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Game theoretic properties of the club filter on P, )\

MASAHIRO SHIOYA
/5 BLo

Let k be a regular cardinal > w, A a cardinal > k and F a filter on P, \. Jech
and Prikry [JP] called F precipitous when the poset F'* ordered by inclusion forces
that the generic ultrapower is well-founded. Refining an ingenious idea of Foreman,
Magidor and Shelah [FMS], Goldring [G] and Shelah independently established that
thg club filter Cy) én P can be made precipitous by Levy collapsing a Woodin
cardinal to the successor of A when A is regular. In [MS] we showed that C,) cannot
be precipitous e.g. when X is strong limit and of cofinality < k. On the other hand
Galvin, Jech and Magidor [GJM] observed that precipitousnéss is also definable in
terms of games (see below). This led us to investigate game theoretic properties of
Ciy in this paper.

We refer to Kanamori [K] for basic material. We use p to denote a regular
cardinal. By S¥ and limX for X C k we denote the set {a& < & : cf a = w}
and {a < & : sup(X Na) = a > 0} respectively. For a < X we fix a bijection
o © |@| — a. Suppose that two players I and II take in turn S, € F* and
Tn € F7 respectively so that S, D T, D Sp+1. We define the game Go(F) by: I

wins iff (), ., Sn = 0. Recall from [GJM] that F' is precipitous iff I has no winning
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strategy in Go(F'). Also the game Gi(F) (resp. G.(F)) is defined by: I wins iff
|MNn<w Snl <1 (resp. N, <o, Sn € F*). As observed by Jech [J], F+ is w;-Baire iff
I has no winning strategy in G.(F). A winning strategy for I in G1(C) from [GIM]

yields the following
Proposition 1. C}, is not w;-Baire.

Proof. We give a winning strategy for I in G,(Cxr). Welet So = {z € P A :zNk €
S} } be the first move of I, and for z € Sy fix an unbounded set {aZ : n < w} C zNk.
Next suppose that T is an n-th move of II. Then by the regressive function lemma
we have v, < k such that {x € T': o = v,} is stationary, which we let be the next
move of 1.

Let (S, : n < w) be a play of I following the above strategy with (Yn :n < w) as

above. Then (,,_, Sn C{Z € PcA: z Nk =sup, ., Y} € CL,, as desired. [
- The following lemma is proved similarly to the original version in [GIM].

Lemma 1. Let S C {z € PxA : s Nk € S¥} be stationary and {o= : n < w}
unbounded in = Nk for £ € S. Then for some m < w {v<k:{zeS:a% =~} is

stationary} is unbounded.

Now we have a PcA generalization of the Galvin-Jech-Magidor result [GIM],

which shows that Goldring’s result is sharp from a game theoretic point of view:

Proposition 2. II has no winning strategy in Go(Cg))-

17

Proof. Let T be a strategy for II. We construct a play in which II follows 7 and

I wins. Build inductiveiy (8¢ : t € T) with T a subtree of k<% such that for any

t €T sucr(t) ={y <k :t*(y) € T} is unbounded and (Sy; : i < [t|) is a partial
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play of I with which IT follows 7 as follows: First set Sp={zePAr:zNKkeS}
where S C»S,‘;’ and S¥ — S are both stationary, and for z € S fix an unbounded
set {of : n < w} C N k. Next suppose that (S; : ¢ € 7 N k™) is defined. Fix
t € TN k™ Let T be the n-th move of II following 7 when I plays (Sy; : i < n).
Then by the above lemma take m < w such that {y < k: {z €T :af, =} is
stationary} is unbounded, which we let be sucz(t). For v € sucy(t) set Siu(y) =
{zx €T :a% =~} Fixy € 8% — S with v € limsucy(t) for any t € T Ny<¥, and
~ an unbounded set {7, : 7 < w} C ~. Build inductively ba branch b : w — 7 through
T with v, < b(n) for any n <w. Then (), ., Sein C{z € Sp: zNK =17} = 0, as

desired. O

For the rest of the paper we give some cases where I has a winning strategy in the
game G1(Ck), and show optimality of Goldring’s result in a different way. Let us
begin by the following observation, which should be folklore like non-w;-Baireness

of F* for a fine filter F' on Py, A:

Proposition 3. Let F be a normal filter on Py, A. Then I has a winning strategy

Proof. We let P, A be the first move of I, and for z € P, A fix a list {oF : n < w}
of . Next suppose that T € F'* is an n-th move of II. Then by the normality of F
we have v, < A with {z € T': o% = v,} € F*, which we let be the next move of I.

Let (S, : n < w) be a play of I following the above strategy with (Y 1 m < w) as

above. Then [, _., Sn = {Vn}, as desired. O

nw

Our first result, Proposition 4 follows from Proposition 3 and our Theorem below.

We nevertheless present it here because of the following lemma, which refines a fact



from [BT] and seems of independent interest.

Lemma 2. Let A < k1%, Then there is a stationary set S C{zePr:k<Vu<

A(cf sup(z N p) = w)} on which the map x — (sup(z Np) : & < p < A) is injective.

Proof. We go by induction on A < k1¥. For A = k just note that S¥ is stationary
in Pk. Next suppose that S C P is as above. Then for y € §¢, — A Sy ={z €
Pey : w;lw =2z NX € SAsupz = v} is stationary, and for any =,y € Sy with
(sup(@Np) : ks < p <A = (sup(yNp) : k < p < A) we have z = Ty NA) =
(YN A) =y, sincezcNA =yNAeS. We claim that {Sy : v € 5%+ — A} is
stationary in P AT. Fix f: (AT)<¥ — A*. Take v € 8%, — A with f“y<¥ C +.
Then by stationarity of Sy some z € Sy with x Nk € « is closed under f, as

desired. O
Now the rest of the proof goes as in Proposition 1:
Proposition 4. I has a winning strategy in G1(Cxx) when X < k1%,

Proof. We let the stationary set as in Lemma 2 be the first move Sp of I, and for
x € Sp and a cardinal k < p < X fix an unbounded set {of;, , : n < w} C zNp. Next
suppose that T is an n-th move of IL. Then by finite applications of the regfessive
function lemma we have (y,n: & < p < A) such that {x € T : 6 <V < Mag, , =
A'yu,n)} is stationary, which Wé let be the next move of I

Let (S, : n < w) be a play of I following the above strategy with (y,,» : n <w)
as above. Then (,<,Sn C {z € So : £ < Vi < A(sup(z N p) = sUPp<y, Yun)}

which is at most a singleton, as desired. [

For our main result below, we are indebted to Shelah’s notion [S] of internally
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approachable submodels of Hy (see also [BM]), as well as Baumgartner’s style [B]

of purely combinatorial proofs.
Theorem. I has a winning strategy in G1(Cxr) when k > wy and A < k11,

Proof. Let {p; : i < w} list (not necessarily injectively) the set of regular cardinals
between s and \. First we claim that .So = {Upcw Zn : ¥ < w(bwn € P ANz, NK €
KA zy U {sup(zn, N ;) : ¢ < w} C Zpy1 AVa € z,(z, is closed under 7, and
Ta ) AVi < w(ef sup(znNpi) = w1 AZ,Np; contains a club subset of sup(z, Np;)))}
is stationary in PA.

Fix f : A<* — X. We build inductively (z,, : n < w) as above with {J, . zn
closed under f as follows: First set zg = U§ <w, To,¢, Where xo¢ is defined in-
ductively by zo0 = {i : @ < w}, Togr1 = To,e Usup(zoe N k) U U{me“(®oe N
la]) : a € zo e UU{mS (@og Na) : a € Zo,‘g} U {sup(mo,g M) : i < w} and
ze = Ugce To,¢ for a limit £, Next set Tny1 = Ugey, Tnrie where Tpi1,e is de-
fined inductively by Tni10 = Tn U fU25% U {sup(zn N ) : @ < w}, Tpi1,ee1 =
xn}l,e Usup(zn+1,¢ N &) UUH{ma“(Bntr,eNlel) : @ € Tny1,e} UL (Eng1,e N :
o€ :vn+1b,§.} U {sup(@nt+1,e Npi) : i <w} and z¢ = U¢<e Tnt1,¢ for a limit £&. Then
{sup(Zn,e N ps) : € <wi} C 2y is club in sup(z, N ;) for any n,i < w.

We let So be the first move of I, and for z € S fix (z, : » < w) as above
with = |J,,<,, Tn. Next suppose that T is an n-th move of II. Then by n + 1
applications of the regressive function lemma we have {yn; : ¢ < n) such that
{z € T : Vi < n(sup(zn N ;) = Yn,i)} is stationary, which we let be the next move

of L.

Let (Sn, : n < w) be a play of I following the above strategy with (yn; : 1 < 1 < w)
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as above. To see that |, ., Sn| < 1, fix z,y € (), <, Sn- By induction on cardinals

-RSMSAweshowtha,t zNp=yNpu.

First take ¢ < w with y; = k. Then x Nk = U, 2n N =Y

’LS’I’I.<L«) ’Ynai =

U¢5n<w Yn N K =y Nk, as desired.

Next suppose that z Ny = y N p with p < X. Take i < w with u; = put. Fix

i <n <w. Then z, Ny, Np* is unbounded in sup(z, Npt) = sup(yn Np*) = Yn .

Thus £ N Yni = Y N Yy since N = Uy, TN = Upgjc, Ta“(z; Np) =

To (N p) = ma“(Y N 1) = Upncjcw Ta“@ N 1) = Upgjco ¥5 N =y Na for any

@ € Tn Nyn N(* — p). Now we have 2Nt = Uy TNy = Uicnew YN Ynyi =

yNut

as desired, since sup(z N p*) = sup(y N pu*) = sup; <, <, Tni-

The limit case is clear from the inductive hypothesis. [
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