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Fourier expansion of holomorphic Siegel modular forms of
genus 3 along the minimal parabolic subgroup

HKREHED 2 gHZ K (NARITA Hiroaki)

e-mail: narita@ms318sun.ms.u-tokyo.ac.jp

1. Introduction.

We are constructing a certain type of Fourier expansion of holomorphic Siegel mod-
ular forms of genus 3, different from the two expansions already known, i.e. classical
Fourier expansion and Fourier Jacobi expansion. More precisely, our expansion is
along the minimal parabolic subgroup of a symplectic group, while the other two
are along the Siegel parabolic subgroup or Jacobi parabolic subgroup. We already
obtained the Fourier expansion for the case of genus 2, which is the master thesis of
the author (cf. [N]). In these days, we have constructed the expansion for the case
of genus 3. From this work, we hope to obtain some hints to get the expansion for
the case of arbitrary genus. In the case of genus 2, we got some relations among our
Fourier expansion and the other two ones in terms of their Fourier coefficient and
obtained certain informations on the other two expansions. For the case of genus 3,
we are also going to do the same work after the construction of the Fourier expansion.
And we expect that such work will give a new result on the two known expansions
for the case of genus 3, as the work for the case of genus 2 did. We think that our
work as above is meaningful since holomorphic Siegel modular forms of higher genus
are not studied so much, even of genus 3.

In the construction of our Fourier expansion, it is crucial to compute the following
two associated to some irreducible unitary representations of the maximal unipotent
subgroup N:

1) generalized Whittaker function for holomorphic discrete series,

2) theta series on N constructed from the Hermite function.

The function as in 1) is defined to be the image of an embedding of a holomorphic
discrete series into the space of the representation induced from the irreducible uni-
tary representation of N. By computing it, we see what kind of a function occurs in
our Fourier expansion. The theta series mentioned as above plays a primary role to
obtain the realization of the Whittaker functions in the Fourier expansion. If these
two are computed, we get our Fourier expansion.

The first object is computed by solving the differential equations arising from the
“Cauchy Riemann condition”. The second object is computed by calculating the
Hermite differential equations rewritten by the coordinate of N and the differential
equations coming from the actions of the infinitesimal character of the irreducible
unitary representaton.



2. Notations for Lie groups and Lie algebras.
Let G = Sp(3;R) be the real symplectic group of degree 3, given by
{g € SLs(R) | "9 Jg=J},

where J = (__13 Is € Ms(R) and K a maximal compact subgroup of G, which is
isomorphic to U(3). Let g and ¢ be the Lie algebra of G and K respectively. The
Cartan involution § (i.e. #(X) = —'X) induces a Cartan decomposition g = ¥ & p.
Here p is the eigenspace of g with the eigenvalue -1 and ¥ coincides with that with
the eigenvalue 1. '

Here we introduce the two root system of g, i.e. the restricted root system and
the root system with respect to a compact Cartan subalgebra. For the former one,
we give a maximal abelian subalgebra a of p, specified by

" )

Let E;; denote the 1j-th matrix unit with 1 < 4,5 < 6 and {e;}1<i<s the standard
basis of 3-dimensional Euclidean space, and let A; = Ey; — E;y3,43 with 1 < ¢ < 3.
The set A(g,a) = {Fe;te;, 2 |1 <i<j <3, 1<k <3} gives the restricted
root system. Let E, denote the root vector corresponding to a root . The root
vecters for a € A(g,a) are as follows:

A= dia’g(tlat%tl’))a t; € R} .

Eeive; = Eijra+ Ejiya, E_cie; = Eiy3; + Ejys,
EZe.' = L5443, E-—~2ei — L5434,
Eei—e; = Eij — Ejysits, E_ciye; = Eji — Eiys jys.
Here the notation Ey e, 4agestase, Means that [A;, Eo, e, tasestases] = QiFoeitagertazes

with 1 <2 < 3. Using these vectors, we have a following root space decomposition
of (g,a):

g=0oD {1$i§js3(RE€i+ej + RE—ei"ej)} @ {1561'953(RE26i +RE_2;)}

{8 BFs + BB o)
where go denotes the space of vectors with their eigenvalues 0.
The set A(g,a)t = {e;+ej, 2¢, | 1 <i<j <3 1<k <3} forms a set of
positive roots of A(g,a). Then we have a Iwasawa decomposition g = €@ a @ n,

where n= @ RE,.
O’EA(g,a)"' .

Next, we consider the root system of the other type and set h = <€B< R(E; ;43 —
1<i<3

Eiy3;), which is the Lie algebra of a compact Cartan subgroup. We think of the
root decomposition of g = g ® C with respect to hc = h ® C. The set {T; =
E; 13— FEit3,4}1<i<s forms a basis of he. Let F,, € gc be the root vector corresponding
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to a root c. Then the root system A(gc, hc) is of the same type as the restricted
root system and the root vectors are given as follows:

Foive, = Lij + Eji — Eigz s — Ejiaiva + V—1(Ei 43 + Ejiys + Eiya; + Eij1a),
Fye, = Epr — Exyspes + V—1(Erpss + Erap),
Fuice; = Eij — Eji + Eiyajys — Bjysizs — V=1(Bitaj + Ejyai — Eijas — Ejia),
F_—e; = Eij + Eji — Eiysjus — Ejpaiys = V—1(Eijya + Ejiya + Eiaj + Eijss),
F_ge, = Exk — Epgapss — \/“‘—1(Ek,k+3 + Ekt3,k),
Fogye; = Bij — Eji + Eiysjys — Ejyaivs + V=1(Biaj + Ejra;i — Eijys — Ejirs),

where 1 <2 < j < 3 and 1 < k < 3. Here the notation Fg,e,+g,e,48,e; Mmeans
that [EvFﬁ1€1+;@262+ﬁ383] = ﬂiF;3181+ﬁ262+,3363 with 1 <4 < 3. The set At = {6.,; +
ej, 2ex | 1 <4< j <3, 1<k <3} give the standard positive root system and
At = {e; +ej, 2, | 1 <i<j <3, 1<k <3} the set of non-compact positive
roots. Put
pt= @ RF,, p"= @ RF,.
a€AL acA}

Then, in pc = p ® C, these two subspaces gives the holomorphic part and the anti-
holomorphic part of it and we have a decomposition gc = ¥c @ p* @ p~. Next, we
give Iwasawa decompositions of the generator of p~. For that purpose, we introduce |
an element X;; € ¢ (1 < i < j <3), specified by

—Eij + Eji — Eiysjys + Ejpaina +V=1(Eijys + Ejivs — Eipa; — Ejys)-
Then the decompositions are as follows:

F—e,‘—ej = Xij + ZEe;—e,’ —2v ""1Ee¢+eja F—Zek =V _1]1 +Az -2 V _1E2ei-

3. Representation of the maximal compact subgroup K

The maximal compact subgroup K is isomorphic to the unitary group U(3) of
degree 3, so the complexifications of K and ¥ are isomorphic to GL(3; C) and gi(3; C)
respectively. In terms of highest weight theory, the equivalent classes of irreducible
finite dimensional representations of GL(3;C) can be parametrized by the set of the
dominant weights, which is given by

D(3) = {} = (A, A2, 23) € Z%% | Ay > A2 > Az}

We denote by 7 the irreducible finite dimensional representation of GL(3; C) with
‘highest weight A € D(3)

Here, for the irreducible representation (7, V3) of GL(3;C), we explicitly give the
infinitesimal actions of generators of gl(3; C) by 7». For that purpose, we introduce

the notion of Gel’fand Tsetlin scheme. The following argument is given in [V-K],
§§18.11.



It can be shown that there is a basis of V) parametrized by the following diagrams:

A1 Az s
Q= Az Az ;
A1

where (A2, A2, A1) € Z%2 is such that Ay > Mg > Ay 2 Ay > A3 € Z% and
A12 2 A1x 2> Agg. We call these diagrams the Gel’fand Tsetlin schemes and the basis
{vo} parametrized by the diagrams {Q} the Gel’fand Tsetlin basis. Using this basis,
we give the explicit formulas of infinitesimal action of gl(3,C) by the differential dr
of 7). The Lie algebra is generated by the ij-th matrix units £; with 1 < 4,5 < 3.
First we write the formulas for F; ;14 and £;;:

J
dr( J;J+1)UQ = Zazy(Q ”Q+ o dn(Ejj)vg = Z Z/\m 1)vQ,
i=1 =1

=1

_]L_l(,\k i1 =i =k+0) [I23 O, jma = Aij~k4i=1)

i O ==k [T1_ ut(xkj—,\.j—-kw )|
with A;; — Aij + 1 and Ay — A for (k,1) # (4,7). In the subsequent argument,
we need the formulas only for E;; with 1 < ¢ < j < 3. Furthermore, note that
the general F;; with ¢ < j can be expressed by the bracket product of £ ;11’s. In
fact, Ey3 = [Ei2, Ess]. Here we give the infinitesimal actions of X;; and T; (for
notations see the previous section), which are members of generators of £c. Via the

map f¢ D (é —AB) — A++/—1B € g[(S,(C), Xij and T; are mapped to —-QEij and

where a;;(Q) =

and Q?;j) is the diagram

V/—1E;; respectively. Under these preparation, the explicit formulas are as follows:
| dT;\(Xlg)’UQ = —-Zan(Q)vQ(er, |
drA(X13)ve = —2(a12(Q)a11(Qf5) — an1(Q )012(6231)))”@;11,12)
— 2(a22(@)an(Qay)) — all(Q)a22(Q—({il))vQE“u’2;)7

dr\(Xa3)vg = —Qam(Q)anz) - 2a22(Q)UQ(+22),

dry(Ti)vg = \/———1)\1117@,

dn(Tz)vg = \/—_1(/\12 + A2z — A1 )vg,

dr(Ts)vg = V=1(A1 + Az + Az — Az — Ag2)vg,

where Q( k) means that Ay — )\” + 1, At — A + 1 and the other components
remain the same.

4. Holomorphic discrete series of Sp(3;R).

We mtroduce the notion of holomorphic discrete series representation of Sp(3; ]R)
For that purpose, we use the Harish-Chandra’s characterization of discrete series
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representation of semi-simple Lie group (cf. [Kn], Chap.IX, §7, Chap.XII, §5). First,
consider the totality of continuous characters on the compact Cartan subgroup T' =
exp(h). Their derivations are parametrized by A = (A, Ay, Ag) € Z%°. The set Z%°
gives a weight lattice in Hom(h,C). Note that {e; — €2, €1 — €3, €3 — €3} gives the
set of compact positive roots, and let p and p. denote halves the sums of positive
roots and compact positive roots respectively. Taking into account that A + p is
analytically integral for each A € Z®* and due to the Harish-Chandra’s theory on
discrete series, we see that the holomorphic discrete series representations of Sp(3; R)
can be parametrized by

Z = {A € Z%| strictly dominant with respect to A%}
:{A€Z®3lA1>O, Ay >0, A3 >0, A1>A2>A3}.

Such A’s are called the Harish-Chandra parameters for the holomorphic discrete
series. We denote by 7 the holomorphic discrete series with the parameter A.
The highest weight of the minimal K-type of ma is given by the special weight
A=A+ p—2p,, which we call the Blattner parameter. More precisely, A = (A; +
1,Ay +2,A3 + 3) if A = (A1,A2,A3). On the other hand, we will also treat the
contragredient 7} of m4. Its Harish-Chandra parameter (resp. Blattner parameter)
is given by (—As, —Ag, —A;) (resp. (—As —3,—A; — 2,—Ay —1)). It is obtained
by the actions of the two elements of the Weyl group, spec1ﬁed by the permutatlon
1 — 3 and the change of signs of A;, Ay and As.

5. Representation of the maximal unipotent subgroup

Let N = exp(n), which is the standard maximal unipotent subgroup of G. In this
section, we construct the irreducible unitary representations of N, using the Kirillov
theory on the unitary representations of nilpotent Lie group (cf. [C-G], Chap.2).
First we give some preparations. Every element z € N can be written as

! ! /
T = (3717502,3?3,$127$13a$23a$12,$137$23)

1 Ty Tyg T3 1 2}, zi5
1 i T3 To3 1 .'13{23
_ 1{zy3 293 3 1
franead 1 1 2
1 —Z75 1
1 TiaThs — Tyy —Tpy 1

where z;;, 2}, 7y € Rfor 1 <k <3and1<9¢,5 < 3. Let n* be the dual space of n
and {ly,l;;,1;} with 1 < k <3 and 1 < 4,5 < 3 the dual basis of n*, where I, l;; and
l'] are dual to o, Ee,q; and Ee, ., respectively. We write every linear form [ as
[ = Zl<z<g<3(£’ql‘m + ‘f:_yl:]) + El<k<3 Eilk with 5117 5”7 & €ER

We denote by Ad* the coadjoint actions of N on n*. As one of the main statement
of the Kirillov theory, we have
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Proposition 5.1. (1) Anyn € N is of the form:
m= Lz‘Iﬂdz\Nxf,Xz

with some | € n*, where M; = exp(9My;) with M; a polarization subalgebra for I, and
X1 18 the character on M; defined by

xi(m) = exp(2nv/—1l(log(m))) m € M.

(2) Two representations m; and ny are equivalent if and only if I' = Ad*(n) - | with
some n € N. In other word, we have a bijection:

N ~ n*/Ad*(N).

Here, we introduce an Ad*(N)-stable filtration of n*. Since n is a 5-step nilpotent
Lie algebra, it has the following descending central series, which is a Ad(N)-stable

_ filtration of n:

no n(l) P {n, n] D) n(Z) = [n, [n, n]] D n(?’) 3(4):) {0}

Take the annihilators of each component in the dual space n*, then we have a Ad*(V)-
stable filtration of n* as follows:

= {0} D {03 5 {(n®) 5 (n@}+ S {3 5 {0}
Taking this into account, we can divide the choices of representatives of n*/Ad* (V)

into the following 5 ways:(i) I € {n®}L (i) I € {n@}\{n®}L (i) [ € {(n®}H\n@}L
(iv) I € {(nI\{n®}+ (v) 1 € w\{nl9}*. |

6. Generalized Whittaker function for holomorphic discrete series.

6.1. Definition. In this section, we recall the definition of generalized Whittaker
functions for holomorphic discrete series, calculate the differential equations which
they satisfy and give the explicit formulas of them. First, we recall the definition. For
that purpose, we introduce the following two spaces associated to fixed (7,V;) € K

and (n, H,) € N.
Cr?(N\G) :={f : smooth H °-valued function on G

| f(ng) =n(n)f(g) (n,9) € N x G},
Cror(N\G/K) :={F : smooth H* ® V,-valued function on G

| Fngk) = n(n) ® 7' (k)F(g) (n,9,k) €N x G x K},
where H:° denotes the space of C*-vectors in H,,.

Definition 6.1. Let w5 be the holomorphic discrete series with Harish-Chandra pa-
rameter A. Consider the space Homge k)(7a, Co°(N\G)) and the restriction map of
it to the minimal K -type 1) of ma:

res, : Homge iy (7a, Cy°(N\G)) 3 F = F -1 € Homg(7, C;°(N\G)),
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where « denotes the inclusion of Ty into 75. A generalized Whittaker function with
K -type 7y, for my is defined to be an element of images by res, .

Note that there is a canonical identification:
Homg (73, Cf)"(N\G)) ~ C,‘;?T;(N\G/K),

where 7 denotes the contragredient of 5. Furthermore, from the Iwasawa decom-
position of G, one obtains a bijection of the former space with C*(A; Vi ® H,°) (the
space of smooth V) ® H °-valued functions). Then the space of generalized Whittaker
functions for 7, is under the bijection with

{F € C2.(N\G/K) | dRx - F =0 VX €p*},

where dR denotes the differential of the right translation R (cf. [Y], Proposition 10.1).
The condition characterizing this space is called the Cauchy Riemann condition.

6.2. Differential equations and explicit formulas of the Whittaker func-
tions. Let 75 be the holomorphic discrete series on Sp(3;R) with Harish-Chandra
parameter A = (A\; — 1, Ay —2, A3 —3), where (Aq, Ay, A3) is the Blattner parameter
for mp. And let W(a) = X wg(a) - vg be the restriction of a generalized Whittaker
function for 7, to the radial part A, where {vg} denotes the Gel’fand Tsetlin basis
for (3, V). Note that the highest weight of 75 is (— A3, —Ag, —A;). From the Cauchy
Riemann condition, we see that W (a) is characterized by the following 6 differential
equations:

(i) dRr_,,_,W(a) =0«
all(Qan)wQ('u)(a) + ¢rawg(a) =0,
(i) dBr,_,W(a) =0 &
(a12(Q(—12,11))a11(Q(.11)) - ‘111(Q(—12,11))a12(Q(_12)))wQ('12,n)(‘1)
+(422(Q@2,11))011(Q(11)) - all(Qfm,n))“22(Q(-22)))WQ(—22'11)(a) + ¢zwe(a) =0,
(iil) dRp_,,_.,W(a) =0 & _
012(Qiay gz, (0) + (@ o, (0) + $Bwa(a) = 0,
(iv) dRp_,, W(a) =0 &
L3 wg(a) + Anwg(a) =0,
(v) dRp_,,W(a) =0 &
L3wg(a) + (M2 + Az — AnJuwg(a) = 0,
(vi) dRp_,,,W(a) =0
L3wg(a) — (A1 + Az + Az + Az + Aaz)we(a) =0,
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where

0
O = a’aa

L7 =0, —2v/=1d}dn(E;) (1 <i<3),
i = wiay dn(Ej;) — vV=Tlaa;dn(Ey) (1 <i<j <3),

By solving these differential equations, we obtain

(1<:<3),

0]

Theorem 6.2. (I) For everyn € N,
dime Hom(ge, i) (74, C2(N\@)) < 1

In particular, the equality holds if and only ifn € N is one of the following four:

(1) n corresponding to 1 € {MMW} such that €, = €5 = 0, which is @ unitary
character.

(2) n corresponding to | € {MPI\{NW I such that &, > 0, €5 =€), = €1, =0,
which has | = &l + &l with & > 0, as a representative of its coadjoint orbit.
This representation has L*(R) as a model.

(3) 1 corresponding to 1 € M\{NW I such thaté; > 0 and &, = &1y = €y = €y =
0, which has 1 =&l + &ls with & > 0, as a representative of its coadjoint
orbit. This representation has L*(R?) as a model.

(4) n corresponding to I € M\{NW} such that & > 0, l?f; gg‘; > 0 and
(&2, €12, €23) # (0,0,0), which has | = &1y + &by + Esls with £ > 0 and €4 > 0,
as a representative of its coadjoint orbit. This representation has L?(R®) as a
model.

Purthermore, we set
A (N\G) == {f € C;°(N\G) | fl|a is of moderate growth}.
Then, for any n € N as above,
| dimc Homg, xy(ma, A;(N\G)) =1 & & > 0.

Here we remark that the coefficients &1, & and €3 in the representatives of the orbits
may be different from the original £, &, and &s.
(IT) We add the condition 5 > 0 to the above four cases. Then, for these cases, the
explicit formulas of Whittaker functwns are given as follows:
(t) When 1 is as in (1),

—A3 —Az — A
Ca3® asy a}‘le‘%{w%, Q= —A3 — Xy ,

~g

0, : Q :otherwise.

wg(s; a) =
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(1t) When n is as in (2),

wq (€2, &35 4, t)
Car(@arapiaH
| 5 VS VR
= { xexp{—27(ajés + a3ls + a3lat?)}, Q= —Az — A+ ;
_)\3
0, Q :otherwise,

where t denotes the coordinate of R.

(11) When n as in (3),

wQ(é.la 63; a, s, 'll/)

(Cay(Q)ay ' "™apt™ a2 Hsmul x

=Xz —A =M

= { exp{—2n(ajéy + a3&s + a3&is® + a36iu?)}, Q= —Az = A+ ;
~A+l+m

0, Q@ :otherwise,

where (s,u) denotes the coordinate of R?.
(1v) When 7 is as in (4),

wq(€1,€2,83;5a, 8,1, u)

(Cay(Q)a) ™" a) ™ a2t smul

exp{—2n(a2é; + a2(£15? + &)

= X3 =X =X

- ﬁ +a3(&u® + &t* + &)} Q= . S )
M +1+m

0, Q :otherwise,

where (s,t,u) denotes the coordinate of R®. .
Here C denotes an arbitrary constant and, in (it) (i42) and (iv),

M =d2—i+1)
al(Q) — (_1)1\/H0< <i ;! 2—1 :
(M=2a)! [ cicn M1 —A2=i4+1) (M1 = Ag —i—m+1)

a?(Q) = (_1)m\/ l!m!(Al—As"m)!HOS‘.Sl()\l-}\a—i-}-l)

7. Formulation of the Fourier expansion

In this section, we introduce two notations: I' = Sp(3;Z) and Nz = NNT. We
first recall the definition of holomorphic Siegel modular form on G.



Definition 7.1. Let 7y, 7\ and 75 as in the argument before. A C*°-function f :
G — Vi is called a holomorphic Siegel modular form of weight Ty with respect to T’

if it satisfies the following conditions:
(1) Fory €T and k € K,

flagk) = m3(k)™' f(g) (g€ G).
(i2) Let Vi be the subspace of C™(I'\G) generated by the right translation of the
coefficient c;.(g) = (f(g),v), wherev € V) and (-,-) : V¥ x V) — C is the canonical
pairing. Then it is isomorphic to w5 as (gc, K)-module, and each cys, satisfies the
Cauchy Riemann condition:

dRx -¢;, =0 VX €p™.
For a fixed ¢ € G, f(zg) (z € N) belongs to L?*(Nz\N) %) Vy. Since Nz\N is
compact, from Gel’fand Graev Piatetski-Shapiro’s Theorem, we have
L*(Nz\N) = @ m(n) - Hy ~ & Homn(n, L*(Nz\N)) @ Hy,
nEN neN C
where m(n) = dim¢ Homy (5, L*(Nz\N)) < oo. Let {®%;}1<m<m(n) denote a basis
of Homy(n, L*(Nz\N)). Then the Fourier expansion of f(zg) along the minimal
parabolic subgroup is given as follows:

m(n)

fleg) =333 (85, 0 W (g))(z) ® vo,

Q) n M=1

where {Q} denotes the set of Gel’fand Tsetlin schemes for 7, {vg} the Gelfand

Tsetlin basis for V', and W}"’Q)(g) € Hy for g € G. Set W](g) := Zyq3 W)(cn’Q)(g) .
vg. Then we observe that
' W}'EC,‘;?T;(N\G’/K)
and that this satisfies the Cauchy Riemann condition since f does. Hence we see
that WY is a generalized Whittaker function with K-type 7) for my, which is given
at 6. ' :
(%onsider the p-component of the decomposition as above. Let {h;};c;r be a com-
plete orthogonal basis of H, and W}"’Q)(g) = Yier c¢?(g)h; the expansion of W}”’Q)
by this basis. Then the -component of the Fourier expansion is

>0 (g) - @34(hi)(2)} - vg-
(@ et |
The remaining work for the construction of our Fourier expansion is to compute

c? and ®7,(h;) as above. The coefficient ¢™?(g) can be obtained by computin
M : ) g

13

53

(W}"’Q)(g), h;) with (,*) denoting the scalar product on H,. Our H, is isomorphic

to C or L?(R™) with n = 1,2 or 3. For 5 as in (2) (3) and (4) of Theorem 6.2, we

take the totality of Hermite functions as the above {A;};cr and the Hermite inner

product as the scalar product on H,. The explicit formula of c?’Q will be given in
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Theorem 9.1 (see also Remark 9.2). In the next section, we determine a basis of
Homy (n, L*(Nz\N)) by giving the functions ®7,(h;) explicitly.

8. Generalized theta series.

Let A;(t) = e %,—e_tz (¢ € N) be the i-th Hermite function. The space L?*(R") has
{hi;(t1) - -+ hip,(t) }ivo,... in>0 a8 a complete orthogonal basis for it. We may consider
the case n = 1,2, 3 now. Let n € N be one of the four representations as in (1),(2),(3)
and (4) of Theorem 6.2 (I). We find a basis {@E@’}lSMSm(m of Homp(n, L2(Nz\N))
for them. It is settled by determining the images of Hermite functions (resp. 1 € C)

by such intertwining operators for the case (2) (3) and (4) of Theorem 6.2 (I) (resp.
~ the case (1)). They are characterized by the differential equations mentioned in the
introduction, except for the case (1). As to the case (1), the image of 1 € C is
characterized by the differential equations arising from the infinitesimal actions of
the generator of n. Here we explain these differential equations in detail. Let u(n)
be the universal enveloping algebra of n. We define

3u(n) = {X € u(n) | dp(X) = constant multiple},
which are given as follows:

(2) If g € N is as in (2) of the theorem,

2F;., F
3“’(77) ~C E261vEZezvEel+ezaE61+637E61—627Ee1—637' Ee j_: 2227::3
| : 21€3 2

(3) If n is as in (3) of the theorem,

2E}261 E61+63
Ee1+ez Eez+es

| NS

2182“31 Eel +e2
Ee1 —e3 Eez—eg

? b

3u(n) ~ C | B,

2E2€1 Eel +e3
E61 +e3 2E261 ]

(4) If n is as in (4) of the theorem,

2E261 E61+82 E61+€3
Ee1 +e2 2E262 E62+es
Eel +ea E62+83 2E263

These are obtained by calculating algebraic relations of dn(X) for generators X of
n. In particular, 3u(n) as in (4)’ is isomorphic to the center of u(n).

For 5 as in (2)’ (3)” and (4)’, the differential equations characterizing ®(h) with
the Hermite function h and ® € Hompy(n, L?(Nz\N)) are given as
(A) Hermite differential equation rewritten by the coordinate of N via the @,
(B) differential equations arising from the infinitesimal actions of zu(n).
In order to give their explicit formulas, we introduce the following notations:

1 0 1 0 1 0

2F5., Eo e
3“’("7) = C E2617 E -2*-12 2;}: 12
€1T€ €

9

X/ = / X!, = ! , ! ,
R Ry s T U R I Py VI S Py v P

XL g ® 0 0, 1,0, 1 9
B 167&'25162 23823%2 8m12 8£E13 271‘\/—152 138-‘1)2 47['\/-—162 61'23.



Under the preparations as above, the differetail equations for the four cases can be
expressed as follows: ’

I) When 7 € N is as in (1) of Theorem 6.2 (I), H, ~ C. We can choose {1} as a
basis of H,. For ® € Hompy(n, L?(Nz\N)), ®(1) is characterized by the follwoing

differential equation:
(1) dn(Epe,)®(1) = 27v/~1&2(1), (2) dy(X)@(1) =0 for X(# Es,) €

I1) When 7 € N is as in the above (2), H, ~ L*(R), whose basis can be chosen as
the totality of Hermite functions {h;(t)}i»o. For ® € Homy(n, L2(Nz\N)), ®(hs(t))
is characterized by the following equations:

3) dry(X)®(hi(¢)) =0 for X = EoersEeivers Beytesy Bermeyy 0T y By,
4) dry(Ese,)®(h ‘(t)) = 27V = 1&®@(hi(t)),

(
(
(5) drn(4Fse, Baey, — B2, 4., )@ (hi(t)) = “167f2§2§3<1>(hi(t)),
(

) (Gor + \/1—-& 2 )(ho(t) = ~(hol1),

(1) 8((0) = (55 (o + e 5o R(ho(t)

IIT) When 5 € N is as in the above (3)', H, ~ L*(R?), for which we can take the
totality of Hermite functions {h;, (s)h;, (u)}“>0,2>0 For ® € Hompy(n, L*(Nz\N)),
®(hi,(s)hi,(u)) is characterized by

(8) drav(Eae, )@ (hiy (8)hiy (w)) = 208/ =16 ®(hy, (8)hiy (w)),
9) dry(2E2e;, Eeytey — Ee1+esEel+ez)(I)(hi1 (S)hz'z(u)) =0,
(10) dTN(2E261E62—63 - E61+€2Ee1 63)(I)(h%1 (S)hzz (u)) = 07

(11) dTN(4E2e1E2e3 e1+e3)@(h11(3) io (1)) = —167261€50(hiy (8)hiy (),

(12) {(a ,122 - XD+ (s = Xi5")}@(ho(s)ho(w)) = —28(ha(s)ho(u)),

ri?
(18) @k (8 (1)) = (o = X" (5 = Xa)*@(ha(s)ho(w)

IV) When 5 € N is as in the above (4), H, ~ L2(R®), for which we can choose the
totality of Hermite functions {h;, (s)hi,(u)hi, (t)}i; 50,5, >0,i50-

For ® € Homy(n, L*(Nz\N)), ®(hi, (s)hi,(u)hs, (1)) is characterized by

(14) druv(Eze; )@ (hi; (s)hiy (t)his (v)) = 20V =1£1@(hiy (8) hiy () iy (w)),

(15) dry(4Bse, Eae, — EZ, 42,)®(hiy (8)hiy (t) iy (w))

= —167°€1£2®(hiy (8)hi, (£) his (u)),
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2E281 Ee: +e2 E61+83

(16) dTN(E61+62 2E262 E82+63
) Ee1+63 E62+63 2E283

— 327616265 @ (hiy (5) Ry (w) i (1)),
00 (s = X"+ (o = )+ (G~ v e~ )
 ®(0a(s o )ho(8)) = ~38 (s ol o),

) ®(hiy (8)hiy (u)hi (1)) =

(18) ®(hy, (8)hiy(u)hiy (1)) = (_f_lm — X1)" x
(%3 “‘)12((% 4w1?—'151 85 afag) — X}3)®(ho(s)ho(u)ho(t))-

By Ngz-invariance and the above equations, we get

Proposition 8.1. (1) When n € N is as in (1) of Theorem 6.2 (I),
HomN(n,L2(NZ\N)) = C . ‘1)0,

where g : C — Cexp 2m/—1€323.

(2) Whenn € N is as in (2) of the theorem, we introduce a set

M€, &) ={M €Z | +§2 e Z}/ ~,

where M ~ M' « M = M’ mod 26;. For a M € M(£y,&3), we define ¥}, €
Homy (1, L(N2\N)) by

28, M
B (hi)(2) = bl (M) = 3 i+ 50
’ meE
v>< exp 2nvV —=1(&zo + (26m + i/? 466 z3 + (26am + M)zq3).

The set { @7} memie ) gives @ basis of Homp(n, L*(Nz\N)).
(3) Whenn € N is as in (3) of the theorem, we introduce a set

! - 2 Mfz M7,
M (£),&3) = {M = (Mg, My3) € Z° | = i, € 7, 4€ +€3EZ 251 EZ}/N,

where M ~ M' < MI,Z = 2517742 + M127 M13 = 2€1R,13 + M12n23 + M13 with
some (n'y,nlg,nhs) € Z°. For a M = (Mg, My3) € IMM(£1,&s), we define @7, €
Hompy(n, L*(Nz\N)) by

?\/I(hil (S)hlz(u))(x)
= ¢2‘1’?3(M,:5) = > hiy (7 + )hzz( Tz + 57 ™ o3 + ) X

(m12,m13,m23)€Z? 26



2 / 2

:z:+(

exp 27TF(§1¢¢1 + + &)zs

E
™My, m13$2 )

261

The set { @4 Ymemv(e.e) gives a basis of Homp(n, L*(Nz\N)).
(4) When € N is as in (4) of the theorem, we introduce a set

+ m12$12 + m13m13 +

m(fhf%é?)) = .
M, M? 26, M3 — M1aMy3)?
M = (M, Mys, Mys) € 7° 2 46, =B 4 + & € Z}/ ~,
{ (M2, Mys, Mys) ! 14 €2 3 16676, €3 }
where

M Py M’ & M, = 2605, + Mig, My = 26035+ Migngs + Mas, Mg = 26in3,n35 +
2(%2 + &2)nhy + Miz(nly + nlynhs) + Miani, + Moz with some (nl,,nis,nhs) € Z°.
For a M = (Mg, M3, Ma3) € M(é1,&5,83), we define Y € Homp(n, L*(Nz\N)) by

@ (i (5)hia (Vi (w) () =
REpM= 5 et g2>hn< o ijg? Tt 50) X

{mi2,m13,ma3)EZ>
2

26ymbe — miom! —
hia (xl23 + 51 216162 = 13) €Xp 271' (élwl + ( 4§ + 52)$2
(26mbs — mlomla)? + A€ Eam)s” .
+ (( &1 1]%65122)2 SLUCE + €3)$3 + mllzwn + m’13x13 -+ m'23:c23).
1

where, mi, = 26ymag + My, miz = 26mas + Miamagz + Mys,

mys = 26ymyamys + (%%212“ + 263)mas + Miz2(mas + magmas) + Mizmag + Mas. The set
{®% } memie, t2,65) gives a basis of Hompy(n, L*(Nz\N)). |

Remark 8.2. From direct computation, we see that the equivalent relations on

M(Es, E3), M (€1, &3) and M(&y, €2, €3) are well-defined and that these sets are finite.
9. Main result. '

Summarizing the previous argument, we obtain our Fourier expansion using the
theta series computed at the previous section.
Theorem 9.1. The Fourier expansion of a holomorphic Siegel modular form f of
weight T on G is as follows:

f(na)= 3 Cla*ayas’ exp2ny/~1(Es(2s + v=13)) - vo,

&3 €NU0

-+ 2 (2, 2 0263 a1(Q)a)? ayr ~adrtemtr(eitatalte)

Q€A &LEN, Es>0Memt(§z,£a)
M(&2,€3)#D
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X Z a; (1 27r£2a2)¢52 @(M n))vg

i>0
+ 2 E S O aaQ)a eyt rleittet)
QEA2 &1 ENE3>0 MeM(61,83)
M (€1,€3)#D
1 1 -
X el 2 2mazi)es (1 5 2ma3ts) o E (M;n))vg
1120, 1220

+ Z ( Z Z 51 £2 53(12(@) Al—l_maéa+ma§2+l

QEA; &EN, €0, £3>0 MeM(¢1,£2:83)
M(E1,£2,£3)#0

1
) redtditds) S (g~ 2rad)as, (h 5 — 2nadty)
5120, 2'220, isZO

1 i1 iad
X 0, (0; = — 2masés) b 8%, (M3 n))vg

2

Notatwns or thzs
(1) 053,052 £ chM e, and CElE & are Fourier coefficients,

(2) au(k; p) = {(—1)FF0E) 4 (—1)E 2 (558) | T (4=E)
2

o Fy (E-'zﬂ, %’—2, ﬁ;—:é — [%];p), where § = 0 or 1 when 1 is even or odd respectively.

A3 — A — X\
(3) Qu = ~X3 =X |,
—As

(4) Q € Ay means that Q run through Gel’fand Tsetlin schemes of the form
"'A3 - )\2 - /\1 \
—)\3 —/\1+l ‘lUZthOSlS)\l—)\g,
s
(5) Q € Ay means that Q) run through Gel’fand Tsetlin schemes of the form
A3 =X =X

Remark 9.2. The coeflicient c"’Q mentioned in §6 is exphc1t1y given as those of qS& €59
qbg’é and qﬁg”é’é when 7 is not a character.

Remark 9.3. Seemingly, this expansion may be strange since there are Gel’fand
Tsetlin schemes Q such that the coefficients of vg is zero. But the reason is that
we evaluate f at na € NA C G. By a certain k € K, all coefficients of f(nak) are
.NON-Zero.

Essentially, this series is obtained by expanding the Whittaker functions with
respect to the Hermite functions. Hence, giving a certian change of the summation
to the expansion, we obtain another expansion in terms of generalized Whittaker
functions:
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Theorem 9.4.
flna) = Z wQ (&3, a) exp 2mv/—1(&sz3) - v,

&3 eNUO
262777, + M

+ 20 X > 52532% SRS :v23+___2_£_)
Q€A £€N, {3>0M€§m(§2’£3) }
m(ﬁméa)

26im+ M
X exp 27V —1(&a22 + ((—&Té—l— + &3)z3 + (26am + M)za3))vg
2

+ Z Z Z 051’53 Z (£1>€37a' $12 + 2€

QeEAs £1€N E3 >0 MeM(£1,€3) (maz,m13)€Z2 1

m ({‘17“3:‘3);’é
2 1 2
l; 12 / /_ ULE!
513'13 + 2§ 23 + )eXP 27T (glxl + 4{ + ( 461 + 63)
miMys
+ Mg + mizTis + T: —=—=T93)vq
1

I

+ Z Z Z Cél’gz,ﬁan(fhéL?aﬁ&a 5512 + 25 I

Q€A2 &1EN, &£>0, &3>0 MeM(é1,62,83)
. m(gl ’52 :‘53 )#Q

m12 2! my3 2 2§1m’23—m12 mi,’
+ —= -+ exp 2mv/ — 1 + +
2§ Lo3 f Log 4&52 ) P (fl 1 (451 52)
26 imbs — miom!L)? + 46E,m! 2 '
e lfﬁgg) S 4 &)+ migia + miseis + migaz)vg
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