f.and

any distribution over the instance space X there exists
a size—O(\/ﬁlog 8) conjunction h that satisfies
[Probaex{f(z) = hiz)} ~ 1/2] = 27O(VFlosnloss),

.Theorem 1.2. Any naive search algorithm, cooperat-
ing with general boosters, PAC learns the class DNF

in 20(VAleg ™)) ime with respect to any distribution.

Note that if we adopt Freund’s booster [4], then
for a given DNF formula and a given distribution, the
algorithm outputs as a highly accurate hypothesis a
majority-vote of Boolean conjunctions of size at most
O(/nlognlogs).

Our negative result is:

Theorem 1.3. For any Boolean conjunction f of
length ©(n) and any constant 0 < € < 1/2 there ex-
ist k = Q(/n€) and a joint-distribution over X x Y
such that we have Probg, yexxy{f(z) =y} =2 1—¢
and Prob; y)exxy{h(z) =y} = 1/2 for any Boolean
function h : {0, 1} - {0,1} that depends on at most
k variables.

Therefore, under such a joint-distribution, a naive
search algorithm must enumerate at least 2%(v7nelogn)
number of symmetric functions until finding a
decision-rule that is better than guessing at ran-
dom. Note that in the standard PAC model, where
Prob(. yyexxy{f(z) =y} = 1, any Boolean conjunc-
tion can be learued in O(n logn) time by searching only
literals [12].

2. Learning Frameworks

A formal definition for a PAC algorithm requires two
real parameters U < ¢, < 1, called the accuracy and
confidence parameters of the algorithm, respectively.
Let C, H be classes of functions from the instance space
X to the outcome space Y.

Definition 2.1. A randomized algorithm is called a
PAC algorithm that learns the target class C by the
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hypothesis class H within accuracy 1 — ¢ and confi-
dence 1 — 4 if for any f € C the algorithm, given ac-
cess to random examples (z, f(x)), outputs b € H that
achieves acc(h) > 1 — e with probability at least 1 — 4.

The PAC model is an abstraction of practical situa-
tions where machines learn from their own random ex-
periences. Most of all, it assumes that the training ex-
amples are perfectly consistent with the target concept.
Empirical datum, however, involve inevitable ervors
(ie. inconsistency) due to inaccuracy in measurement
systemns, intervention by malicious adversaries, uncer-
tainty of the nature, and so on. Under such practical
situations, the training examples (z,y) € X x ¥ are no
more consistent with the target concept f. Kearns and
Schapire [7], and Haussler [5}, assumed that they are
governed by an unknown joint-distribution over the ob-
servation space X x Y. Thus a random example (u, y)
€ X x Y may differ from (z, f(x)) with probability
Prob..,{f(z) # 4}.

Angliin and Laird [3] introduced so-called the
white noise into the target distribution. The joint-
distribution has the white noise of rate 9, 0 < n <
1/2, if it is the production over z € X of the identical
distributions over Y that satisfies Prob,ev {f(z) # y}

:1’),

Definition 2.2. We say that a PAC algorithm toler-
ates the white noise of rate 7 if it PAC learns under
any distribution having the white noise of rate .

All of the discovered noise-tolerable algorithms de-
pend on some statistical information over the train-
ing exawmples, rather than the point-wise information
of them. Kearns [6] bound these algorithms into the
notion of Statistical Query learning algorithms. An
SQ-algorithm asks to the query of the probability
Prob. ,{x(z,y) = 1} for a predicate x defined over the
observation space to the SQ-oracle. The S$Q-oracle
then returns an estimation est(y) of it within error 7,
hence it satisfies

[Prob. 4 {x(z,y) = 1} —est(x)] < 7.

Where 0 < 7 < 1 is a constant parameter associated
with the SQ-oracle called the tolerance of the SQ-
oracle.

Definition 2.3. An SQ-algorithm is defined as as in
Definition 2.1 by given access to the SQ-oracle instead
of the random training examples.

Theorem 2.4. (Kearns [6]) If a class €' is SQ learn-
able by a class H within accuracy 1 — ¢ and confidence



1 — 4 from the oracle of tolerance 7 in O(t) time, then
C is PAC learnable by H within accuracy 1 — ¢ and
confidence 1 —' 8 under the white noise of rate n in
O(tr=2(1/2 — n)?log(1/6)) time

The current paper learns Boolean concepts. Thus
for each dimension n = 0,1,2,... the instance space is
the n-dimensional Boolean cube X = {0,1}" and the
outcome space is Y = {0,1}, so target concepts and
hypotheses are Boolean functions. Learning algorithms
are assumed to know the parameters so far appeared;
the dimension n of the instance space, the accuracy and
confidence parameters, the rate of the whilte noise, and
the tolerance of the SQ-oracle.

3. Approximating Inclusion-Exclusion
Formulae

Our positive and negative results for learning DNF
are built on positive and negative resulis for approx-
imating the inclusion-exclusion formula, respectively,
established by Linial and Nisan [9]. For a given family
of n sets {A41,...,4n}, the inclusion-exclusion formula
on them measures the union size by the sizes of the
intersections of all the subfamilies as

A;U4daU---UA,|l =

oIl = D llAin 4]
i 1<) '
o+ Z [4: N A; N Agl|
i j<k
S (D)™ A N A NN Al

Linial and Nisan asked to approximate the union size
by using only initial terms of them, in other words, by
only the sizes of the “short” intersections. They trans-
lated the problem into a problem of approximating a
certain discrete delta function by low degree polynomi-
als, where the sizes of the intersections correspond to
the degrees of the polynomials. We state two of their
results in a general probability space (X, X, D) where
X is any set, T is a o-field over X and D is a proba-
bility measure over (X, ). We denote the weight of a
set- A C X by ||A}lp = Probzex{z € A}.

Theorem 3.1. (Linial and Nisan {9]) For any in-
tegers n. > 1 and k > ¢; /n, where ¢; > 0 is a certain
constant, there exist constants a'{’", a.’,f",‘, ey a:‘" such
that for every probability space (X,X,D) and every

collection of sets A4;,..., A, we have

(=o(e)|| U]
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= k,n / 1
= 2 ol (1)
0<|S|<k i€s lp
Linial and Nisan described these constants o} ex-

plicitly in terms of the coefficients of the Chebyshev
polynomial of degree k. In special, their description

derives !af’"l < 2k,

Theorem 3.2. (Linial and Nisan [9]) For any in-
tegers n > 1 and k < c3+/n, where ¢ is a certain con-
stant, there exist a probability space (X, ¥, D) and two
collections of sets 4;,...,4, and By, ..., B, such that
we have both

T Al n
e = °() .
and
ﬂ Ai = ﬂ B; (3)
i€S D i€S D
f<0rka.ll the nonempty sets S C {1,...,n} with 0 < |S]

4. Learnability of DNF

In this section we show how to derive learning DNF
in subexponential time from Theorem 3.1.

- Without loss of generality, we may assumne that the
constant function 0 is always contained in the terms
of a given DNF formula. Then it is easy to see that
any DNT formula can be weakly approximated by some
terms.

Lemma 4.1. For any size-s DNF formula f and any
distribution over the instance space X there exists a
term g of f that satisfies

|Probeex{f(z) = g(x)} - 1/2{ > 1/10s.  (4)

Proof. We suppose that there is no such term of f, and
will derive a contradiction. Inverting (4) for 0 derives

|Prob,{f(z) =0} —1/2] < 1/10s
or equivalently

|Prob,{f(z) =1} - 1/2] < 1/10s. {5)
For any term g of f, g(z) = 1 forces f(x) = 1, hence

Prob.{g(z) =1} =

Prob. {f(z) = 1} = Prob..{f(x) # g(=}}
< 1/2+1/10s — (1/2 — 1/10s)
< 1/8s.

A



However, f(z) = 1 forces g(z) = 1 for some term g of
f, s0 we obtain

Plol),.{f ) =1}
< 3 Prob,{g(z) =1}
g9

> 1/5s = 1/5.

g

IA

This contracts (5). 0O

Due to Theorem 3.1, a conjunction that approxi-
mates the target DNF formula provides a much shorter
conjunction that still approximates the target to some
extent.

Definition 4.2. For any functions f,F : X —» Y and
any distribution over X, the bias of F to f (with re-
spect to the dlsmbutlon) is

biass(F) = Prob{F(z)=1A f(z) =1}
—Prob.{F(z) = 1A f(z) =0}

and the correlation of f and F is

cor(f,F) = Probzex{F(z) = f(z)} — 1/2.

Lemma 4.3.
 biasg(F) = cor(f,F) - cor(f ,0).
Proof.

bias;(F) = Prob,{F(z) = f(z)}
: —Prob,{f(z) = 0}
= (Prob.{F(z) = f(z)} - 1/2)
—(Prob.{f(z) = 0} - 1/2)
= cor(f, F) — cor(f,0).
[}

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 4.1 provides a con-
junction ¢ that is a term of f and correlated with f
as :

leor(f,9)| > 1/10s. (6)

We may assume without loss of generality that g(x) =
EyNT2 A ANin.

Set v = 2"‘3\/_"’3"“’5' for a positive constant cs.

We may assume that 0 is not correlated with f as
|cor(f,0)] < «. Lemma 4.3 then yields

|bias; (g) — cor(f,§)l = |cor(f,0)|
< 7
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so from (6) and |cor(f, g)| = |cor(f, §)| we obtain
Ibiasf(g)[ > 1/10s — 7. (7

Let A; = {({(a1,.--,an),1) € X x Y :q; =1} and

= {((a1,---,n),0) EX xY :a; =1}. Let k =

csy/mlogs for a constant ¢4 > 0 and D be the given

target distribution over X. Theorem 3.1 then writes

biass(7) as a linear combination over the biases of short
conjunctions hs = A;c s i

biasy(§) = |V Aillp — UL, Billp
= Y o (INesdilp
0<|SI<k

— INiesBillp) £ O((z"z‘"’/\ﬁi)
= Y. agbias;(hs)

0<|S|<k
:t()(e‘”‘/‘/;) .

Therefore if we choose ¢4 large enough then from (7)
we obtain

(1 o(L)biass(g) = D aygbiass(hs).
: 0<|S|<k

Thus (7) indicates that one of these conjunction hg
satisfies
-1
iass ()l 2 o) () 4~tbiassia)
. = i—o(ﬁlugnlogs)’

so if we choose ¢z large enough then Lemma 4.3 derives
the required lower bound on the corelation of f and hg:

2—0('\/7710g nlogs) _ 4
2-0(\/77105 nlog s) )

fCOl‘(f, hS)‘

v

O Theorem 1.1

Corollary 4.4. Any size-s DNF formula f is SQ
learnable by either a Boclean conjunction or a disjunc-
tion of size-O(y/nlognlogs) within accuracy 1/2 +
9-O(VRlognlogs) ynd confidence 1 from the SQ-oracle
of tolerance 2~O(VRlognlogs) iy gO(Vrlognlogs) gy

Proof. For k = O(y/nlogs), Theorem 1.1 guaxanrees
a size-k conjunction h that satisfies

Icor(f’ h)' - 2—0(\/ﬁlog nlog s} ]



Hence choosing the tolerance 7 = 9~O(Vilognlogs) gyf
ficiently small, the naive search algorithm finds a con-
junction h of size at most k after at most (})2* SQ-
queries that satisfies

IeSt(f = h) - 1/2' = 2"0(\/'7105111053)’

sSC
lcor(f, k)] = 2~ C(VRlognlogs)

If f = h happens more certainly than f # h then the
naive search algorithm outputs h itself, otherwise its
negation A that is represented by a dlSJlIIlCt!On due to
the De-Morgan rule. 0O .

Now we let a general booster improve the accur acy
of the naive search algorithm.

Theorem 4.5. (Schapre {11], Feund [4]) Given
an SQ-algorithin that learns C' by H within accuracy
1—¢gp > 1/2 and confidence 1 ~ §p from the SQ-oracle
of tolerance 7 in O(t) time. Then for any accuracy
and confidence parameters ¢ and 4, respectively, one
can design an SQ-algorithm that learns C' by H from
the SQ-oracle of torelance 7 within time polynomial
int,n, (1/2—ep)~1,1/0, 1/¢ and log(1/4).

We apply this boosting theorem to Theorem 4.4 and
obtain: v

Corollary 4.6. s-termm DNF is SQ) learnable from the
SQ-oracle of tolerance 9-O(Vrlognlogs) i) time poly-
nomial in 20(Viilegnlog ), 1/e and log(1/4).

Applying Theorem 2.4 then derives:

Corollary 4.7. s-term DNF is PAC learnable un-
der the white noise of rate n in time polynomial in

90(Vitlegnloga) (179 _ p)=1 1/e and log(1/6).

Theorem 1.2 is now obtained by putting s = poly(n),
n=0and 1/e = 1/6 = O(1).

5. Unlearnability of DNF

" Finally, we show that Theorem 3.2 derives Theo-
rem 1.3. :

Proof of Theorem 1.3. We may assume without loss
of generality that f(a) = 1 AEa A+ A, for ng =
2(n). Theorem 3.2 gives a distribution £ and two col-
lections of sets Ay,...,An, and By,..., By, that sat-
isfy both (2) and (3). Without loss of generality, we
may assume existence of disjoint universal sets U and
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V that contain all of A; and B;, respectively, and & is
defined over U U V. We can moreover choose U as

ng ‘
Ua =v (8)
=1
and adjust V and € so to satisfy
i|U”g = ||Vl 9

We denote for any set A C U that A! = 4 and 4°
= U — A. Similarly, for B C V, B' = B and B° =
V — B. From (9) and the inclusiou-ox(-luQion formnula,
we can extend (3) to

N A;"

€S

= || B “ (10)

i€s

for any nonempty set S C {1 ..,ng} w1th 0<|5 <.
k and any a; € {0,1} with i € S. .
Now we define a joint-distribution over X x Y by

Prob, y{(z1,...1Zng,y) = (21, ... . an,, M}

= af|n2, A7,
and

Prob, ,{(Z1,-. 1 Zng,y) = (@1 ... Gng, 1)}
= afIN2; B¢
for any a = (a,a2, - --,n,) € {0,1}"°. Where « is the

constant for normalizing £, hence a(||U7]| + ||V]]) = 1.
Now we check that this distribution satisfies

Prob yexxy{f(z) =y} >1-¢, (11)
and .
Prob; yjex xy{h(z) =y} = 1/2 (12)

for any Boolean function h : {0,1}" -+ {0,1} thai de-
pends on at most k variables. We begin with establish-
ing (12) for the special case that h = 0. From (8) and
(9)
Prob,,,{y = 0}
= U248 le

= 1/2 (13)
If we choose k sufficiently small then (2) implies

Prob, ,{f(z) = 0Ay =0}
Plobmy{f("c y=0Ay=1}
_ alumadll
of|Ui2, Bill,
> (n/k2)
> 1/e.




From (8) f(z) = 1implies y =1, hence

Proba, {f(z) # v}
= Prob,,{f(£) =0Ay =1}
< E.

Finally we check (12). To any Boolean function h we
associate its bias as

bias(h) = Probsy{h(e) =Ly =1}
_Probz‘,y{h,(z) =ly= 0}

If h is a Boolean function that depends on a set Sy of
at most k variables then letting ha =[], ¢s, zfi for A
€ {0,1}* where 2! = z; and 2% = %;, h can be written
as h =Y, caha for some integers c4, so the linearlity
of bias and (10) derive

bias(k) = ) _cabias(hs) = 0,
A

hence combining it with (13) yields that

Probp{h(z) = y} bias(k) + Probp{y = 0}

1/2.

0 Theorem 1.3

Acknowledgments

We would like to thank to Professor Osam Watan-
abe for his helpful discussions in the early stage of this
research.

References

{1] H. Aizenstein and L. Pitt. On the learnability of dis-
junctive normal from formulas. Maechine Learning,
19:183-208, 1995. )

[2] D. Angluin. Negative results for equivalence queries.
Machine Learning, 5:121-150, 1990.

[3] D. Angluin and P. Laird. Learning from noisy exam-
ples. Machine Learning, 2(4):343-370, 1988.

{4] Y. Freund. Boosting a weak learning algorithm by
majority. Information and Computation, 121(2):256,
1995.

[5] D. Haussler. Decision theoretic generalizations of the
PAC model for neural net and other learning appli-
cations. Information and Computation, 100:78-150,
1992.

[6] M. Kearns. Efficient noise-tolerant learning from sta-
tistical queries. Proceedings of the 25th ACM Sym-
posiurn on the Theory of Computing, pages 392--401,
1993. :

135

[7] M. Kearns and R. Schapire. Efficient distribution-free
learning of probabilistic concepts. Proceedings of the
31th IEEE Symposium on Foundations of Computer
Science, pages 382--391, 1990.

{8] N. Linial, Y. Mansor, and N. Nisan. Constant depth
circuits, fourier transforins and learnability. Proceed-
ings of the 31st IEEE Symposium ov. Foundations of
Computer Science, pages 574--579, 1989.

[9] N. Linial and N. Nisan. Approximate inclusion-
exclusion. Combinatorica, 10:349--365, 1990. °

[10] L. Pitt and L. Valiant. Computational Limitations on -
learning from examples. Journal of the ACM, 35:965,
1988.

[11] R. Schapire. The strength of weak learnability. Afe-
chine Learning, 5(2), 1990.

[12] L. Valiant. A theory of the learnable. Commaunications .
of the ACM, 27(11):1134-1142, 1984.

{13] L. Valiant. Learning disjunctions of conjunctions. Pro-
ceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 560-566, 1985.

{14] K. Verbeurgt. Learning DNF under the uniform dis-
tribution in quasi-polynomial time. Proceedings of the
Third Annual Workshop on Computational Learning
Theory, pages 314-326, 1990.



