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1 Introduction

The monotone Fock space was introduced by the author to construct a new example
of noncommutative “de Moivre Laplace theorem” [1] and of noncommutative “Brow-
nian motion” [2] in quantum probability theory (see [3] [4] for general reference to
quantum probability). We note that the essentially same structure was 1ntroduced
by Lu [5], independently from the author.

In this note, we investigate the “Poisson type” limit distribution for Bernoulli
random variables z; = ¢; + a6 with ¢; = 6; + 6; on the monotone Fock space ®.
We determine the probability measure v of the limit distribution of the operator

¢ +g+---+gq, o o : )
1 2\/’5 +c<61+62+--'-+§n) : (n — o0)

in the vacuum state. Here &;", 6;, 67 are the creation, annihilation, and conservation
operators on the discrete monotone Fock space.

2 Monotone Fock Space

Let us give the precise definition of the monotone Fock space and related operators.
The discrete monotone Fock space ® is the Hilbert space direct sum & = @2 H,
of the r-particle spaces

H, = B(rM,) (r=0,1,2,---).
Here, H, is the complex [?-space on the set
™, = {olo=(0E,>4i_, > >0, >14); 4,6 ,i, €T}

of all r-tuples o = (i, > 4,_, > --- > 4, > i,) from the natural numbers T =
= {1,2,3,---}. Here 0 = (¢, > 4,_, > --- > i, > i,) means the r-tuple ¢ =
(zr, %4y, 1, 1,) With the property that the components are listed in the increasing
order to the left, for example o = (5 > 3 > 2). Note that My = {A} with the null
sequence A, and hence Hy = C.
Each r-pa.rticle space H, has the natural complete orthonormal basis {e, }re, M,
labelled with o € +M,, where e, is defined by

_J1 (r=o0),
e"(T)"{o (r £ 0).



The unit vector e, corresponding to the null sequence A is called the vacuum vector
~ and denoted by Q. ' ’

The discrete monotone Fock space has the three natural classes of operators 6+,
8°, 6~. The creation operator 6] (i € T') is defined by

ro ] ey (> ),
0 €lir>>5) { 0 (otherwise).

The annihilation operator §; (i € T') is defined by

- ) el (ifr>1andi=3j),
> { 0 (otherwise).

The conservation operator 69 (i € T) is defined by

Cer = ] €G>e>iy  (fr2Tandi=j),
i €0 >>31) 0 (otherwise).

These operators §;,62,6; are bounded operators, and §; and §; are mutually ad-
joint: (8;)* = 6;.

3 Bernoulli Variables

Let us consider the operators z; on ¢ which can be interpreted as the Bernoulli
random variables in the Posson limit theorem (= law of small numbers) of classical
probability theory. ' '

Let z; (1 € T') be an operator on ® defined by

z; = 8 + 67 + ab;.

The probability distribution of x; under the vacuum state ¢(-) = (Q] - Q) is the two
point distribution given by
D &y, +q-Ex_

with p = %——ﬁ, q= %+2.\/Tg—¥&f @dxi = %:i:\/l—l—%f-. Here e, denotes the
Dirac measure at a point z. This is verified through the calculation of the moment
generating function f(s) = 3,2 mys? for x;, where m, is the p-th moment o(x?) of
z;. The direct calculation shows

— as

flo) =

as — s2

and hence we get the above probability measure.

Furthermore we can show that the operators {z;} are independent under the
vacuum state ¢, in the sense of Kiimmerer. So the operators {z;} can be viewed as
quantum Bernoulli random variables.

4 Moments and Diagrams
We want to know the limit distribution v of the operators

q1+q2+"'+qn

Vn

+c(6] +65+---+6;)



at n — oo under the vacuum state ¢, where ¢; is given by ¢; = 6; +6;. The scaling
of this type is.motivated by the Fock space interpretation of the classical Poisson
process [4]. The limit distribution, if there exists, can be viewd as an analogue of
Poisson distribution in the case of monotone Fock space.

To obtain the limit distribution v, we adopt the moment method. Put

Xo = T1+z+ -+ 2n
= q+@+ g+ (eVn)(E +86+---+6),

where we put a = c¢y/n with some constant ¢. Let us take the limit of the p-th

Xp.
moments of SR ,
. Xn
m=tm(7)

Here (-) denotes the vacuum expectation ¢(-).

By the combinatorial argument, we can see that the limit m, of the moments
can be calculated by the combinatorial formula

mp=Z<@mn@>

—_—
Fkpointsy =p
Here the summation of the values ( g ) is taken over all such admissible diagrams g as

Here we omit the formal definition of the admissible diagram g. But, in the pictorial
language, it is the object g defined as follows.

(1) The diagram g consists of some connected components of the form m
(in this case f{connected components} = j).

RO W AR

(2) The diagram h is defined by specifying the following two objects
(a) a subset of even number from the given set of points in linear order,
(b) a noncrossing pair partition of the selected set of even number.

‘o selected subset

o-f even mumber

° _— 9@

i e . ’et
given set A‘“ah\m



The value ( g ) for an admissible diagram g is calculated by the following rule.

(a) < >___ <h1> <h2> . (h.1>
f{lines in A1} + 1 f{linesin hp} +1  H{lines in h;} +1

RN OYATYDOY
® (h) = H(H)

(if h splits into a noncrossing pair partition h’ with 2k points
and ¢ — 2k singletons, where ¢ = f{ points in h})
(c) For a noncrossing pair partltlon K,
(1) (B') = (hy)(hy) - (h5)

(if h splits into the connected components A}, h, - - -, hj)

i = JE )

o (h")
(c2) (K) = #{lines in A" + 1}

(c3) ( empty diagram ) =

5 Moment Generating Function
Let us investigate the moment generating function
o
f(s) = Z mps?
=0 .

for the moment sequence m, = llmn_m(( ) ). By the result of the previous
section, the moment m, can be expressed by

o ¥ (D)
g : admissible ' \_—————\ —————
#ipeinriay =F

8 |
5 > <@><@> A,

J:l b1+.. + j:p hl’h27'”’
p1>

2,-0,p; 22 ?, P» _ f,

Hence the moment generating function f(s) is given by

f(8) = mes® +myst
{
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1
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Here the function g(s) above is defined by

g(s) = (Z ({n) )) sP.

p—2

Now, let us calculate the function g(s).

o(s) = (z< ﬂ>) o

= q_ZO {,g% (2k) kaikﬁq—zk} "

Here ag, = 2%(2:) is the 2k-th moment of the standard arcsine law [1]. Using the

formula : :
- Qo Wag

E+1  2F°

between the arcsine moments {a2r} and the semicircular moments {ws}, we can
rewrite the function g(s) as

g(s) = ;; {:4—16 (%) 2k c‘l"”“} .

By the way, the moment generating function fyre.(s) for the free Poisson distri-
bution [6] is given by firee(s) = with

S S
1“9free(8)

gf'ree(s) = ( m)’)

p=2

Here the calculation of ( () )’ is done based on the vacuum expectation ( - )’ on
the full Fock space. If we rewrite the moment generating function g(s) as the form

o=a () E R @) )



we can recognize the relation between g(s) and gfree(s) = gfree(s; ¢):

o) = 2 gpre ( S5iVie).

By the way, the function gfm(s) is calculated as follows.

rree(s) = ( m Y )

p—2

- e 3 (%) (e

q=2k
32 o0 s \2k
f 1—ecs kz::owzk (1—cs>
(1—ecs)— \/(1 —cs)? — 452

2

Here, in the last two equalites, we used two formulas of generating functions [7}:

o5

k=0

,

2k .

| +=0 2t

By the relation g(s) =2 gfree (%, \/ic), we obtain the explicit form of g(s):

-g(s) = (1—ecs) \/(1 —¢s)? — 252

Hence we finally get the explicit form of the generating function f(s) = for

1
1-g(s)
the moment sequence {m,}:

1

fle) = cs + \/(1 —cs)? — 282

6 Density

The probability measure v, associated to the the limit process

g, +g+-+q,

Jn

under the vacuum state ¢, is an analogue of Poisson distribution in the case of
monotone Fock space. This limit measure (= monotonic “Poisson distribution”)

+e(6]+0+---+6,) (n — 00)



can be explicitely determined through the Cauchy transform [8] of the generatmg
function f(s), which is already calculated in the previous section.
Monotonic “Poisson distribution” ».is given by

v=p-A+Ae,, mra + Be_aran

with its density of the absolutely continuous part

p(z) = = S :(c—-\/§<a:<c+\/§).

Here, the density p(x) satisfies

/CJM/E (m)da: =1- _!c]
vz D= T R

A is the Lebesgue measure on the real line, &, denotes the Dirac mesure at a point
z, and A and B are the normalization constants.
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