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A scale-invariant form of Trudinger-Moser inequality and its best exponent
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0. Introduction

In this note, we study the limit case of Sobolev’s inequalities; suppose N > 2 and let
D C RY be an open set. We denote by W, ’N(D) the usual Sobolev space with the norm
lullwzepy = IVullp + ||ullp- Here

full = ([ 1o dz)w.

The case p = N is the limit case of Sobolev imbeddings and it is known that

wiN (D) c LY(D) for N < q < oo,
Wy (D) ¢ L=(D).

This case is studied by Trudinger [8] more precisely and he showed for bounded domains

Dcrt | | N/(N-1)
/D exp (a (”@(:'”)I'V) ) de < C|D| (0.1)

for u € WI'N(D) \ {0}, where the constants a, C' are independent of u and D.

Trudinger’s result is extended into two directions; the first one is to find the best

exponents in (0.1). Moser [4] proved that (0.1) holds for a < ap but not for a > ay,
where
ay = Nwp/&™Y (0.2)

and wy_; is the surface area of the unit sphere in RY. See also D. R. Adams [2]. The

second direction is to extend Trudinger’s result for unbounded domains and for Sobolev
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spaces of higher order and fractional order. We refer to R. A. Adams [3], Ogawa [5]
Ogawa-Ozawa [6], Ozawa [7].

?

Here, we study a version of Trudinger inequalities in R™ and their best exponents;

| [u(z)] \ ¥ lu(=) ¥
Lo (“(nwim) ) ey O

for u € 'WI’N(RN) \ {0}, where

we show

N-2 1" .
BN (E) = exp(é) = Y 6
j=0 7"

and a, C' > 0 is independent of u. This type of inequality was first introduced in [8] for
N = 2 and extended in [7] for N > 3 and for Sobolev spaces of fractional order. As to
the proof of the inequality (0.3), following the original idea of Trudinger, [5, 6, 7] made
use of a combination of the power series expansion of the exponential function and sharp

multiplicative inequalities:
| N, —N,
lully < O, ) ull /[ Vully 2.

Our aim is to give a simplified proof of (0.3) and the best expoﬁents a for (0.3).
One of the virtue of the inequality (0.3) is its scale-invariance; for w € WL N(RN)\ {0}
and A > 0, we set

ux(z) = u(Az). (0.4)
We can easily see that
IVually = [[Vul|n,

lurlly = XN ul¥, ) ]
LN &y (a (#gl(—:]?]l\;) ”"1> de = AN /],RN By (a (HI}LV%T)J;) ””‘) de.

Thus (0.3) is invariant under the scaling (0.4).

Our main result is the following.

Theorem 0.1 ([1]). Suppose N > 2. Then for any a € (0 an), where apy is given in
(0.2), there exists a constant C, > 0 such that

L[y

dz < C M—“——%— foru € WHN(RN)\ {0}.  (0.5)
> Uy N . 0.
| IVully :
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Next we show that the restriction a@ < ap is optimal. The limit exponent ap is
excluded for (0.5). It is quite different from Moser’s result for (0.1).

Theorem 0.2 ([1]). For a > ap, there exists a sequence (uk(w))Z‘;IC WHN(RYN) such
that
[Vurllw = 1 (0.6)

and

1 / N 1 N
_— Oy |alup(z)|¥-T) de > ————/ by (an |up(z)|¥-T ) de
Tl S B (I ) 2 i [ o ua(e) )

— 00 (0.7)

as k — oo.

1. Proof of Theorem 0.1

To prove Theorem 0.1, we use an idea of Moser [4]. By means of symmetrization, it suffices
to show the desired inequality (0.5) for functions u(z) = u(|z|), which are non-negative,
compactly supported, radially symmetric, and u(|z|) : [0,00) — R are decreasing.

Following Moser’s argument, we set
N—1 1 R N —t
w(t) = N T wf_u(e¥),  JolV =e (1.1)

Then w(t) is defined on (—oo, ) and satisfies

w(t) >0 forteR, (1.2)
w(t) >0 fort€R, (1.3)
w(tg) =0 for some typ € R. (1.4)

Moreover we have

'uN Tz = oou': N | .
L, velde = [ o (1.5

) de = OV [T 5 () et
/1;.-" oy (auN ) dz N /;oo dN (aN'w(t) 1) e " dt, (1.6)
1 * —
/R @)V de = o / o (2)[ Ve~ dt. (1.7)

Thus, to prove Theorem 0.1, it suffices to show that for any 8 € (0,1) there exists a
constant Cg > 0 such that

o0

| / T ey (ﬁw(t)w‘ii)e-f dt < Cp / hw(t)| Vet dt (18)

—00 —oo
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for all functions w(t) satisfying (1.2)-(1.4) and
/ ()N dt = 1. (1.9)

Proof of Theorem 0.1. Let w(t) be a function satisfying (1.2)—(1.4) and (1.9). We set
To = sup{t € R;w(t) < 1} € (—-oo,oo].

We decompose the integral in the left hand side of (1. 8) according to the decomposition
(=00, 00) = (=00, To] U [To, ).
For t € (—o0,Tp], we have w(t) € [0,1]. We can find a constant mp > 0 such that

Bn(€) < muEN! for £ € [0,1].
Thus we have
To

/To dN (ﬂw(t)&—d) e~tdt < mN/ w(t)Ne™ dt. | (1.10)

—00 —o0

Next we consider the integral over [Tp, o). Since w(Tp) = 1, we have for t > T
t
w(t) = w(To) + / w(r)dr

To
1

<w(Tp) + (t —To) 7 (/l: "i’("')Nd"')
<1+ (t—To) 7.

We remark that for any £ > 0 there exists a constant C, > 0 such that

N—-1

1+sw §((1+s)s+05)¥ for all s > 0.

Thus, we have .
[ (8)| 7T <
Since 8 € (0,1), we can choose ¢ > 0 small so that 8(1 + ¢) < 1. Thus we have

/: By (,Bw(t N’L) etdt < /T:o exp (Bu(t) ¥ - t)A dt

< / " exp (B(1+¢) ~ 1)(t - To) + BC. - Ty) dt
T

)(t - To) + Cg for ¢t Z To.

1
=— = PCee~To, | 1.11
1-pl+e ° (-1



152

On the other hand,

o0 oo
/ lw(t)|Ne tdt > / e tdt=e"To, (1.12)
To To
Therefore it follows from (1.11) and (1.12) that
o0 N eﬁC‘ *©
® )71 ) e tdt < ———/ t)|Ne™* dt. 1.13
L  (Boly™) et < ey | (O (1.13)
Th c L b | 1
i = — tai .8).
us, setting Cp = max{mn, T e)}’ we obtain (1.8).

2. Proof of Theorem 0.2

It suffices to show Theorem 0.2 for a = ay. We use the idea of Moser again. Repeating the
argument of the previous section, it suffices to find a sequence of functions wi(t) : R = R
which satisfies (1.1)-(1.4), (1.9) and

/ |wi(t)| Ve tdt — 0 as k — oo, (2.1)
/ b (wk(t)'NIz_l) e tdt > —;— for large k. (2.2)

If we define a sequence of functions (ux(z)), C WHN(RYN) from (wk(t))32, through the
relation (1.1), it satisfies (0.6) and (0.7).

Here we give an example of (wg(t))72, explicitly:

0 fort <0,
wi(t) = kN51% for 0 <t <k,
ko for k <'t.
Such functions appeared in [4] to show that the integral in the left hand side of (0.1) can
be made arbitrarily large for a > ay. |
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