Saturation of the approximation by spectral decompositions

東北大理 谷垣美保 (Miho Tanigaki)

1 Introduction.

Let Ω be an open domain in the n dimensional Euclidean space \mathbf{R}^n . Consider the operator $A = -\Delta$ in $L^2(\Omega)$ with the domain of definition $D(A) = C_c^{\infty}(\Omega)$, where $\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$ is the Laplacian. Denote by \hat{A} a nonnegative selfadjoint extension of A. Let $\{k_{\lambda}(t)\}$ be a family of bounded piecewise smooth functions on $[0, \infty)$. Suppose we have two constants $\kappa_1, \kappa_2 > 0$ such that $k_{\lambda}(t)\sqrt{t}^{n/2-2\kappa_2+1/2} \in L^1(0, \infty)$, $(k_{\lambda}(t)-1)/\lambda^{-\kappa_1}t^{\kappa_2}$ are uniformly bounded in λ and $t \in [0, \infty)$, and $(k_{\lambda}(t)-1)/\lambda^{-\kappa_1}t^{\kappa_2}$ converge to a nonzero constant as $\lambda \to \infty$ for any $t \in [0, \infty)$. Let

$$I_{\lambda}(r) = \int_{0}^{\infty} k_{\lambda} \left(t^{2}\right) J_{\nu}\left(rt\right) t^{\nu+1} dt,$$

where $\nu = n/2 - 2\kappa_2 + 1$ and J_{ν} is the Bessel function of order ν . We assume, furthermore, the following conditions

(1.1)
$$\int_0^R s^{2\kappa_2-1} ds \left| \int_s^R r^{n/2-2\kappa_2+2} I_{\lambda}(r) dr \right| = O\left(\lambda^{-\kappa_1}\right),$$

(1.2)
$$\left| \int_{R}^{\infty} r^{\nu+1} I_{\lambda}(r) dr \right| = o\left(\lambda^{-\kappa_{1}}\right),$$

and

(1.3)
$$\left(\sum_{T=0}^{\infty} T^{4 \kappa_2 - 3} \max_{T \le s \le T + 1} \left| \int_{R}^{\infty} J_{\nu}(sr) I_{\lambda}(r) r \, dr \right|^{2} \right)^{1/2} = o \left(\lambda^{-\kappa_1} \right)$$

as $\lambda \to \infty$ for any small R > 0.

We shall consider the approximation operator $k_{\lambda}(\hat{A})$ for $f \in L^{2}(\Omega)$. We say $\Delta f \in L^{\infty}_{loc}(\Omega)$ if for every compact set K in Ω there is a constant C_{K} such that

$$\left| \int_{K} f(x) \, \Delta g(x) \, dx \right| \leq C_{K} ||g||_{L^{1}(K)}$$

for any infinitely differentiable function g whose support is contained in K. Let $\{\varphi_{\varepsilon}\}$ be an infinitely differentiable approximate identity with supports contained in $\{x : |x| < \varepsilon\}$. For a function f on Ω and $x \in \Omega$, f is said to be regulated at x if $f * \varphi_{\varepsilon}(x) \to f(x)$ as $\varepsilon \to 0^+$.

In 1970, Igari proved the following Theorem in [5].

Theorem A. Suppose that there exist a complete orthonormal system $\{u_j\}$ of smooth functions in $L^2(\Omega)$ and a numerical sequence $\{\lambda_j\}$ for which $-\Delta u_j = \lambda_j u_j$ in Ω . Let

$$f_j = \int_{\Omega} f(x) \, \overline{u_j(x)} \, dx, \qquad f \in L^2(\Omega)$$

and

$$s_{\lambda}^{\delta}f = \sum_{\lambda_{j} \leq \lambda} \left(1 - \frac{\lambda_{j}}{\lambda}\right)^{\delta} f_{j} u_{j}, \qquad f \in L^{2}(\Omega).$$

Let $\delta \geq (n+3)/2$ and $f \in L^2(\Omega)$ be regulated in Ω . Then the following hold.

(i) The following conditions are equivalent.

(ia)

$$\left\| s_{\lambda}^{\delta} f - f \right\|_{L^{\infty}(K)} = O\left(\lambda^{-1}\right)$$

as $\lambda \to \infty$ for every compact set K in Ω .

(i b) $\Delta f \in L^{\infty}_{loc}(\Omega)$.

(ii) The following conditions are equivalent.

(iia)

$$\left\| s_{\lambda}^{\delta} f - f \right\|_{L^{\infty}(K)} = o \left(\lambda^{-1} \right)$$

as $\lambda \to \infty$ for every compact set K in Ω .

(ii b) Δf vanishes in Ω .

Our aim is to give a generalization of Theorem A. Let $\{k_{\lambda}(t)\}$ be a family of bounded Borel functions on $[0,\infty)$. We can define the bounded operator $k_{\lambda}(\hat{A})$ in $L^{2}(\Omega)$.

Example 1. Suppose that there exist a complete orthonormal system $\{u_j\}$ of smooth functions in $L^2(\Omega)$ and a sequence $\{\lambda_j\}$ such that $-\Delta u_j = \lambda_j u_j$ in Ω . Let

$$f_j = \int_{\Omega} f(x) \, \overline{u_j(x)} \, dx, \qquad f \in L^2(\Omega).$$

Let \hat{A} be the selfadjoint extension of $-\Delta$ defined by

$$D\left(\hat{A}\right) = \left\{ f \in L^{2}(\Omega); \sum_{j=1}^{\infty} \lambda_{j}^{2} |f_{j}|^{2} < \infty \right\}$$

and

$$\hat{A} f = \sum_{j=1}^{\infty} \lambda_j f_j u_j, \qquad f \in D(\hat{A}).$$

For any $\,f\in L^2(\,\Omega\,)\,$ the spectral decomposition of $\,f\,$ is given by

$$E((-\infty,t])f = \sum_{\lambda_j \le t} f_j u_j$$

and $k_{\lambda}(\hat{A})$ is defined by

$$k_{\lambda}(\hat{A}) f = \sum_{j=1}^{\infty} k_{\lambda}(\lambda_j) f_j u_j, \qquad f \in L^2(\Omega).$$

Example 2. Let $\Omega = \mathbb{R}^n$. Let

$$\hat{f}(\,\xi) = \frac{1}{\sqrt{2\pi}^{\,n}} \int_{\boldsymbol{R}^n} f(x) \, e^{-i\,\xi\cdot x} \, dx, \qquad f \in L^2(\boldsymbol{R}^n).$$

In this case, there is a unique nonnegative selfadjoint extension \hat{A} of $-\Delta$ defined by

$$D\left(\hat{A}\right) = \left\{ f \in L^{2}\left(\boldsymbol{R}^{n}\right); \, |\xi|^{2} \hat{f}(\xi) \in L^{2}\left(\boldsymbol{R}^{n}\right) \right\}$$

and

$$\hat{A}\,f(x) = \frac{1}{\sqrt{2\,\pi^{\,n}}} \int_{\boldsymbol{R}^{n}} |\xi|^{2} \hat{f}(\xi)\,e^{\,i\,x\cdot\xi}\,d\xi, \qquad f\in D\left(\hat{A}\right).$$

Then the spectral decomposition of $f \in L^2(\mathbf{R}^n)$ is given by

$$E\left(\left(-\infty,t\right]\right)f(x) = \frac{1}{\sqrt{2\pi^n}} \int_{|\xi|^2 \le t} \hat{f}(\xi) e^{ix\cdot\xi} d\xi$$

and $k_{\lambda}(\hat{A})$ is defined by

$$k_{\lambda}(\hat{A}) f(x) = \frac{1}{\sqrt{2\pi^n}} \int_{\boldsymbol{R}^n} k_{\lambda}(|\xi|^2) \hat{f}(\xi) e^{ix\cdot\xi} d\xi, \qquad f \in L^2(\boldsymbol{R}^n).$$

For $\kappa_2 > 0$ and $1 , we say <math>(-\Delta)^{\kappa_2} f$ belongs to $L^p_{loc}(\Omega)$ if for every bounded open set G in Ω with the closure \overline{G} contained in Ω , there is a constant C_G such that

$$\left| \int_{\overline{G}} f(x) (-\Delta)^{\kappa_2} g(x) dx \right| \leq C_G ||g||_{L^{p'}(\overline{G})}$$

for any infinitely differentiable function g with support contained in \overline{G} , where 1/p + 1/p' = 1.

Our results are stated as follows.

Main theorem. Let Ω be an open domain in \mathbb{R}^n and \hat{A} be a nonnegative selfadjoint extension of $-\Delta$ in Ω . Let $\{k_{\lambda}(t)\}$ be a family of bounded piecewise smooth functions on $[0,\infty)$ and $\kappa_1,\kappa_2>0$ such that $k_{\lambda}(t)\sqrt{t}^{n/2-2\kappa_2+1/2}\in L^1(0,\infty)$, $\lambda^{\kappa_1}t^{-\kappa_2}[k_{\lambda}(t)-1]$ are uniformly bounded in λ and $t\in[0,\infty)$, and $\lambda^{\kappa_1}t^{-\kappa_2}[k_{\lambda}(t)-1]$ converge to a nonzero constant as $\lambda\to\infty$ for any $t\in[0,\infty)$.

Suppose that $\{k_{\lambda}(t)\}$ satisfies the conditions (1.1), (1.2) and (1.3) as $\lambda \to \infty$. Let f be a regulated function in $L^2(\Omega)$. Furthermore, suppose that $1 and <math>f \in L^p_{loc}(\Omega)$. Then the following hold.

(i) The following two conditions are equivalent.

(ia)

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K)} = O(\lambda^{-\kappa_1})$$

as $\lambda \to \infty$ for every compact set K in Ω .

- (ib) $(-\Delta)^{\kappa_2} f \in L^p_{loc}(\Omega)$.
- (ii) Let $G \subset \Omega$ be any open set.
 - (ii a) Suppose that $(-\Delta)^{\kappa_2}f$ vanishes in G. Then

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K)} = o(\lambda^{-\kappa_{1}})$$

as $\lambda \to \infty$ for any compact set $K \subset G$.

(iib) If

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K)} = o(\lambda^{-\kappa_{1}})$$

as $\lambda \to \infty$ for any compact set $K \subset G$, then $(-\Delta)^{\kappa_2} f$ vanishes in G.

If $\delta > (n+3)/2$ and $k_{\lambda}(t) = (1-t/\lambda^2)_{+}^{\delta}$, then the conditions (1.1), (1.2) and (1.3) are satisfied. Therefore we have the following:

Corollary 1. Let Ω be an open domain in \mathbb{R}^n and \hat{A} be a nonnegative selfadjoint extension of $-\Delta$ in Ω . Let $s_{\lambda}^{\delta} = \left(1 - \hat{A}/\lambda^2\right)_{+}^{\delta}$ and $\delta > (n+3)/2$. Let f be a regulated function in $L^2(\Omega)$. Suppose that $1 and <math>f \in L^p_{loc}(\Omega)$. Then the following hold.

(i) The following are equivalent.

(ia)

$$\left\| s_{\lambda}^{\delta} f - f \right\|_{L^{p}(K)} = O\left(\lambda^{-2}\right)$$

as $\lambda \to \infty$ for every compact set K in Ω .

- (ib) $\Delta f \in L^p_{loc}(\Omega)$.
- (ii) Let $G \subset \Omega$ be any open set.
 - (ii a) Suppose that Δf vanishes in G. Then

$$\left\| s_{\lambda}^{\delta} f - f \right\|_{L^{p}(K)} = o\left(\lambda^{-2}\right)$$

as $\lambda \to \infty$ for any compact set $K \subset G$.

(ii b) If

$$\left\| s_{\lambda}^{\delta} f - f \right\|_{L^{p}(K)} = o \left(\lambda^{-2} \right)$$

as $\lambda \to \infty$ for any compact set $K \subset G$, then Δf vanishes in G.

Our main theorem follows from Theorem 1 in § 2 and Theorem 2 in § 3. Corollary 1 is proved in § 4.

2 Saturation of the approximation.

Let Ω be an open domain in the *n*-dimensional Euclidean space \mathbb{R}^n . Let

(2.1)
$$A = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$

be a differential operator, where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$, $D^{\alpha} = (-i)^{|\alpha|} (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$ and $a_{\alpha} \in C^{\infty}(\Omega)$. We consider A as an operator in $L^2(\Omega)$ with the domain of definition $D(A) = C_c^{\infty}(\Omega)$. Suppose that A is formally selfadjoint and semibounded. If \hat{A} is a selfadjoint extension of A with the same lower bound c, then \hat{A} can be represented in the form of

$$\hat{A} = \int_{c}^{\infty} t \, E(dt).$$

Let $\{k_{\lambda}(t)\}$ be a family of bounded Borel functions on $[c, \infty)$, $\kappa_1, \kappa_2 > 0$ and

(2.2)
$$\psi_{\lambda}(t) := \frac{k_{\lambda}(t) - 1}{\lambda^{-\kappa_1} t^{\kappa_2}}.$$

Suppose that

- (1) $\psi_{\lambda}(t)$ are uniformly bounded in λ and $t \in [c, \infty)$, and
- (2) $\psi_{\lambda}(t)$ converge to a nonzero constant C as $\lambda \to \infty$ for any $t \in [c, \infty)$.

Lemma 1. If $f \in L^2(\Omega)$ and $g \in D(\hat{A}^{\kappa_2})$, then $\lambda^{\kappa_1}(k_\lambda(\hat{A})f - f, g) \longrightarrow C(f, \hat{A}^{\kappa_2}g)$ as $\lambda \to \infty$.

Proof. By the definition of $k_{\lambda}(\hat{A})$, we have

$$\lambda^{\kappa_{1}} \left(k_{\lambda} (\hat{A}) f - f, g \right) = \lambda^{\kappa_{1}} \int_{c}^{\infty} \left[k_{\lambda}(t) - 1 \right] \left(E(dt) f, g \right)$$

$$= \int_{c}^{\infty} \frac{k_{\lambda}(t) - 1}{\lambda^{-\kappa_{1}}} \left(f, E(dt) g \right)$$

$$= \int_{c}^{\infty} \frac{k_{\lambda}(t) - 1}{\lambda^{-\kappa_{1}} t^{\kappa_{2}}} t^{\kappa_{2}} \left(f, E(dt) g \right)$$

$$= \int_{c}^{\infty} \psi_{\lambda}(t) t^{\kappa_{2}} \left(f, E(dt) g \right)$$

$$= \left(f, \overline{\psi_{\lambda}} \left(\hat{A} \right) \hat{A}^{\kappa_{2}} g \right)$$

$$= \int_{c}^{\infty} \psi_{\lambda}(t) \left(f, E(dt) \hat{A}^{\kappa_{2}} g \right).$$

Let $\rho = (f, E(\cdot) \hat{A}^{\kappa_2} g)$ and $|\rho|$ be the total variation of ρ . Then

$$\int_{c}^{\infty} |\rho|(dt) \leq ||f||_{L^{2}(\Omega)} \|\hat{A}^{\kappa_{2}}g\|_{L^{2}(\Omega)} < \infty.$$

Therefore, by Lebesgue's dominated convergence theorem, it follows that

$$\lim_{\lambda \to \infty} \lambda^{\kappa_1} \left(k_{\lambda} (\hat{A}) f - f, g \right) = \lim_{\lambda \to \infty} \int_{c}^{\infty} \psi_{\lambda}(t) \rho(dt)$$

$$= \int_{c}^{\infty} \lim_{\lambda \to \infty} \psi_{\lambda}(t) \rho(dt) = C \int_{c}^{\infty} \rho(dt) = C \left(f, \hat{A}^{\kappa_2} g \right).$$

Thus Lemma 1 is proved.

Let G be an open subset in Ω with compact closure \overline{G} and $1 . We say <math>A^{\kappa_2} f \in L^p(\overline{G})$ if

$$\left\| A^{\kappa_2} f \right\|_{L^p\left(\overline{G}\right)} := \sup_{\left\| g \right\|_{L^p'\left(\overline{G}\right)} = 1} \left| \int_{\Omega} f(x) \, \overline{\hat{A}^{\kappa_2} g \left(x \right)} \, dx \right| < \infty \,,$$

where 1/p + 1/p' = 1 and g is an infinitely differentiable function whose support is contained in \overline{G} .

Theorem 1. Let Ω be an open domain in \mathbb{R}^n and A be a formally selfadjoint semi-bounded differential operator with coefficients in $C^{\infty}(\Omega)$ given by (2.1). Suppose that \hat{A} is a selfadjoint extension of A with the same lower bound c. Let $\{k_{\lambda}(t)\}$ be a family of bounded Borel functions on $[c,\infty)$ and $\kappa_1,\kappa_2>0$ such that the sequence $\{\psi_{\lambda}(t)\}$ of Borel functions on $[c,\infty)$ given by (2.2) satisfies (1) and (2). Let $f\in L^2(\Omega)$, $1< p\leq \infty$ and G be any open set in Ω with compact closure \overline{G} . Then the following hold.

(i) *If*

$$\|k_{\lambda}(\hat{A}) f - f\|_{L^{p}(\overline{G})} = O(\lambda^{-\kappa_{1}})$$

as $\lambda \to \infty$, then $A^{\kappa_2} f \in L^p(\overline{G})$.

(ii) If

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(\overline{G})} = o(\lambda^{-\kappa_{1}})$$

as $\lambda \to \infty$, then $A^{\kappa_2}f$ vanishes in \overline{G} .

Proof. Let g be an infinitely differentiable function and supp g be the support of g. Suppose that supp $g \subset \overline{G}$. Then by Lemma 1

(2.3)
$$\lambda^{\kappa_1}\left(k_\lambda(\hat{A})f - f, g\right) \longrightarrow C\left(f, \hat{A}^{\kappa_2}g\right) \quad \text{as} \quad \lambda \to \infty.$$

On the other hand, we have

$$\left| \lambda^{\kappa_1} \left(k_{\lambda} (\hat{A}) f - f, g \right) \right| \leq \lambda^{\kappa_1} \left\| k_{\lambda} (\hat{A}) f - f \right\|_{L^p(\overline{G})} \| g \|_{L^{p'}(\overline{G})}.$$

If $\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(\overline{G})} = O(\lambda^{-\kappa_{1}})$ as $\lambda \to \infty$, then by (2.4) for any λ

$$\left| \left| \lambda^{\kappa_1} \left(k_{\lambda} (\hat{A}) f - f, g \right) \right| \le C' \left| \left| g \right| \right|_{L^{p'}(\overline{G})}$$

with some constant C' > 0. Therefore, by (2.3), we have

$$\left| \int_{\Omega} f(x) \, \overline{\hat{A}^{\kappa_2} g(x)} \, dx \, \right| = \left| \left(f, \hat{A}^{\kappa_2} g \right) \right| \le C^{-1} \, C' \, ||g||_{L^{p'}(\overline{G})}$$

for any g. Thus (i) is proved.

If $\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(\overline{G})} = o(\lambda^{-\kappa_{1}})$ as $\lambda \to \infty$, then in the same way as in (i), (ii) is proved.

Examples. (1) Riesz summation: For $\kappa > 0$ and $\delta > 0$, the Riesz summation is given by the multiplier $k_{\lambda}(t) = \left[1 - (t/\lambda^2)^{\kappa}\right]_{+}^{\delta}$. In this case, $(\lambda^2/t)^{\kappa} [k_{\lambda}(t) - 1]$ are uniformly bounded in λ and $t \in [c, \infty)$ with a constant c > 0 and

$$\lim_{\lambda \to \infty} \frac{k_{\lambda}(t) - 1}{\left(\lambda^{-2} t\right)^{\kappa}} = \lim_{s \to +0} \frac{\left(1 - s^{\kappa}\right)^{\delta} - 1}{s^{\kappa}} = -\lim_{s \to +0} \delta \left(1 - s\right)^{\delta - 1} = -\delta$$

for any $t \in [c, \infty)$. Thus $\kappa_1 = 2 \kappa$, $\kappa_2 = \kappa$ and $C = -\delta$, where C is a constant in (2).

(2) Fejér-Korovkin summation is defined by

$$k_{\lambda}(t) = \begin{cases} \left(1 - \frac{t}{\lambda^2}\right) \cos \frac{\pi t}{\lambda^2} + \frac{1}{\lambda^2} \cot \frac{\pi}{\lambda^2} \sin \frac{\pi t}{\lambda^2} & t < \lambda^2, \\ 0 & t \ge \lambda^2. \end{cases}$$

In this case, $(\lambda^2/t)^2 [k_{\lambda}(t) - 1]$ are uniformly bounded in λ and $t \in [c, \infty)$ and

$$\lim_{\lambda \to \infty} \frac{k_{\lambda}(t) - 1}{\left(\lambda^{-2} t\right)^2} = \lim_{s \to +0} \frac{\cos \pi s - 1}{s^2} = \lim_{s \to +0} \frac{\cos^2 \pi s - 1}{s^2 \left(\cos \pi s + 1\right)} = -\lim_{s \to +0} \frac{\sin^2 \pi s}{s^2 \left(\cos \pi s + 1\right)} = -\frac{\pi^2}{2}$$

for any $t \in [c, \infty)$. Thus $\kappa_1 = 4$, $\kappa_2 = 2$ and $C = -\pi^2/2$.

(3) Rogosinski summation is given by

$$k_{\lambda}(t) = \left\{ egin{array}{ll} \cos rac{\pi \, t}{2 \, \lambda^2} & t < \lambda^2, \ 0 & t \geq \lambda^2. \end{array}
ight.$$

In this case, $(\lambda^2/t)^2[k_{\lambda}(t)-1]$ are uniformly bounded in λ and $t \in [c,\infty)$ and

$$\lim_{\lambda \to \infty} \frac{k_{\lambda}(t) - 1}{\left(\lambda^{-2} t\right)^2} = \lim_{s \to +0} \frac{\cos \frac{\pi}{2} s - 1}{s^2} = -\lim_{s \to +0} \frac{\sin^2 \frac{\pi}{2} s}{s^2 \left(\cos \frac{\pi}{2} s + 1\right)} = -\left(\frac{\pi}{2}\right)^2 \cdot \frac{1}{2} = -\frac{\pi^2}{8}$$

for any $t \in [c, \infty)$. Thus $\kappa_1 = 4$, $\kappa_2 = 2$ and $C = -\pi^2/8$.

(4) Jackson summation is given by

$$k_{\lambda}(t) = \begin{cases} 1 - \frac{3}{2} \left(\frac{t}{\lambda^2}\right)^2 + \frac{3}{4} \left(\frac{t}{\lambda^2}\right)^3 & t < \lambda^2, \\ \frac{1}{4} \left(2 - \frac{t}{\lambda^2}\right)^3 & \lambda^2 \le t < 2 \lambda^2, \\ 0 & t \ge 2 \lambda^2. \end{cases}$$

In this case, $(\lambda^2/t)^2 [k_{\lambda}(t)-1]$ are uniformly bounded in λ and $t \in [c,\infty)$ and $\lim_{\lambda \to \infty} (\lambda^2/t)^2 [k_{\lambda}(t)-1] = -3/2$. Thus $\kappa_1 = 4$, $\kappa_2 = 2$ and C = -3/2.

(5) Gauss-Weierstrass summation: We consider the multiplier $k_{\lambda}^{W}(t) = \exp(-t/\lambda)$. The function of $t(\lambda/t)[k_{\lambda}(t)-1]$ is bounded uniformly in λ , and we have

$$\lim_{\lambda \to \infty} \frac{k_{\lambda}(t) - 1}{\lambda^{-1}t} = \lim_{s \to +0} \frac{e^{-s} - 1}{s} = -\lim_{s \to +0} e^{-s} = -1.$$

Thus $\kappa_1 = \kappa_2 = 1$ and C = -1. Poisson summation is given by the function $k_{\lambda}^P(t) = \exp(-\sqrt{t}/\lambda)$, and we have $\kappa_1 = 1$ and $\kappa_2 = 1/2$.

3 Estimates of $k_{\lambda}(\hat{A}) f - f$.

The aim of this section is to prove the following theorem.

Theorem 2. Let Ω be an open domain in \mathbb{R}^n and \hat{A} be a nonnegative selfadjoint extension of $-\Delta$ in Ω . Suppose that K is a compact set in Ω and K' is a closed subset of K with $\operatorname{dist}(K',K^c)>0$. Let $\{k_{\lambda}(t)\}$ be a family of bounded piecewise smooth functions on $[0,\infty)$ such that $k_{\lambda}(t)\sqrt{t}^{n/2-2\kappa_2+1/2}\in L^1(0,\infty)$ with a constant $\kappa_2>0$ and $k_{\lambda}(0)=1$ for any λ .

Suppose that $\{k_{\lambda}(t)\}$ satisfies the conditions (1.1), (1.2) and (1.3) with a constant $\kappa_1 > 0$ and $0 < R < \mathrm{dist}(K', K^c) > 0$. Let f be a regulated function in $L^2(\Omega)$. Suppose that $1 and <math>f \in L^p(K)$. Then the following hold.

(i) If $(-\Delta)^{\kappa_2} f \in L^p(K)$, then

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K')} = O(\lambda^{-\kappa_{1}})$$
 as $\lambda \to \infty$.

(ii) If $(-\Delta)^{\kappa_2} f$ vanishes in K, then

$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K')} = o(\lambda^{-\kappa_{1}})$$
 as $\lambda \to \infty$.

3.1 Generalized eigenfunction system.

In order to prove Theorem 2, we shall use the generalized eigenfunction system corresponding to an ordered representation of $L^2(\Omega)$ associated with the Laplace operator.

We shall begin with several definitions. We consider $A = -\Delta$ as an operator in $L^2(\Omega)$ with the domain of definition $D(A) = C_c^{\infty}(\Omega)$. Let \hat{A} be a nonnegative selfadjoint extension of A. Let \mathfrak{B} be the Borel field on \mathbf{R} and E be the unique spectral measure corresponding to \hat{A} . For $h \in L^2(\Omega)$, we define the following closed subspace of $L^2(\Omega)$:

$$\begin{split} H\left(h\right) &:= \left\{ \left. F\left(\hat{A}\right)h \, ; \, F \text{ is a Borel function on } \boldsymbol{R} \text{ and } h \in D\left(F\left(\hat{A}\right)\right) \right\} \\ &= \left. \left\{ \left. F\left(\hat{A}\right)h \, ; \, F \in L^2(\boldsymbol{R},\mathfrak{B},(E(\cdot)h,h)) \right\}. \end{split}$$

If $f \in H(h)$, then we can write uniquely $f = F(\hat{A})h$, where $F \in L^2(\mathbf{R}, \mathfrak{B}, (E(\cdot)h, h))$ and

$$||f||_{L^2(\Omega)} = \left(\int_{\mathbf{R}} |F(t)|^2 (E(dt) h, h)\right)^{1/2}.$$

Therefore we can define an isomorphism U_h from H(h) onto $L^2(\mathbf{R}, \mathfrak{B}, (E(\cdot)h, h))$ by $U_h f := F$, which preserves inner products.

There exist a sequence of functions $\{h_j\} \subset L^2(\Omega)$ and a sequence of sets $\{e_j\} \subset \mathfrak{B}$, called the set of multiplicity, with the following properties (see [3, XII.3.16] or [4, Chap.14]):

(I)

$$L^2(\Omega) = \bigoplus_j H(h_j).$$

That is, $H(h_j)$ are mutually orthogonal and span $L^2(\Omega)$.

(II)
$$\mathbf{R} = e_1 \supseteq e_2 \supseteq \cdots$$

$$(\mathrm{III}) \qquad (\,E\,(e)\,h_j,h_j\,) = (E\,(e\cap e_j)\,\,h_1,h_1) \qquad \text{for any} \quad e\in \mathfrak{B}.$$

By (I), for $f \in L^2(\Omega)$ we can write uniquely

$$f = \sum_{j} F_{j} \left(\hat{A} \right) h_{j},$$

where $F_{j}\in L^{2}\left(\left.\boldsymbol{R},\mathfrak{B},\left(E\left(\cdot\right)h_{j},h_{j}\right.\right)\right)$ and

$$\left(\sum_{j}\int_{\mathbf{R}}\left|F_{j}\left(t\right)\right|^{2}\left(E\left(dt\right)h_{j},h_{j}\right)\right)^{1/2}=\left(\sum_{j}\left\|F_{j}\left(\hat{A}\right)h_{j}\right\|_{L^{2}\left(\Omega\right)}^{2}\right)^{1/2}=\left|\left|f\right|\right|_{L^{2}\left(\Omega\right)}<\infty.$$

Therefore we can define an isometry U from $L^2(\Omega)$ onto $\bigoplus_j L^2(\mathbf{R}, \mathfrak{B}, (E(\cdot)h_j, h_j))$, which is equivalent to say

$$L^{2}(\Omega) \leftrightarrow \left\{ \left\{ F_{j} \right\}; F_{j} \in L^{2}\left(\boldsymbol{R}, \mathfrak{B}, \left(E(\cdot)h_{j}, h_{j}\right)\right) \text{ and } \sum_{j} \int_{\boldsymbol{R}} \left|F_{j}(t)\right|^{2} \left(E(dt) h_{j}, h_{j}\right) < \infty \right\},$$

and the correspondence is given by $Uf := \{F_j\}$. We denote $F_j =: (Uf)_j$.

By (III) we have

$$\bigoplus_{j} L^{2}\left(\mathbf{R},\left(E(\cdot)\,h_{j},h_{j}\right)\right) = \bigoplus_{j} L^{2}\left(e_{j},\left(E\left(\cdot\right)h_{1},h_{1}\right)\right).$$

Let $\rho := (E(\cdot) h_1, h_1)$. Then U is an isomorphism from $L^2(\Omega)$ onto $\bigoplus_j L^2(e_j, \rho)$ which preserves inner products, that is, for any $f, g \in L^2(\Omega)$ it holds that

$$(3.1) (f,g)_{L^2(\Omega)} = \sum_{i} \int_{e_j} (Uf)_j(t) \, \overline{(Ug)_j(t)} \, \rho(dt).$$

U is called an ordered representation of $L^2(\Omega)$ with respect to \hat{A} .

With these understood, there exists a sequence of functions $\{u_j(x,t)\}$ defined on the product space of $\Omega \times \mathbf{R}$ such that the following conditions are satisfied (see [3, XII.3 and XIV.6] or [4, Chap.15]):

(i) The functions $u_j(x,t)$ are $dx \times d\rho(t)$ -measurable and vanish outside $\Omega \times e_j$, where dx is the Lebesgue measure.

(ii) For any fixed $t \in \mathbf{R}$, each $u_j(x,t)$ belongs $C^{\infty}(\Omega)$ and satisfies

$$(3.2) -\Delta u_j(x,t) = t u_j(x,t), x \in \Omega.$$

(iii) For each compact subset K of Ω and each bounded Borel set e in \mathbf{R}

$$\operatorname{ess\,sup}_{x \in K} \int_{e} |u_{j}(x,t)|^{2} \rho(dt) < \infty.$$

(iv) For each $f \in L^2(\Omega)$

$$(3.3) (Uf)_j(t) = \int_{\Omega} f(x) \, \overline{u_j(x,t)} \, dx,$$

where the integral exists in the sense of $L^{2}\left(e_{j},\rho\right)$.

(v) For each $f \in L^2(\Omega)$ and each $e \in \mathfrak{B}$

(3.4)
$$E(e) f(x) = \sum_{i} \int_{e} (Uf)_{j}(t) u_{j}(x, t) \rho(dt),$$

where the integral exists and the series converges in the sense of $L^2(\Omega)$.

 $\{u_j\}$ is called the generalized eigenfunction system of \hat{A} corresponding to U. By (v), for $f \in L^2(\Omega)$ we have

(3.5)
$$f(x) = \sum_{j} \int_{\mathbf{R}} (Uf)_{j}(t) u_{j}(x,t) \rho(dt)$$

and

(3.6)
$$k_{\lambda}(\hat{A}) f(x) = \sum_{j} \int_{\mathbf{R}} k_{\lambda}(t) (Uf)_{j}(t) u_{j}(x,t) \rho(dt).$$

3.2 Decomposition of $k_{\lambda}(\hat{A})f - f$.

Throughout what follows, Ω denotes an open domain in \mathbf{R}^n and \hat{A} is a nonnegative selfadjoint extension of $-\Delta$. Let U denote an ordered representation of $L^2(\Omega)$ with respect to \hat{A} , $\{u_j\}$ the generalized eigenfunction system and ρ the measure associated with U. We denote the gamma function by Γ , the unit sphere in \mathbf{R}^n by S^{n-1} , the Lebesgue measure on the unit sphere S^{n-1} by σ and the surface area $2\sqrt{\pi}^n/\Gamma(n/2)$ of S^{n-1} by ω_n . Let κ_2 be a constant in (1.1), (1.2) and (1.3), and $\nu = n/2 - 2\kappa_2 + 1$.

Lemma 2. Let $f \in L^2(\Omega)$, $x \in \Omega$ and R > 0. Then

$$\begin{split} k_{\lambda} \Big(\hat{A} \Big) \, f(x) - f(x) \\ &= - \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \int_{0}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \int_{0}^{r} \frac{J_{\nu+1} \left(\sqrt{t} \, s \right)}{\left(\sqrt{t} \, s \right)^{\nu+1}} \, s \, ds \\ &+ \sum_{j} \int_{0}^{\infty} \frac{\left(Uf \right)_{j}(t) \, u_{j}(x,t)}{\sqrt{t}^{\nu}} \, \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) \, J_{\nu} \left(\sqrt{t} \, r \right) \, r \, dr \\ &- f(x) \times \frac{1}{2^{\nu} \Gamma(\nu+1)} \int_{R}^{\infty} I_{\lambda}(r) \, r^{\nu+1} dr, \end{split}$$

where

$$I_{\lambda}(r) = \int_{0}^{\infty} k_{\lambda}(s^{2}) J_{\nu}(rs) s^{\nu+1} ds.$$

Proof. First observe that the function $k_{\lambda}(t)$ is piecewise smooth on $[0,\infty)$ and $k_{\lambda}(t)\sqrt{t}^{\nu-1}$ is integrable on $(0,\infty)$. By Hankel's integral formula ([2, p.73,(60)]), we have

$$\begin{array}{rcl} k_{\lambda}(t) & = & \frac{1}{\sqrt{t^{\nu}}} \int_{0}^{\infty} J_{\nu}\left(\sqrt{t}\,r\right)\,r\,dr \int_{0}^{\infty} k_{\lambda}\left(s^{2}\right)\,J_{\nu}\left(\,rs\,\right)s^{\,\nu+1}ds \\ \\ & = & \frac{1}{\sqrt{t^{\,\nu}}} \int_{0}^{\infty}\,I_{\lambda}\left(r\right)J_{\nu}\left(\sqrt{t}\,r\right)\,r\,dr. \end{array}$$

Then, by (3.5), (3.6) and the fact that $k_{\lambda}(0) = 1$, we have

$$\begin{split} k_{\lambda} \Big(\hat{A} \Big) \, f(x) - f(x) \\ &= \sum_{j} \int_{0}^{\infty} \left\{ \, k_{\lambda}(t) - k_{\lambda}(0) \right\} (\, Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \\ &= \sum_{j} \int_{0}^{\infty} (\, Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \int_{0}^{\infty} \left\{ \frac{J_{\nu} \left(\sqrt{t} \, r \right)}{\sqrt{t}^{\nu}} - \frac{r^{\nu}}{2^{\nu} \Gamma(\nu + 1)} \right\} I_{\lambda}(r) \, r \, dr \\ &= \sum_{j} \int_{0}^{\infty} (\, Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \int_{0}^{R} \left\{ \frac{J_{\nu} \left(\sqrt{t} \, r \right)}{\sqrt{t}^{\nu}} - \frac{r^{\nu}}{2^{\nu} \Gamma(\nu + 1)} \right\} I_{\lambda}(r) \, r \, dr \\ &+ \sum_{j} \int_{0}^{\infty} (\, Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \int_{R}^{\infty} \left\{ \frac{J_{\nu} \left(\sqrt{t} \, r \right)}{\sqrt{t}^{\nu}} - \frac{r^{\nu}}{2^{\nu} \Gamma(\nu + 1)} \right\} I_{\lambda}(r) \, r \, dr. \end{split}$$

Now apply the formula ([7, p.45])

$$\frac{J_{\nu}\left(\sqrt{t}\,r\right)}{\sqrt{t}^{\nu}} - \frac{r^{\nu}}{2^{\nu}\Gamma(\nu+1)} = -t\,r^{\nu}\int_{0}^{r} \frac{J_{\nu+1}\left(\sqrt{t}\,s\right)}{\left(\sqrt{t}\,s\right)^{\nu+1}}\,s\,ds.$$

Note that for the second term, we have

$$\begin{split} &\sum_{j} \int_{0}^{\infty} (Uf)_{j}(t) \, u_{j}(x,t) \, \rho(dt) \int_{R}^{\infty} \left\{ \frac{J_{\nu} \left(\sqrt{t} \, r\right)}{\sqrt{t^{\nu}}} - \frac{r^{\nu}}{2^{\nu} \Gamma(\nu+1)} \right\} I_{\lambda}(r) \, r \, dr \\ &= \sum_{j} \int_{0}^{\infty} \frac{(Uf)_{j}(t) \, u_{j}(x,t)}{\sqrt{t^{\nu}}} \, \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) \, J_{\nu} \left(\sqrt{t} \, r\right) \, r \, dr \\ &- f(x) \times \frac{1}{2^{\nu} \Gamma(\nu+1)} \int_{R}^{\infty} I_{\lambda}(r) \, r^{\nu+1} dr. \end{split}$$

Thus we get Lemma 2.

3.3 Proof of Theorem 2.

Let f be a regulated function in $L^2(\Omega)$. Let K be a compact set in Ω and K' be a closed set in K with $\operatorname{dist}(K', K^c) > 0$. We choose $0 < R < \operatorname{dist}(K', K^c)$. Let κ_1 and κ_2 be constants in (1.1), (1.2) and (1.3). Let $\nu = n/2 - 2 \kappa_2 + 1$ and 1 .

Suppose that $f \in L^p(K)$ and $(-\Delta)^{\kappa_2} f \in L^p(K)$. By Lemma 2, we have

$$\|k_{\lambda}(\hat{A}) f - f\|_{L^{p}(K')} \leq \|f\|_{L^{p}(K')} \times \frac{1}{2^{\nu} \Gamma(\nu+1)} \left| \int_{R}^{\infty} I_{\lambda}(r) r^{\nu+1} dr \right|$$

$$+ \left\| \int_{0}^{R} I_{\lambda}(r) r^{\nu+1} dr \int_{0}^{r} s \, ds \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(\cdot, t) \frac{J_{\nu+1}\left(\sqrt{t} \, s\right)}{\left(\sqrt{t} \, s\right)^{\nu+1}} \, \rho(dt) \right\|_{L^{p}(K')}$$

$$+ \left\| \sum_{j} \int_{0}^{\infty} \frac{(Uf)_{j}(t) \, u_{j}(\cdot, t)}{\sqrt{t}^{\nu}} \, \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) \, J_{\nu}\left(\sqrt{t} \, r\right) \, r \, dr \right\|_{L^{\infty}(K')} .$$

Lemma 3. We have

$$\left\| \int_{0}^{R} I_{\lambda}(r) r^{\nu+1} dr \int_{0}^{r} s \, ds \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(\cdot, t) \, \frac{J_{\nu+1}\left(\sqrt{t} \, s\right)}{\left(\sqrt{t} \, s\right)^{\nu+1}} \, \rho(dt) \right\|_{L^{p}(K')} \\ \leq C \, \lambda^{-\kappa_{1}} \, \left\| \left(-\Delta\right)^{\kappa_{2}} f \, \right\|_{L^{p}(K)}.$$

Proof. Let $x \in K'$ and 0 < s < R. Put

$$g_s(y) = \frac{1}{s^{\nu+1}|y|^{n/2-1}} \int_0^\infty J_{\nu+1}(s\,r\,) J_{n/2-1}(|y|r) dr,$$

$$g_s^x(y) = g_s(x-y).$$

If |y| > s, then $g_s(y) = 0$ ([7, p.404,(6)]). Therefore supp $g_s^x \subset K \subset \Omega$. Then, by (3.3), we have

$$\begin{split} (Ug_s^x)_j(t) &= \int_{\Omega} g_s^x(y) \, \overline{u_j(y,t)} \, dy \\ &= \int_{\Omega} g_s(y) \, \overline{u_j(x-y,t)} \, dy \\ &= \frac{1}{s^{\nu+1}} \int \overline{u_j(x-y,t)} \, dy \, \frac{1}{|y|^{n/2-1}} \int_0^{\infty} J_{\nu+1}(s\,r) \, J_{n/2-1}(|y|r) \, dr \\ &= \frac{1}{s^{\nu+1}} \int_0^{\infty} q^{n/2} dq \int_{S^{n-1}} \overline{u_j(x-q\,w,t)} \, \sigma(d\,w) \int_0^{\infty} J_{\nu+1}(s\,r) J_{n/2-1}(qr) \, dr. \end{split}$$

On the other hand, by (3.2), $u_j(y,t) \in C^{\infty}(\Omega)$, and we have $-\Delta u_j(y,t) = t u_j(y,t)$ for $y \in \Omega$. Therefore, by the mean-value formula, we have

$$\int_{S^{n-1}} u_j(x - q w, t) \, \sigma(dw) = \sqrt{2 \pi}^n \, \frac{J_{n/2-1} \left(\sqrt{t} \, q \right)}{\left(\sqrt{t} \, q \right)^{n/2-1}} u_j(x, t).$$

Thus, by Hankel's formula, we have

$$(Ug_s^x)_j(t) = \frac{\sqrt{2\pi}^n}{\sqrt{t}^{n/2-1}s^{\nu+1}} \overline{u_j(x,t)} \int_0^\infty J_{n/2-1}(\sqrt{t} q) q dq \int_0^\infty J_{\nu+1}(sr)J_{n/2-1}(qr)dr$$

$$= \frac{\sqrt{2\pi}^n J_{\nu+1}(\sqrt{t} s)}{\sqrt{t}^{n/2}s^{\nu+1}} \overline{u_j(x,t)}.$$

We can assume that $f \in C_c^{\infty}(\Omega)$ by approximation. Then, by (3.1), we have

$$\begin{split} \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(x,t) \frac{J_{\nu+1} \left(\sqrt{t} \, s\right)}{\left(\sqrt{t} \, s\right)^{\nu+1}} \, \rho(dt) \\ &= \frac{1}{\sqrt{2 \, \pi^{n}}} \sum_{j} \int_{e_{j}} t^{\kappa_{2}} (Uf)_{j}(t) \overline{(Ug_{s}^{x})_{j}(t)} \, \rho(dt) \\ &= \frac{1}{\sqrt{2 \, \pi^{n}}} \int_{\Omega} \left[(-\Delta)^{\kappa_{2}} f(y) \right] g_{s}^{x}(y) dy \\ &= \frac{1}{\sqrt{2 \, \pi^{n}}} \int_{\Omega} \left[(-\Delta)^{\kappa_{2}} f(y) \right] g_{s}(x-y) dy. \end{split}$$

Therefore we have

$$\begin{split} &\int_{0}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \int_{0}^{r} s \, ds \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(x,t) \, \frac{J_{\nu+1} \left(\sqrt{t} \, s\right)}{\left(\sqrt{t} \, s\right)^{\nu+1}} \, \rho(dt) \\ &= \frac{1}{\sqrt{2 \, \pi^{\, n}}} \int_{0}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \int_{0}^{r} s \, ds \int_{|y| < s} \left[(-\Delta)^{\kappa_{2}} f(x-y) \right] g_{s}(y) \, dy \\ &= \frac{1}{\sqrt{2 \, \pi^{\, n}}} \int_{0}^{R} s \, ds \int_{s}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \int_{|y| < s} \left[(-\Delta)^{\kappa_{2}} f(x-y) \right] g_{s}(y) \, dy. \end{split}$$

Applying successively Minkowski's inequality for integral, we have

$$\begin{split} & \left\| \int_{0}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \int_{0}^{r} s \, ds \sum_{j} \int_{0}^{\infty} t \, (Uf)_{j}(t) \, u_{j}(\cdot, t) \, \frac{J_{\nu+1} \left(\sqrt{t} \, s\right)}{\left(\sqrt{t} \, s\right)^{\nu+1}} \, \rho(dt) \, \right\|_{L^{p}(K')} \\ & \leq \frac{1}{\sqrt{2 \, \pi^{n}}} \int_{0}^{R} s \, ds \, \left\| \int_{s}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \, \int_{|y| < s} \left[(-\Delta)^{\kappa_{2}} f(\cdot - y) \right] \, g_{s}(y) \, dy \, \right\|_{L^{p}(K')} \\ & = \frac{1}{\sqrt{2 \, \pi^{n}}} \int_{0}^{R} s \, ds \, \left| \int_{s}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \, \right| \, \left\| \int_{|y| < s} \left[(-\Delta)^{\kappa_{2}} f(\cdot - y) \right] g_{s}(y) \, dy \, \right\|_{L^{p}(K')} \\ & \leq \frac{1}{\sqrt{2 \, \pi^{n}}} \int_{0}^{R} s \, ds \, \left| \int_{s}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \, \left| \int_{|y| < s} \left\| (-\Delta)^{\kappa_{2}} f(\cdot - y) \, \right\|_{L^{p}(K')} \, |g_{s}(y)| \, dy \right. \\ & \leq \frac{1}{\sqrt{2 \, \pi^{n}}} \, \left\| (-\Delta)^{\kappa_{2}} f \, \right\|_{L^{p}(K)} \int_{0}^{R} s \, ds \, \left| \int_{s}^{R} I_{\lambda}(r) \, r^{\nu+1} dr \, \left| \int_{|y| < s} |g_{s}(y)| \, dy. \right. \end{split}$$

On the other hand, we have

$$\begin{split} \int_{|y| < s} |g_s(y)| \, dy &= \frac{1}{s^{\nu+1}} \int_{|y| < s} \frac{1}{|y|^{n/2-1}} \, dy \left| \int_0^\infty J_{\nu+1}(sr) J_{n/2-1}(|y|r) \, dr \right| \\ &= \frac{\omega_n}{s^{\nu+1}} \int_0^s q^{n/2} dq \left| \int_0^\infty J_{\nu+1}(sr) J_{n/2-1}(qr) \, dr \right| \\ &= \frac{\omega_n \, \Gamma((2\nu + n + 2)/4)}{\Gamma(n/2) \, \Gamma((2\nu - n + 6)/4) s^{\nu + n/2 + 1}} \\ &\qquad \times \int_0^s \left| {}_2F_1 \left((2\nu + n + 2)/4, -(2\nu - n + 2)/4; n/2; q^2/s^2 \right) \right| q^{n-1} dq \\ &\leq \frac{C_{\kappa_2}}{s^{\nu - n/2 + 1}}, \end{split}$$

where $_2F_1(\alpha,\beta;\gamma;z)$ is Gauss' hypergeometric function. Therefore the last term is bounded by

$$C_{\kappa_{2}}\left\|(-\Delta)^{\kappa_{2}}f
ight\|_{L^{p}(K)}\int_{0}^{R}s^{2\kappa_{2}-1}ds\left|\int_{s}^{R}I_{\lambda}\left(r
ight)r^{
u+1}dr\right|.$$

By the condition (1.1), we get the bound $C \lambda^{-\kappa_1} \| (-\Delta)^{\kappa_2} f \|_{L^p(K)}$ for the last term. Thus Lemma 3 is proved.

We shall use the following lemma ([1, p.655]).

Lemma 4. Under the assumptions above, if K is a compact set contained in Ω , then

$$\left(\sum_{j} \int_{T \le \sqrt{t} \le T+1} |u_{j}(x,t)|^{2} \rho(dt)\right)^{1/2} \le C_{K} (T+1)^{(n-1)/2},$$

where C_K is a constant independent of $T \geq 0$ and $x \in K$.

Lemma 5. We have

$$\left\| \sum_{j} \int_{0}^{\infty} \frac{(Uf)_{j}(t) u_{j}(\cdot, t)}{\sqrt{t}^{\nu}} \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) J_{\nu}\left(\sqrt{t} r\right) r dr \right\|_{L^{\infty}(K)} = o\left(\lambda^{-\kappa_{1}}\right)$$

as $\lambda \to \infty$.

Proof. We have, by Schwarz's inequality,

$$\left| \sum_{j} \int_{0}^{\infty} \frac{(Uf)_{j}(t) u_{j}(x,t)}{\sqrt{t}^{\nu}} \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) J_{\nu} \left(\sqrt{t} r\right) r dr \right|$$

$$\leq \left(\sum_{j} \int_{e_{j}} |(Uf)_{j}(t)|^{2} \rho(dt) \right)^{1/2}$$

$$\times \left(\sum_{j} \int_{0}^{\infty} \frac{|u_{j}(x,t)|^{2}}{t^{\nu}} \rho(dt) \left| \int_{R}^{\infty} I_{\lambda}(r) J_{\nu} \left(\sqrt{t} r\right) r dr \right|^{2} \right)^{1/2}.$$

Now, by (3.1), we have

$$\left(\sum_{j} \int_{e_{j}} |(Uf)_{j}(t)|^{2} \rho(dt)\right)^{1/2} = \|f\|_{L^{2}(\Omega)}.$$

By Lemma 4, there exists a constant C_K such that

$$\left(\sum_{j} \int_{0}^{\infty} \frac{|u_{j}(x,t)|^{2}}{t^{\nu}} \rho(dt) \left| \int_{R}^{\infty} I_{\lambda}(r) J_{\nu}\left(\sqrt{t} r\right) r dr \right|^{2} \right)^{1/2}$$

$$\leq C_{K} \left(\sum_{T=0}^{\infty} T^{4 \kappa_{2}-3} \max_{T \leq s \leq T+1} \left| \int_{R}^{\infty} I_{\lambda}(r) J_{\nu}(s r) r dr \right|^{2} \right)^{1/2}$$

uniformly in $x \in K$. Therefore, by (1.3), we have

$$\left| \sum_{j} \int_{0}^{\infty} \frac{(Uf)_{j}(t) u_{j}(x,t)}{\sqrt{t}^{\nu}} \rho(dt) \int_{R}^{\infty} I_{\lambda}(r) J_{\nu}\left(\sqrt{t} r\right) r dr \right| = o\left(\lambda^{-\kappa_{1}}\right)$$

uniformly in $x \in K$ as $\lambda \to \infty$. Thus Lemma 5 is proved.

We remark that
$$\left| \int_{R}^{\infty} I_{\lambda}(r) \, r^{\nu+1} dr \right| = o\left(\lambda^{-\kappa_{1}}\right)$$
 by the assumption (1.2).

By (3.7) together with Lemmas 3 and 5,
$$\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K')} = O(\lambda^{-\kappa_{1}})$$
 as $\lambda \to \infty$.

If $(-\Delta)^{\kappa_2} f$ vanishes in K, then by Lemma 3

$$\left\| \int_0^R I_\lambda\left(r\right) r^{\nu+1} dr \int_0^r s \, ds \sum_j \int_0^\infty t\left(Uf\right)_j(t) \, u_j(\cdot,t) \, \frac{J_{\nu+1}\left(\sqrt{t}\,s\right)}{\left(\sqrt{t}\,s\right)^{\nu+1}} \, \rho(dt) \right\|_{L^p\left(K'\right)} = 0.$$

Therefore, by (3.7) and Lemma 5, we have $\|k_{\lambda}(\hat{A})f - f\|_{L^{p}(K')} = o(\lambda^{-\kappa_{1}})$ as $\lambda \to \infty$.

Consequently, Theorem 2 is proved.

4 Applications of main theorem.

4.1 Proof of Corollary 1.

Let $k_{\lambda}(t) = (1 - t/\lambda^2)_{+}^{\delta}$. Then we have the formula (see [2, p.92,(34)])

$$k_{\lambda}(t) = \frac{2^{\delta} \Gamma(\delta+1)}{\lambda^{\delta-n/2} \sqrt{t}^{n/2-1}} \int_{0}^{\infty} \frac{J_{n/2+\delta}(\lambda r) J_{n/2-1}\left(\sqrt{t} r\right)}{r^{\delta}} dr,$$

and can take $\kappa_2 = 1$. We have

$$I_{\lambda}(r) = \int_{0}^{\infty} k_{\lambda} \left(t^{2} \right) \, J_{n/2-1} \left(\, r \, t \, \right) t^{\, n/2} dt = 2^{\, \delta} \, \Gamma(\, \delta + 1 \,) \, \lambda^{\, n/2-\, \delta} \, J_{\, n/2+\, \delta} \left(\, \lambda \, r \right) r^{-\delta - 1}.$$

To check the conditions (1.1), (1.2) and (1.3), let R > 0 and $\delta > (n-3)/2$. Then we have

$$\left| \int_{R}^{\infty} I_{\lambda}(r) \, r^{n/2} \, dr \, \right| = 2^{\delta} \, \Gamma(\delta + 1) \, \lambda^{n/2 - \delta} \, \left| \int_{R}^{\infty} \frac{J_{n/2 + \delta}(\lambda \, r)}{r^{\delta - n/2 + 1}} \, dr \, \right| \leq C_{\delta, R} \, \lambda^{(n-3)/2 - \delta}.$$

On the other hand, we have

$$\int_{0}^{R} s \, ds \left| \int_{s}^{R} I_{\lambda}(r) \, r^{n/2} \, dr \right| = 2^{\delta} \, \Gamma(\delta + 1) \, \lambda^{n/2 - \delta} \int_{0}^{R} s \, ds \left| \int_{s}^{R} \frac{J_{n/2 + \delta}(\lambda \, r)}{r^{\delta - n/2 + 1}} \, dr \right|$$

$$\leq \begin{cases} C_{\delta} \, \lambda^{(n-3)/2 - \delta} & \text{if} \quad (n-3)/2 < \delta < (n+1)/2, \\ C_{\delta} \, \lambda^{(n-3)/2 - \delta} \log \lambda & \text{if} \quad \delta = (n+1)/2, \\ C_{\delta} \, \lambda^{-2} & \text{if} \quad \delta > (n+1)/2. \end{cases}$$

We now apply the estimates (see [6, p.202, Lemma 18.10 a])

$$\left| \int_{R}^{\infty} \frac{J_{n/2+\delta}(\lambda r) J_{n/2-1}(s r)}{r^{\delta}} dr \right|$$

$$\leq \begin{cases} C_{\delta,R} \lambda^{-1/2} s^{-1/2} & \text{if } s, \lambda > 0, \\ C_{\delta,R} \frac{\lambda^{-3/2} s^{1/2}}{\lambda - s} + C_{\delta,R} \lambda^{-3/2} s^{-1/2} & \text{if } 0 < s < \lambda, \\ C_{\delta,R} \frac{\lambda^{1/2} s^{-3/2}}{s - \lambda} + C_{\delta,R} \lambda^{-1/2} s^{-3/2} & \text{if } 0 < \lambda < s. \end{cases}$$

Then we have

$$\left(\sum_{T=0}^{\infty} T \max_{T \le s \le T+1} \left| \int_{R}^{\infty} I_{\lambda}(r) J_{n/2-1}(s r) r dr \right|^{2} \right)^{1/2} \\
= 2^{\delta} \Gamma(\delta+1) \lambda^{n/2-\delta} \left(\sum_{T=0}^{\infty} T \max_{T \le s \le T+1} \left| \int_{R}^{\infty} \frac{J_{n/2+\delta}(\lambda r) J_{n/2-1}(s r)}{r^{\delta}} dr \right|^{2} \right)^{1/2} \\
< C_{\delta,R} \lambda^{(n-1)/2-\delta}.$$

If $\delta > (n+3)/2$, then the last term is $o(\lambda^{-2})$. Thus Corollary 1 follows from Main theorem.

4.2 The Gauss-Weierstrass summation.

Let $k_{\lambda}^{W}(t) = e^{-t/\lambda}(\lambda \to \infty)$. We then have

$$(4.1) \int_0^\infty k_{\lambda}^W \left(t^2\right) J_{\nu}(rt) t^{\nu+1} dt = \int_0^\infty e^{-t^2/\lambda} J_{\nu}(rt) t^{\nu+1} dt = \frac{\lambda^{\nu+1} r^{\nu}}{2^{\nu+1}} \exp\left(-\frac{\lambda r^2}{4}\right)$$

(cf. [2, 7.7.3]). Let Ω be an open domain in \mathbb{R}^n and \hat{A} be a nonnegative selfadjoint extension of $-\Delta$ in Ω .

Corollary 2. Let f be a regulated function in $L^2(\Omega)$. Suppose that $1 and <math>f \in L^p_{loc}(\Omega)$. Then the following hold.

(i) The following are equivalent.

$$\left\| k_{\lambda}^{W} \left(\hat{A} \right) f - f \right\|_{L^{p}(K)} = O\left(\lambda^{-1} \right)$$

as $\lambda \to \infty$ for every compact set K in Ω .

(ib)
$$\Delta f \in L^p_{loc}(\Omega)$$
.

- (ii) Let $G \subset \Omega$ be any open set.
 - (ii a) Suppose that Δf vanishes in G. Then

$$\left\| k_{\lambda}^{W} \left(\hat{A} \right) f - f \right\|_{L^{p}(K)} = o \left(\lambda^{-1} \right)$$

as $\lambda \to \infty$ for any compact set $K \subset G$.

(iib) If

$$\left\| k_{\lambda}^{W} \left(\hat{A} \right) f - f \right\|_{L^{p}(K)} = o \left(\lambda^{-1} \right)$$

as $\lambda \to \infty$ for any compact set $K \subset G$, then Δf vanishes in G.

Proof. For the Gauss-Weierstrass summation method we take $\kappa_2 = 1$. Let R be a small positive number. By (4.1), we have

$$\begin{split} \int_{R}^{\infty} r^{n/2} \, dr \int_{0}^{\infty} k_{\lambda}^{W} \left(t^{2} \right) \, J_{\nu} \left(r \, t \right) t^{\nu+1} dt &= \left(\frac{\lambda}{2} \right)^{n/2} \int_{R}^{\infty} r^{n-1} \exp \left(-\frac{\lambda \, r^{2}}{4} \right) dr = o \left(\lambda^{-1} \right), \\ \int_{0}^{R} s \, ds \left| \int_{s}^{R} r^{n/2} \, dr \int_{0}^{\infty} k_{\lambda}^{W} \left(t^{2} \right) \, J_{\nu} \left(r \, t \right) t^{\nu+1} dt \right| \\ &= \left(\frac{\lambda}{2} \right)^{n/2} \int_{0}^{R} s \, ds \int_{s}^{R} r^{n-1} \exp \left(-\frac{\lambda \, r^{2}}{4} \right) dr = O \left(\lambda^{-1} \right) \end{split}$$

and

$$\begin{split} \left(\sum_{T=0}^{\infty} T \max_{T \leq s \leq T+1} \left| \int_{R}^{\infty} J_{n/2-1}(s\,r)\, r \, dr \int_{0}^{\infty} k_{\lambda}^{W} \left(t^{2} \right) \, J_{\nu}\left(r\,t \right) t^{\nu+1} dt \, \right|^{2} \right)^{1/2} \\ &= \left(\frac{\lambda}{2} \right)^{n/2} \left(\int_{R}^{\infty} r^{n-1} \exp\left(-\frac{\lambda\,r^{2}}{2} \right) dr \right)^{1/2} = o\left(\lambda^{-1} \right). \end{split}$$

Thus Corollary 2 follows from Main theorem.

参考文献

- [1] S. A. Alimov and V. A. Il'in, Conditions for the convergence of spectral expansions corresponding to selfadjoint extensions of elliptic operators II (selfadjoint extensions of Laplace's operator with arbitrary spectra), Differential Equations 7 (1971), 651– 670.
- [2] H. Bateman, Higher transcendental functions, Volume II, McGraw-Hill Book Company, Inc. New York, 1953.
- [3] N. Dunford and J. T. Schwartz, Linear operators, Part II (Spectral theory), Pure and Appl. Math. VII, Interscience Publishers, New York, 1963.
- [4] H. Fujita, S.-T. Kuroda and S. Itô, Functional Analysis (Japanese), Iwanami Shoten, Tôkyô, 1991.
- [5] S. Igari, Saturation of the approximation by eigenfunction expansions associated with the Laplace operator, Tôhoku Math. J. 22 (1970), 231–239.
- [6] E. C. Titchmarsh, Eigenfunction expansions associated with second order differential equations, Part II, Oxford Univ. Press, Oxford, 1958.
- [7] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944.

E-mail address: tanigaki@math.tohoku.ac.jp