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Simultaneous confidence intervals for pairwise comparisons
among mean vectors under nonnormality

SOUERA B WUB B (Takashi Seo)

Abstract: Simultaneous confidence intervals for the pairwise multiple com-
parisons among mean vectors under the elliptical populations are considered.
Simultaneous confidence intervals estimations are given by using approximate
| upper percentiles of the statistics based on Bonferroni’s inequality. In order
to achieve the purpose, an asymptotic expansion for the Hotelling’s T2-type
statistic in the elliptical distributions is derived by the perturbation method.

Simulation study is also given for some selected parameters.

1. Introduction

Consider the simulta.neous‘ confidence intervals for pairwise multiple comparisons among
mean vectors under the elliptical populations. An elliptical distribution includes the
multivariate normal, the multivariate ¢ and the contaminated normal distributions and
so on, which is referred to e.g., Muirhead [14], p.32, Fang, Kotz and Ng [3], ch.3. The
probability density function is defined by f(z) = ol A" Y2g((x — p)y A~ (z — w)), for
some nonnegative function g, where ¢, is the normalizing constant and A is positive
definite. The characteristic function of the vector « is the form @(t) = exp(it’ )y (¢ At)
for some function 1, where i = /—1. N‘ote that ¥ = —2¢/(0)A. We also define
the kurtosis parameter by x = {¢"(0)/(¢' (0))2} — 1. We discussed the simultaneous

confidence intervals for pairwise multiple comparisons among mean vectors under the

elliptical populations.
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Let a:gi), ey a:%,{ (i = 1,--,k) be N; independent observations on x® having the
elliptical distribution with a mean vector 1% and a common covariance matrix ¥. Let
the i-th sample mean vector and the sample covariance matrix be

o _ 15 e

Zj:
1
N;—1

SO = S (@ — 20) () - 0y,
Jj=1 .

respectively.
The usual simultaneous confidence intervals for pairwise comparisons among mean vec-

tors are given as the form

a'(p® — ptm) e [ a'(F9 - ™) £ ¢v/dpma’Sa ] :

Va eRP—{0}, 1<f<m<Fk, (1)
where -
S—lf(zv-—ns(i) u—zij-—k d A—i-+~1—
——V'izl ' ’ _1::1 - , em_NE Nm,

RP—{0} is the set of any nonnull real p-dimensional vectors and g is some positive number.

In order to obtain the simultaneous confidence intervals (1) with the given confidence level .

1 — a, it is necessary to give the value g(> 0) such that
Pr{lfu > ¢} =,
where

Thax =, o {din(y® ~y™)S7 (@0 —y™)}, 99 =30-p ()

In the univariate and equal sample sizes case under normality, T2, / 2 reduces to the
usual studentized range statistic whose upper percentiles have been given by Harter [5].
Under the ﬁnequal sample sizes, Tukey-Kramer procedure was proposed as approximate
procedure by Tukey [24], Kramer [11, 12] and its conservativeness was discussed by Dun-

nett [2], Brown [1], Hayter [6, 7], Lin, Seppénen and Uusipaikka [13] and Somerville 23]
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and so on. The related discussions are summarized in e.g., Hochberg and Tamhane [8]
In the multivariate and equal sample sizes case under norma.lity, T2,./2 reduces to the
multivariate studentized range statistic which first appeared in Roy and Bose [16] based
on Roy’s [15] union-intersection principle(see, e.g., Siotani, Hz;,yakawa and Fujikoshi [22],
p-227)). We note that, in multivariate setting, it is difficult to find the exact percentiles
of the T2,, statistic even if the populations are multivariate normal distributions. Ap-
proximations to the upper percentiles have been discussed by using modified Bonferroni’s
inequalities and asymptotic expansion method(see, Siotani [21], Seo and Siotani [20]).
Seo [17] also has discussed T32,, statistic for the case of correlated mean vectors including
unequal sample sizes under normality. In addition, Seo, Mano and Fujikoshi [19] proposed
a multivariate yersion of Tukey-Kramer procedure and they proved that the procedure
has conservative simultaneous confidence intervals for the three correlated mean vectors.
Recently, the evaluation for the bound of coverage probability for the multivariate Tukey-
Kramer procedure is discussed by Seo [18].

In this paper, we discuss the upper percentiles of (2) in the elliptical distributions
including the multivariate normal distribution. The approximate pfocedure based én
Bonferroni’s inequality is adopted in order to obtain a conservative simultaneous confi-

dence intervals estimation. By the first order Bonferroni’s inequality for Pr{T2,, > ¢°};

Pr{Tp. > ¢°} < KZZPr{TEm > ¢’}
' <m

where T2, = dzL(y® — y™Y S~ (y©® — y™), an approximate upper percentile of T2, is
given by ¥ 3. Pr{TZ, > ¢3} = . Note that this approximation is essentially evaluat-
ing the upper’percentiles of the Hotelling’s T?-type statistic in the elliptical distributions.
An asymptotic expansion of the distribution of Hotelling’s Tz-statistic in the elliptical
distribution has been given by Iwashita [9]. Also, Kano [10] and Fujikoshi [4] have ob-
tained the extensive result undér the general distributions. However, these results of

asymptotic'expansions cannot be applied for the Hotelling’s T-type statistic discussed in
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our paper, since the statistic in oﬁ paper is not exactly Hotelling’s T? statistic under the
- elliptical populations. In order to find approximate simultaneous confidence intervals, in
section 2, an asymptotic expansion for the upper percentiles of the Hotelling’s T?-type
which is an extension 6f Hotelling’s T statistic is derived by the perturbation method.
In section 3, the accuracy of approximate values for the upper percentiles of the T2,
statistic in the elliptical distribution is also discussed by Monte Carlo simulation for the

selected parameters.

2. Upper percentiles of the Hotelling’s T>-type statistic

In this section,.we give asymptotic expansions for the Hotelling’s T2-type statistic T2,
by perturbation method.
Note that _
(Ni — 1)S® = NWO — Ny@® — p®) @ — pdy,

where

g 1 & i ) i
wW® — = Z:I(wg) — pD) (@ — pOy.
i4=

Without loss of generality, we can assume X' = I and N; < Ny =N. Weputr; =N;/N

for ] = 1: t k) w = (E?.—_l Tj)_l and A, = (1 -+ 'l"m/’f'[)_l/z. Let

1

0 =y L0, w4 Z0)
TjN TjN
for j=1,---,k. Then we can write
N 1 & 1k
N (et A @) (z))
S N~wk< p+\/_]\_/_wz§\/r_z Nw;z 29,

and hence
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1

St=I,- —
" VN

1 -
Ay + NAI +0p(N71),

where

k
Ay =0 /129,
i=1
k . +\/ k k o o
A1 =w Z z(’)z(") + 'I.U2 Z Z A /’l".,;T'jZ(z) Z(J) - wk:Ip
=1 i=1 j=1

Note that 72, = 7'S'1, where T = 4,02® — apmz™. Therefore the characteristic

function of T2, can be written as

E [exp(itTfm)] =E[exp{z’t1"7'} [1 + T( it)T Aot

+ %{(it)‘r'AlT + 5(z'i,')z(“l',x4()‘l') } + O,'p(N_l)] ]

The following is the joint density of 2 and Z given by Iwashita [9).

F(29, Z29)) =(2r)" 257 | QD75 (k0 4 1)~ 25

1 ;o s 1 /.y N—1 . 1 (av N1 g
X exp{——z") z(’)}exp{——izg’) 29729 §z§’) 2y zé’)}

[1 b {y - w) 6rZ29D — b9 (4:Z2P)? — b9 tr(ZD)2 tr 2

L
o9 tr(Z D) + : 1 Gy 70 20} 4 of N—%)]

where

7@ — [zg)], ‘ng) = 2k + NI, + R(j)lpl' , Q(J) (k9 4 DI pp-1y/2

A= e ), = G 2,

u - L SO 1 1
2(k0) + 1)’ P 2+ (p+2)k 2k +1) )’
B =6 = G(w") +1), 9 ={¥7'(0)/(¥;(0)*} - 1,

B2 Eﬂéj) (k19 + 1) B = 1
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b = (u+po)[3(p+2)(p + (u+ )61 + {(p+2)*u + 3p(p + 2)0} 5
+ 3p(u + pv)Bs},
B = {u? + 3(p +4)uv + 3(p+ 2)(p + Hw’ + p(p +2)(p + 4%} 6,
+{u® + (3p + 4)uPv + 3p(p + 2)u’ + p*(p + 2)v3} B2 + (u + pv)30s,
b = 6{u’ + (p+ )ulo} 1 + 20 (u + pv),
b(j) = 83 B. |
Calculating the characteristic function of T, with respect to 2(9)(= \/;'J—N (2D — p))
and Z 0)(= \/'r,_—N (WY — I.)) by using the above joint density, we obtain

E[eTin] =(1—2z't)"5{ 4N{c<°> + D1 —2t) + (2)(1-—2it)‘2}}
+o(N71),

(3)

where

k
o) = —wp? + = (p-I-Z)[{re a2 —2w}ai k' 4 {rla e—2w}a om) _ zzn,ﬁ(i)]’
k _
cfp == 2wp = p(p+ 2) {17 af — 4w}adus® + {rlady — dw}al ™ +u? > rint)
=1

_ 1 k .
62,2% =wp(p+2)+ -Z-p(p+ 2)[{r[1a3m —6w}a§mﬂ(z) +{r;} afn£—~6w}a,2ne/<a(m) +3w? Z rm(”)].
=1

Therefore, inverting the characteristic function (3), we have the following theorem.

Theorem 2.1. The distribution of T2, = dy%(y® — y™)' S~ (y® — y™) can be
expanded as V

Pr(T?, > t?) = Pr()@ > t3) + ¢ Pr(x2, q; > 2 +o(N7Y), 4
P P+2j

4N

and its upper « percentiles can be expanded as

= x(0) - gyl {2 - oot (e |+ ©
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where x2(a) is the upper o percentile of x* distribution with p degrees of freedom.

Corollary 2.2.  If the k populations have elliptical distributions with the equal sample
sizes(N; = N, j = 1,---,k), then the coefficients of (4) and (5) are given by

1 1 1 1

J—-l

2 1 2 1 &
Clm == 7P~ P(p+2) { (3- z) (K + K™ + 5 zfaﬂ} ,

Jj=1

oo = kp(p +2) + p(p +2) { (— — —> (KO + k™) +a Z K’(J)}

~ Corollary 2.8.  If the k populations have elliptical distributions with the same kurtosis
parameter and the equal sample sizes, ie., k; = K and N; = N, j = 1,---,k, then the

coefficients of (4) and (5) are given by

©__ 1o 1 _

w__2 1

1
2 =2p0+2) + plp+ 2)(k ~ O)r.

In a.ddition, when k) = 0 for j = 1,---,k, we can see that the coefficients c§‘3,{, cﬁ},{
and ¢ comc1de with the result of an asymptotic expansion for the upper percentile of
the Hotelling’s T2-statistic under the normal assumption(see, e.g., Seo and Siotani [20]).
From Corollary 2.3, we'.note that, when k& = 6, the coefficients cggz, cﬁ,z and cgf,i don’t
depend on k, that is, the asymptotic expansion for £ = 6 coincides with an asymptotic
expansion for the Hotelling’s T?-statistic under normality. Further, since the Hotelling’s

T?-statistic under normality is F-statistic, we can obtain the following results from the

characteristic function.
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Theorem 2.4. ' The upper « percentiles of T2, = d;1(y® — y™) S~ (y&) — yt™)
‘can be also expanded as

vp
#= L _F, ,u)

—1pxp<a>{(—c2?,1 1) - (g~ §) e | +olv ) “

where v = $°F | N;—k, Fpy—p+1() and x3(e) are the upper « percentiles of F' distribution

with p and v — p+ 1 degrees of freedoms and x? distribution with p degrees of freedom,

respectively.

We note that, under normality, t? in Theorem 2.4 is exactly given by the upper per-
centiles F' distribution which is the first term of (6). From Theorem 2.4, an asymptotic
expansion approximation for the upper percentile of the usual Hotelling’s T 2 statistic

T? = Ny S~ 'y under the elliptical distributions, which is given by

1 N B _
£ = x2(@) + 55:33(0) {(p+ (0 +2)) + (1= )x3(e) } +o(N ), (M
can be also wriiten as |
2 _ (N-1)p 1 2 -1
t° = —NT])“‘Fp,N—p( @) + 53:%5(2) {p+2) = x}(@)} s +o(NT. (8)
Applying in the case of the simultaneous confidence intervals estimation for pairwise
comparisons among mean vectors, we have two approximate simultaneous confidence in-

tervals given by

1- 1 1

2 L2 (0) (2).2 (- *

9Bx2 = Xp (a ) ZNk* g <§%{ T (p+ 2)CIZmXp (a )}7 (9)
and

= —2
BF v — p+1

e B () (- D).

Fop—pi1 ()

€<m
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where o* :.a/k* and k* = k(k —1)/2.

3. Accuracy of the approximations

In order to examine the accuracy of the obtained approximations, we give the simulation
results of the upper percentiles of Tpx statistics for selected values of parameters. Table 1
gives the simulated and approximate values of the upper percentiles of Tiay for the follow-
ing combinations of selected parameters: p =2, 3, 5, k = 3, 6, 10, Nj(i N) =20, 40, 60
and o = 0.1, 0.05, 0.01. In this section, the equal sample sizes case is treated in the Monte
Carlo simulations, which is based on 100 replications for 10,000 simulations. Also, two
elliptical distributions: multivariate normal(x = 0), contaminated normal(e = 0.1, o = 3:
k = 1.78) are treated, where all populations have the same distribution. Table 1 lists
the Bonferroni approximate value based on asymptotic expansion and x? approximation
g2 the analogous F' approximation 45 . pand the simulated value ¢*. Note that under
the normality, We haVé the approximate values:based on F approximation are exactly
the upper peréentiles of F' distribution, and overestimate. Form the simulation results,
the asymptotic expansions up to the ordér N~ for the upper percentiles of Hotelling’s
T?-type statistic have a tendency to be underestimate. As a result, under the most cases
of the elliptical populations, it may be noted that the value of qB.Xzis overestimate and
is more closely to the simulated values than the other approximate values. Further, as
showing in the previous section, it can be seen from Table 1 that the simulated values
for the case of £ = 6 are very similar values without respect to the distributions of the
populations. Thus, it may be noted that the eipproximate value qB_Xzis useful for the
simultaneous confidence intervals estimation for the pairwise multiple comparisons among

mean vectors under the elliptical populations.



Table 1. Simualted and Approximate Values for the Upper Percentiles of Tiax

a=0.10

p=2 M.N.(k = 0) ‘C.N.(k = 1.78)
kN 4. d5p q* 9., 9g.p q*
10 2793  2.842  2.745 9716 2766  2.693
320 2702 2713 2.639 2.663  2.674 = 2.610
40 2656  2.658  2.587 2.636  2.638  2.573
10 3.320 3.353 3213 3.320 3.353  3.206
6 20 3244 3251 3.133 3.244 3.251 3135
40 3205  3.207  3.098 3.205  3.207  3.099
10 3.618 3.639  3.495 3739  3.760  3.558
10 20 3557 3.562  3.436 3.619 3.624  3.476
40 3526 3528 3411 3.558  3.559  3.433
p=3
10 3227 3.318  3.223 3114 3208  3.156
3 20 3003 3113  3.040 3.034  3.055  3.001
40 3.023  3.028 2963 2.993 2998  2.942
10 3711 3762  3.632 3.711 3762  3.621
6 20 3.605 3.617  3.508 3.605 3.617  3.508
40 3551  3.554  3.453 3551  3.554  3.456
10 3981 4014  3.882 4134 4165  3.954
10 20 3900 3.908 3.793 3.979 398  3.843
40 3859 3.861  3.756 3.809 3.901  3.785
p=2>5
10 3945 4165  4.062 3.766  3.996  3.975
3 20 3719 3767  3.697 3.626 3.675  3.636
40 3602 3613  3.551 3554  3.565  3.519
10 4345 4449 4317 4345 4449 4.299
6 20 4180 4203  4.101 4180  4.203  4.097
| 40  4.095 4100  4.012 4005 4100  4.013
10 4568  4.627  4.504 4775 4831  4.587
10 20 4446 4459  4.358 4553 4566  4.422

40 4.383 4387  4.294 4.438  4.441 4.332




Table 1. Continued

a=0.05
p=2 MN.(k=0) C.N.(k = 1.78)
kN g 2 g q" 9.2 dg.p q
10  3.095 3162  3.092 2.969  3.039  3.010
3 20 2981 299 2945 2916 2932  2.896
40 2922 2925 2877 2.889  2.893  2.854
10 3561  3.601  3.500 3.561  3.601  3.486
6 20 3471 3480  3.398 3.471 3480  3.396
40  3.424 3427  3.353 3.424 3427  3.351
10 3.830  3.855  3.752 3.978  4.003  3.823
10 20 3760 3.766  3.676 3.836  3.842  3.725
40 3724 3726  3.645 3.763  3.765  3.671
p=3
10 35535  3.654  3.587 3.362  3.487  3.490
3 20 3371 3.398 3.345 3.282  3.309  3.290
40 3286  3.293  3.248 ‘ 3.241 3247 3214
10 3952  4.014 3920 3.952  4.014  3.899
6 20 3829 3.843  3.769 3.829  3.843  3.762
40 3766  3.770  3.700 3.766  3.770  3.700
10 4192 4230  4.137 4376  4.412  4.219
10 20 4100 4108  4.026 4.195  4.203  4.089
40  4.053  4.055  3.982 4101  4.103  4.019
p=2>5
10-  4.264  4.540  4.465 4.010  4.303  4.355
3 20 4001 4061 4.013 3.868  3.930  3.931
40 3.863  3.877 - 3.838 3.795  3.809  3.788
10 4589  4.711  4.616 4.5890  4.711  4.586
6 20 4403 4430  4.358 4.403  4.430  4.350
40 4307 4313 4.254 4307 4313 4.251
10 4.778  4.845  4.759 5.022  5.086  4.852
10 20 4642 4658  4.588 4770  4.785  4.660
40 4577  4.514 4.638 4.557

- 4.573

4.642

79



 Table 1. Continued

a=0.01 _
p=2 M.N.(k = 0) C.N.(k = 1.78)
kN 4. dpp q* 95.,2 9p.p q*
10 3736 3.856  3.819 3.475  3.605  3.673
3 20 3561 358  3.558 3.427 3455  3.471
40 3471 3477  3.456 3.402  3.409.  3.403
10 4081 4143  4.087 4081 4143  4.053
6 20 395 39690  3.923 3.955 3.960  3.919
40 3.890 3.894  3.857 3.800 3.804  3.854
10 4200 4.327 4275 4508 4544  4.364
10 20 4197 4206  4.159 4310 4.318  4.231.
40 4150 4152 4.117 4207 4209  4.154
p=3
10 3736  3.856  3.819 3475  3.605  3.673
3 20 3561 3.58  3.558 3.427 3455 3471
40 3471 3477 3.456 3.402  3.409  3.403
10 4081  4.143  4.087 4081  4.143  4.053
6 20 3.955  3.960  3.923 3955  3.960  3.919
40  3.890 3.894  3.857 3.800  3.894  3.854
10 4.290 4327 4275 4508 4544  4.364
10 20 4197 4206  4.159 4310 4318  4.231
40 4150 4152 4.117 4207 4200  4.154
p=3 |
10 3736 3.856  3.819 3.475  3.605  3.673
3 20 3561 358  3.558 3427 3455  3.471
40 3471 3477  3.456 3.402  3.409  3.403
10 4081  4.143  4.087 4.081  4.143  4.053
6 20 3955 3.960  3.923 3.955  3.969  3.919
40  3.800 3.8904  3.857 3.800 3.804  3.854
10 4200 4.327  4.275 4508 . 4544  4.364
10 20 4197 4206  4.159 4310 4318  4.231
40 4150 4152 4117 4207 4209  4.154

80
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