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Partition properties of subsets of P, )\

— ‘/ - "';_‘— .“
MASAHIRO SHIOYA 12\‘32)-/\7\ /i}ji} n

ABsTracT. Let K > w be a regular cardinal and A > & a cardinal. The following
partition property is shown to be consistent relative to supercompactness: For any
F iU, co[X]2 — v with X C Pe unbounded and 1 < v < & there is an unbounded
Y C X with |f“[Y]2| =1 for any n < w.

Let k be a regular cardinal > w, A a cardinal > « and F a filter on P, ). Partition

properties of the form P\ — (F¥)2 (éee below for the definition) were introduced

- by Jech [Je] and successfully used to cha.racte1"ize supercompactness: Menas [Me]
proved Pe) — (C)3 for k 2*~"-supercompact via a normal ultrafilter on P\ with
the partition property. As noted by Kamo [Kam], Menas’ argumnt can be modified
to derive PcA — (CT,)3 directly from A-supercompactness of k. For the converse
direction Di Prisco-Zwicker [DZ] and others refined the global resﬁlt of Magidor
[Mag]: A-supercompactness of « follows from P.2**" — (C:2A<N )3.

Johnson [Jo] studied properties of the form X — (F*)2 for X € Ft, which
means that for any f: [X]2 — 2 thereis Y € F* with Y C X and |f“Y]2| = 1.
In this note we are concerned with the case where F' is canonically defined, in
particular F), the minimal fine filter on P, ).

We generally follow the terminology of Kanamori [Kan] with the following ex-

ception: For a cardinal p > w weset (X[ ={z C X :|z|=u}, [X]*={zCc X :

1991 Mathematics Subject Classification. 03E05, 03E55.

Part of this work was done during the author’s stay at Boston University as one of the Japanese
Overseas Research Fellows. He gratefully acknowledges Prof. Kanamori’s hospitality. He also
wishes to thank Prof. Abe for helpful conversations.

Typeset by AAS-TEX



|z| < p} and limA = {a < p:sup(ANa) =a > 0} for A C p. By Ft — (F+)2
we mean X — (F*) for any X € F*. We understand | Ja G ()b when the union
aUbof a € [PcA|Z and b € [PA|2 with Tﬁ,n < w is formed.

Abe [A1] proved )y /4 (F;,)3 under A<F = 2*. Matet [Mat] used Laver’s idea

(see [JS]) to get the same conclusion from an opposite assumption:
Proposition 1. Assume X\* = \. Then F, /A (F1,)3.

Proof. First set PxA = {z¢ : £ < A} and [PcA]® = {Y, : @ < A}. By induction
on £ < X construct z¢ C 2¢ € ’P,.;)\ mutually distinct and y&* € Y, with Y&t G 2
mutually distinct for o € z¢ and 7 < 2 as follows: At stage £ < A by induction on
n < w take z¢gn € Py and yg? € Y, for o € 2, and i < 2so that z¢ C 250 ¢ Ueg<e 2
and zg, U U{yg” ‘a € Zen NG < 2} C Zgny1. Finally set z¢ = Un<w %n- We claim
that f defined by f({yg®, 2¢}) = i witnesses {z : £ <A} A (F1)3.

Fix an unbounded set X C {2 : £V < A}. We show f“[X]2 = 2. Take o < A
with Yo € [X]", and { < A with @ € z; € X. Then f({yg% 2}) =i for i <2 by

definition, as desired. [J

The above proof yields in fact for any v < k f : [X]2 — v with X € FX and
fYZ =vforany Y € Ff withY C X. |

It is natural to ask, as did Abe [A1], if 71, / (F )2 holds in general. His answer
[A2] to the analogous questioﬁ would make it more interesting: C, 4 (C:A 2,

Appealing more directly to Magidor’s idea [Mag], we give a canonical witness to

Abe’s observation:
~ Proposition 2. Let p < k be regular. Then {x € Pe): cf (xNk) =p} A (CH)3.

Proof. Set S = {z € PA:cf (zNk) = p} and for € S fix an unbounded set ¢, C
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z Nk of order type p. For {z,y} € [S]Z let f({z,y}) be 0 when min(c,Acy) € ¢z,

and 1 otherwise. Fix a stationary set T C S. We show f“[T]% = 2.

First we have v < k such that for any w € Pt there are w C z,y € T with
v € ¢z — ¢y: Suppose to the contrary that we have g : & — P\ such that for any
vy<kand g(v) Cz,y €T,y E€cyiffy € cy. Takez,y € C(g)NT with zNk < yNk
by the stationarity of {zNk: 2 € C(g)NT}. Then ¢z =cy N z N k has order type

, contradicting the choice of cy.

Now let v < k be the minimal as above. Then for a < v we have wy, € P

such that for any wo Cz,y €T, a € iff a € ¢y. Set w=J Wo € PeA. Take

a<ly
wCzCyC zfrom T with v € ¢; Nc, — ¢y. Then min(c;Acy) = min(cyAc,) =
by wa C ¢ C y C z for any a < v, and hence f({z,y}) =0 and f({y,2}) =1 by

defintion, as desired. [

- The rest of the paper is devoted to a negative answer to Abe’s question in the
strong sense. We refer to Baumgartner’s expository paper [B] for the fudiments of
iterated forcings. We are indebted for the definition of the poset Qs below to Galvin
(see [JS]), who proved under MA,, that for any f : [X]? — n with X C [w;]<¥
.unbounded and 1 < m,n < w there is an unbounded Y C X with |f“[Y]?| = 1.

Assume for the moment that « is a compact cardinal and A < 2*. Fix a coloring
i Un<w [S]’é — ~ with S C P\ unbounded and 1 < v < k. We define a poset Qf
and establish its basic properties.

Fix a fine ultrafilter U on S and define inductively a n—completevultraﬁlter Un
on [S2 by Up = {{0}} and Ups1 = {X : {z : {a: {z} Ua € X} € U,} € U}

For n < w let B, be the unique 8 < v with {a € [S]* : f(a) = B} € U,. Let



Qs ={p € [S]<* :Vm,n < wVa € P|2({b € [S12 : f(aUb) = Bmin} € U,)} and

g<piffgdpandyg zforanyrepandye€q—p.

First for a generic filter G C Qy, |JG is unbounded in Px\ by the density of
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{g € Qs : 3y € q(z C y)} for any z € Py, and homogeneous for f: f[UGIE =

{Bn} for any n < w.

Next @y is k-centered closed (hence in particular x-directed closed): A centered
subset D of Q5 of size < k has a lower bound |J D.
Finally we show that Q; is k-linked. Fix an injection m : PcA — #2. For A C 2

witha < kset Qra={p€ Qs : {n(@)|la:zept=AN{T>E)|a: 2z, P

z€p
is injective}. Then Q5 = U{Q,4 : 3o < k(A C @2)} by inaccessibility of k. To
see linkedness of Qy 4, fix p,q € Q4. Thenz ¢ y forv any x € p—qand y € ¢:
Otherwise we would have x = z for some z € p—gq, y € ¢ with £ C y and 2 € ¢ with
m(z)|o = m(2)|e. Similarly y ¢ z for any z € p and y € ¢ — p. Thus pUgq < p,q,

as desired.

A minor modification of the original proof [B] for x = w; yields the following

Lemma. Assume 2<% = k. Let (Pp,Qu : a < 8) be a < k-support iteration such
that IFo “Qe is k-linked and k-centered closed” for any o < B. Then Pg satisfies

kt-c.c.

Proof. Fix X € [Pg]*". For a < flet g “Qo = U, <\ Qay With Qo linked for

any v < k.” For p € X by induction on £ < & take ps < p, aeg € supp(pe) and

Ve < & so that p¢ < pg and pet1laf oz “pe(af) € Q.aé’%’;’” for any £ < ( < &k,

and {{ < Kk : a’g = «} is unbounded for any a € U€<n supp(p¢). Take Y € [X]".+ |

and § < k so that § € Agc,s [ {im{¢ < & : a’g = a} : o € supp(pe)} for any



26

p € Y. Next take Z € [Y]*" so that {{of : £ < 6} : p € Z} forms a A-system
with root d € [B]<¢. Finally take W € [Z]"" and H € [6 x d x K]<F so that
H={(¢0og):E<6Nafedlforanype W.

To see that W is linked, fix p,q € W. Inductively we construct a lower bound T
of {pe¢, q¢ : § < 6} C Py with support s = U§<6 supp(pe) U U£<6 supp(ge). At stage
a € s it suffices to show 7|a IFo “{pe(), ge(a) : € < 6} C Q4 is centered.”

When d € d=U;cs supp(p¢) N U5 <65upp(qe), for unboundedly many § < 6
o= aé’ by the choicé of 6, and hence r|la < pey1|o, gey1|o forces pe(a), ge(a) €
Qav, where (§,a,v) € H, as desired. Otherwise the claim follows, since r|a Ik,

“{pe(@),ge(@) : £ < 6} C Q. is descending.” [J

We are now ready to prove our main result. By F'* — (F1)<“ we mean that
for any f : U, [X]2 — 7 with X € F* thereis Y € F* with Y C X and
IF“[Y]2]| = 1 for any n < w. Note that F, — (F.)3¢ iff k is Ramsey for any

KK/7y

1<y <k

Theorem. Letk be a supercompact cardinal and A a cardinal > k. Then there is a

Kkt -c.c. poset forcing supercompactness of k and F, — (F WS forany 1 <y < k.

Proof. First we force with the Laver poset [L] for x and then add A Cohen subsets
of k to ensure supercompactness of k and A < 2% in the further extensions. Next
we perform a < k-support iteration (Pa,Qa ra < 2)‘“) with I, “Qa = Qf-”
for some canonical P,-name f for a coloring. The standard inductive argument,
together with k-closure and k¥-c.c. of P, shows that P, is of size < 2’\<N, and so is
the set of canonical P,-names fér colorings for any a < 2"“, whosé union can be

identified with that of canonical P,»<~-names for colorings. Thus the iteration can



be arranged so that a homogeneous set for a coloring in the final model by P«

appears in an int_erxhediate model, which remains unbounded by absoluteness of

P, as desired. O
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