Analogue of Poisson Distribution in Monotone Fock Space

NAOFUMI MURAKI

Mathematics Laboratory, Iwate Prefectural University e-mail: muraki@iwate-pu.ac.jp

1 Introduction

The monotone Fock space was introduced by the author to construct a new example of noncommutative "de Moivre Laplace theorem" [1] and of noncommutative "Brownian motion" [2] in quantum probability theory (see [3] [4] for general reference to quantum probability). We note that the essentially same structure was introduced by Lu [5], independently from the author.

In this note, we investigate the "Poisson type" limit distribution for Bernoulli random variables $x_i = q_i + a\delta_i^{\circ}$ with $q_i = \delta_i^+ + \delta_i^-$ on the monotone Fock space Φ . We determine the probability measure ν of the limit distribution of the operator

$$\frac{q_1 + q_2 + \dots + q_n}{\sqrt{n}} + c(\delta_1^{\circ} + \delta_2^{\circ} + \dots + \delta_n^{\circ}) \qquad (n \to \infty)$$

in the vacuum state. Here δ_i^+ , δ_i^- , δ_i° are the creation, annihilation, and conservation operators on the discrete monotone Fock space.

2 Monotone Fock Space

Let us give the precise definition of the monotone Fock space and related operators. The discrete monotone Fock space Φ is the Hilbert space direct sum $\Phi = \bigoplus_{r=0}^{\infty} \mathcal{H}_r$ of the r-particle spaces

$$\mathcal{H}_r = l^2({}_T\mathrm{M}_r) \qquad (r = 0, 1, 2, \cdots).$$

Here, \mathcal{H}_r is the complex l^2 -space on the set

$$_{T}M_{r} = \{\sigma | \sigma = (i_{r} > i_{r-1} > \dots > i_{2} > i_{1}); i_{1}, i_{2}, \dots, i_{r} \in T\}$$

of all r-tuples $\sigma=(i_r>i_{r-1}>\cdots>i_2>i_1)$ from the natural numbers $T=N=\{1,2,3,\cdots\}$. Here $\sigma=(i_r>i_{r-1}>\cdots>i_2>i_1)$ means the r-tuple $\sigma=(i_r,i_{r-1},\cdots,i_2,i_1)$ with the property that the components are listed in the increasing order to the left, for example $\sigma=(5>3>2)$. Note that $_TM_0=\{\Lambda\}$ with the null sequence Λ , and hence $\mathcal{H}_0\cong \mathbb{C}$.

Each r-particle space \mathcal{H}_r has the natural complete orthonormal basis $\{e_{\sigma}\}_{{\sigma}\in_T M_r}$ labelled with ${\sigma}\in_T M_r$, where e_{σ} is defined by

$$e_{\sigma}(au) = \left\{ egin{array}{ll} 1 & (au = \sigma), \\ 0 & (au
eq \sigma). \end{array} \right.$$

The unit vector e_{Λ} corresponding to the null sequence Λ is called the *vacuum vector* and denoted by Ω .

The discrete monotone Fock space has the three natural classes of operators δ^+ , δ° , δ^- . The creation operator δ_i^+ $(i \in T)$ is defined by

$$\delta_i^+ e_{(j_r > \dots > j_1)} = \left\{ \begin{array}{ll} e_{(i > j_r > \dots > j_1)} & \text{(if } i > j_r), \\ 0 & \text{(otherwise)}. \end{array} \right.$$

The annihilation operator $\delta_i^ (i \in T)$ is defined by

$$\delta_i^- e_{(j_r > \cdots > j_1)} = \left\{ \begin{array}{ll} e_{(j_{r-1} > \cdots > j_1)} & \text{(if } r \geq 1 \text{ and } i = j_r), \\ 0 & \text{(otherwise)}. \end{array} \right.$$

The conservation operator δ_i° $(i \in T)$ is defined by

$$\delta_i^{\circ} e_{(j_r > \dots > j_1)} = \left\{ \begin{array}{ll} e_{(j_r > \dots > j_1)} & \text{(if } r \geq 1 \text{ and } i = j_r), \\ 0 & \text{(otherwise)}. \end{array} \right.$$

These operators $\delta_i^+, \delta_i^{\circ}, \delta_i^-$ are bounded operators, and δ_i^+ and δ_i^- are mutually adjoint: $(\delta_i^-)^* = \delta_i^+$.

3 Bernoulli Variables

Let us consider the operators x_i on Φ which can be interpreted as the Bernoulli random variables in the Posson limit theorem (= law of small numbers) of classical probability theory.

Let x_i $(i \in T)$ be an operator on Φ defined by

$$x_i = \delta_i^+ + \delta_i^- + a\delta_i^\circ.$$

The probability distribution of x_i under the vacuum state $\phi(\cdot) = \langle \Omega | \cdot \Omega \rangle$ is the two point distribution given by

$$p \cdot \varepsilon_{x_{\perp}} + q \cdot \varepsilon_{x_{\perp}}$$

with $p = \frac{1}{2} - \frac{a}{2\sqrt{4+a^2}}$, $q = \frac{1}{2} + \frac{a}{2\sqrt{4+a^2}}$ and $x_{\pm} = \frac{a}{2} \pm \sqrt{1 + \frac{a^2}{4}}$. Here ε_x denotes the Dirac measure at a point x. This is verified through the calculation of the moment generating function $f(s) = \sum_{p=0}^{\infty} m_p s^p$ for x_i , where m_p is the p-th moment $\phi(x_i^p)$ of x_i . The direct calculation shows

$$f(s) = \frac{1 - as}{1 - as - s^2}$$

and hence we get the above probability measure.

Furthermore we can show that the operators $\{x_i\}$ are independent under the vacuum state ϕ , in the sense of Kümmerer. So the operators $\{x_i\}$ can be viewed as quantum Bernoulli random variables.

4 Moments and Diagrams

We want to know the limit distribution ν of the operators

$$\frac{q_1+q_2+\cdots+q_n}{\sqrt{n}}+c(\delta_1^{\circ}+\delta_2^{\circ}+\cdots+\delta_n^{\circ})$$

at $n \to \infty$ under the vacuum state ϕ , where q_i is given by $q_i = \delta_i^+ + \delta_i^-$. The scaling of this type is motivated by the Fock space interpretation of the classical Poisson process [4]. The limit distribution, if there exists, can be viewd as an analogue of Poisson distribution in the case of monotone Fock space.

To obtain the limit distribution ν , we adopt the moment method. Put

$$X_{n} = x_{1} + x_{2} + \dots + x_{n}$$

= $q_{1} + q_{2} + \dots + q_{n} + (c\sqrt{n})(\delta_{1}^{\circ} + \delta_{2}^{\circ} + \dots + \delta_{n}^{\circ}),$

where we put $a = c\sqrt{n}$ with some constant c. Let us take the limit of the p-th moments of $\frac{X_n}{\sqrt{n}}$:

$$m_p = \lim_{n \to \infty} \langle \left(\frac{X_n}{\sqrt{n}}\right)^p \rangle.$$

Here $\langle \cdot \rangle$ denotes the vacuum expectation $\phi(\cdot)$.

By the combinatorial argument, we can see that the limit m_p of the moments can be calculated by the combinatorial formula

$$m_p = \sum \langle \underbrace{\qquad \qquad \qquad \qquad \qquad }_{\#\{points\}} \rangle$$

Here the summation of the values $\langle g \rangle$ is taken over all such admissible diagrams g as

Here we omit the formal definition of the admissible diagram g. But, in the pictorial language, it is the object g defined as follows.

(1) The diagram g consists of some connected components of the form h (in this case $\sharp\{\text{connected components}\}=j$).

$$g = \bigcap_{h_1} \bigcap_{h_2} \cdots \bigcap_{h_j}$$

- (2) The diagram h is defined by specifying the following two objects
 - (a) a subset of even number from the given set of points in linear order,
 - (b) a noncrossing pair partition of the selected set of even number.

The value $\langle g \rangle$ for an admissible diagram g is calculated by the following rule.

(a)
$$\langle g \rangle = \frac{\langle h_1 \rangle}{\sharp \{ \text{lines in } h_1 \} + 1} \frac{\langle h_2 \rangle}{\sharp \{ \text{lines in } h_2 \} + 1} \cdots \frac{\langle h_j \rangle}{\sharp \{ \text{lines in } h_j \} + 1}$$

(if
$$g = h_1 h_2 h_2 h_3 \dots h_j$$
)

$$(b) \quad \langle h \rangle = c^{q-2k} \langle h' \rangle$$

(if h splits into a noncrossing pair partition h' with 2k points and q-2k singletons, where $q=\sharp\{\text{ points in }h\}$)

(c) For a noncrossing pair partition h',

$$(c1) \quad \langle h' \rangle = \langle h'_1 \rangle \langle h'_2 \rangle \cdots \langle h'_j \rangle$$

(if h splits into the connected components h'_1, h'_2, \dots, h'_l)

(c2)
$$\langle h' \rangle = \frac{\langle h'' \rangle}{\sharp \{ \text{lines in } h'' + 1 \}}$$
 (if $h' = h''$)

(c3)
$$\langle \text{ empty diagram } \rangle = 1.$$

5 Moment Generating Function

Let us investigate the moment generating function

$$f(s) = \sum_{p=0}^{\infty} m_p s^p$$

for the moment sequence $m_p = \lim_{n\to\infty} \langle \left(\frac{X_n}{\sqrt{n}}\right)^p \rangle$. By the result of the previous section, the moment m_p can be expressed by

$$\begin{split} m_p &= \sum_{g \text{ : admissible}} \left\langle \underbrace{h_1 \cdot h_2 \cdot \cdots \cdot h_j}_{\text{ # is } j = p} \right\rangle \\ &= \sum_{j=1}^{\left[\frac{p}{2}\right]} \sum_{\substack{p_1 + \cdots + p_j = p \\ p_1 \geq 2, \cdots, p_j \geq 2}} \sum_{\substack{h_1, h_2, \cdots, h_j \\ p_1 \geq 2, \cdots, p_j \geq 2}} \left\langle \underbrace{h_1 \cdot h_2}_{p_1} \right\rangle \left\langle \underbrace{h_1 \cdot h_2}_{p_2} \right\rangle \left\langle \underbrace{h_1 \cdot h_2}_{p_2} \right\rangle \cdot \cdots \left\langle \underbrace{h_j \cdot h_j}_{p_j} \right\rangle. \end{split}$$

Hence the moment generating function f(s) is given by

$$f(s) = m_{0}s^{0} + m_{1}s^{1}$$

$$+ \sum_{p=2}^{\infty} \left\{ \sum_{j=1}^{\left[\frac{p}{2}\right]} \sum_{\substack{p_{1} + \dots + p_{j} = p \\ p_{1} \geq 2, \dots, p_{j} \geq 2}} \sum_{\substack{h_{1}, h_{2}, \dots, h_{j} \\ h_{1}, h_{2}, \dots, h_{j}}} \left\langle \mathbf{h}_{1} \mathbf{h}_{1} \right\rangle \left\langle \mathbf{h}_{2} \mathbf{h}_{2} \right\rangle \cdot \dots \left\langle \mathbf{h}_{j} \mathbf{h}_{j} \right\rangle \right\} s^{p}$$

$$= 1 + \sum_{p=2}^{\infty} \left\{ \sum_{j=1}^{\left[\frac{p}{2}\right]} \sum_{\substack{p_{1} + \dots + p_{j} = p \\ p_{1} \geq 2, \dots, p_{j} \geq 2}} \left(\sum_{h_{1}} \left\langle \mathbf{h}_{1} \mathbf{h}_{1} \right\rangle s^{p_{1}} \right) \cdot \dots \left(\sum_{h_{j}} \left\langle \mathbf{h}_{j} \mathbf{h}_{2} \right\rangle s^{p_{j}} \right) \right\}$$

$$= 1 + \sum_{j=1}^{\infty} \left\{ \sum_{p_1=2}^{\infty} \left(\sum_{h_1} \langle \cdot h_1 \cdot h_1 \cdot \rangle \right) s^{p_1} \right\}^j$$

$$= \frac{1}{1 - g(s)}.$$

Here the function g(s) above is defined by

$$g(s) = \sum_{p=2}^{\infty} \left(\sum_{h} \langle \widehat{h} \rangle \right) s^{p}.$$

Now, let us calculate the function g(s).

$$g(s) = \sum_{p=2}^{\infty} \left(\sum_{k} \langle \widehat{h} \rangle \right) s^{p}$$

$$= \sum_{p=2}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{p-2}{2}\right]} \binom{p-2}{2k} \frac{1}{k+1} c^{p-2-2k} a_{2k} \right\} s^{p}$$

$$= s^{2} \sum_{q=0}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{q}{2}\right]} \binom{q}{2k} \frac{a_{2k}}{k+1} c^{q-2k} \right\} s^{q}.$$

Here $a_{2k} = \frac{1}{2^k} {2k \choose k}$ is the 2k-th moment of the standard arcsine law [1]. Using the formula $a_{2k} = w_{2k}$

 $\frac{a_{2k}}{k+1} = \frac{w_{2k}}{2^k}.$

between the arcsine moments $\{a_{2k}\}$ and the semicircular moments $\{w_{2k}\}$, we can rewrite the function g(s) as

$$g(s) = s^2 \sum_{q=0}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{q}{2}\right]} {q \choose 2k} \frac{w_{2k}}{2^k} c^{q-2k} \right\} s^q.$$

By the way, the moment generating function $f_{free}(s)$ for the free Poisson distribution [6] is given by $f_{free}(s) = \frac{1}{1-g_{free}(s)}$ with

$$g_{free}(s) = \sum_{p=2}^{\infty} \left(\sum_{h} \langle f_h \rangle' \right) s^{p}$$

$$= s^{2} \sum_{q=0}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{q}{2}\right]} {q \choose 2k} w_{2k} c^{q-2k} \right\} s^{q}.$$

Here the calculation of $\langle h \rangle'$ is done based on the vacuum expectation $\langle \cdot \rangle'$ on the full Fock space. If we rewrite the moment generating function g(s) as the form

$$g(s) = 2\left(\frac{s}{\sqrt{2}}\right)^2 \sum_{q=0}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{q}{2}\right]} \binom{q}{2k} w_{2k} (\sqrt{2}c)^{q-2k} \right\} \left(\frac{s}{\sqrt{2}}\right)^q,$$

we can recognize the relation between g(s) and $g_{free}(s) = g_{free}(s; c)$:

$$g(s) = 2 g_{free}\left(\frac{s}{\sqrt{2}}; \sqrt{2}c\right).$$

By the way, the function $g_{free}(s)$ is calculated as follows.

$$g_{free}(s) = \sum_{p=2}^{\infty} \left(\sum_{k} \langle \mathbf{h} \mathbf{h} \mathbf{h} \rangle' \right) s^{p}$$

$$= s^{2} \sum_{q=0}^{\infty} \left\{ \sum_{k=0}^{\left[\frac{q}{2}\right]} \binom{q}{2k} w_{2k} c^{q-2k} \right\} s^{q}$$

$$= s^{2} \sum_{k=0}^{\infty} w_{2k} c^{-2k} \sum_{q=2k}^{\infty} \binom{q}{2k} (cs)^{q}$$

$$= \frac{s^{2}}{1 - cs} \sum_{k=0}^{\infty} w_{2k} \left(\frac{s}{1 - cs} \right)^{2k}$$

$$= \frac{(1 - cs) - \sqrt{(1 - cs)^{2} - 4s^{2}}}{2}.$$

Here, in the last two equalites, we used two formulas of generating functions [7]:

$$\left\{egin{array}{l} rac{z^n}{(1-z)^{n+1}} = \sum_{k=0}^{\infty} inom{k}{n} z^k, \ \sum_{k=0}^{\infty} w_{2k} \ t^k = rac{1-\sqrt{1-4t}}{2t}. \end{array}
ight.$$

By the relation g(s)=2 $g_{free}\left(\frac{s}{\sqrt{2}};\sqrt{2}c\right)$, we obtain the explicit form of g(s):

$$g(s) = (1-cs) - \sqrt{(1-cs)^2 - 2s^2}.$$

Hence we finally get the explicit form of the generating function $f(s) = \frac{1}{1-g(s)}$ for the moment sequence $\{m_p\}$:

$$f(s) = \frac{1}{cs + \sqrt{(1 - cs)^2 - 2s^2}}.$$

6 Density

The probability measure ν , associated to the limit process

$$\frac{q_1 + q_2 + \dots + q_n}{\sqrt{n}} + c(\delta_1^{\circ} + \delta_2^{\circ} + \dots + \delta_n^{\circ}) \qquad (n \to \infty)$$

under the vacuum state ϕ , is an analogue of Poisson distribution in the case of monotone Fock space. This limit measure (= monotonic "Poisson distribution")

can be explicitly determined through the Cauchy transform [8] of the generating function f(s), which is already calculated in the previous section.

Monotonic "Poisson distribution" ν is given by

$$\nu = p \cdot \lambda + A\varepsilon_{c+\sqrt{2+c^2}} + B\varepsilon_{c-\sqrt{2+c^2}},$$

with its density of the absolutely continuous part

$$p(x) = \frac{1}{\pi} \frac{\sqrt{2 - (x - c)^2}}{c^2 + 2 - (x - c)^2} \qquad (c - \sqrt{2} < x < c + \sqrt{2}).$$

Here, the density p(x) satisfies

$$\int_{c-\sqrt{2}}^{c+\sqrt{2}} p(x)dx = 1 - \frac{|c|}{\sqrt{2+c^2}},$$

 λ is the Lebesgue measure on the real line, ε_x denotes the Dirac mesure at a point x, and A and B are the normalization constants.

References

- [1] Muraki, N., A new example of noncommutative "de Moivre-Laplace theorem." In: Probability Theory and Mathematical Statistics. Proceedings of the Seventh Japan-Russia Symposium, Tokyo 1995, ed. by S. Watanabe, M. Fukushima, Yu. V. Prohorov and A. N. Shiryaev. Singapore: World Scientific, 1996. 353-362
- [2] Muraki, N., Noncommutative Brownian motion in monotone Fock space. Commun. Math. Phys. 183, 557-570 (1997)
- [3] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus (Birkhaüser, Basel, 1992).
- [4] Meyer, P. A., Quantum Probability for Probabilists, Lecture Notes in Mathematics, Vol. 1538 (Springer-Verlag, Berlin, 1993).
- [5] Lu, Y. G., An interacting free Fock space and the reciprocal Wigner law. Prob. Math. Statist. 17, 1 (1997)
- [6] Speicher, R., A new example of independence and white noise, *Prob. Th. Rel. Fields*, **84**, 141-159 (1990).
- [7] Graham, R. L., Knuth, D. E., Patashnik, O., Concrete Mathematics, Addison-Wesley, 1989.
- [8] Voiculescu, D. V., Dykema, K. J., Nica, A., Free Random Variables, CRM Monograph Series, AMS, 1992.