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Saturation of the approximation by spectral decompositions

RILKE #HiEER  ( Miho Tanigaki )

1 Introduction.

Let Q be an open domain in the n dimensional Euclidean space R". Consider the
operator A = — A in L?(Q) with the domain of definition D(A) = C*(Q), where
A =0%0r,> +---+ 0%/ dz,,” is the Laplacian. Denote by A a nonnegative selfadjoint
extension of A. Let { k(?)} be a family of bounded piecewise smooth functions on [0, oo ).

Suppose we have two constants £q,k2 > 0 such that ky(£)v/% n/2- 2l

€ L'(0,00),
(ka(t) — 1) /A7 t"* are uniformly bounded in X and ¢ € [0, 00), and (ky(t) — 1) /A~ " ¢~

converge to a nonzero constant as A — oo for any ¢ € [0,00). Let
L) = / kx (t2) J, (rt) t"+dt,
0 .

where v = n/2—2k,+1 and J,, is the Bessel function of order v. We assume, furthermore,

the following conditions

(1.1) /0 " pemigs f ¢ rnﬁ?zﬂz“h(r) dr} =0(x ™),
(1.2) .,/ROO P L(r)dr= o (/\"‘1> ,
and |
o0 ' 00 n1/2 -
(1.3) »(1§~T4m-3 r e /R' Jo(sr) I(r) rdr ) = o()\"’“)

as A — oo for any small R> 0.



10

We shall consider the approximation operator k) (fl) for f € L*(Q). Wesay Af €

L2 () if for every compact set K in € there is a constant Cx such that

< Crligllx

[ f@ g (@) da

for any infinitely differentiable function g whose support is contained in K. Let {¢.} be
an infinitely differentiable approximate identity with supports containéci in {z;|z]<e}.
For a function f on Q and z € €, f is said to be regulated at ¢ if fxe.(z)— f(z)
as € — 0%,

In 1970, Igari proved the following Theorem in [5].

Theorem A. Suppose that there exist a complete orthonormal system {wu;} of smooth

functions in L*(Q) and a numerical sequence {X;} for which — Auj = X;u; in Q. Let

fi= [ f@w@de,  feL®@

and

5
sSf=). ( —%) fiuj, feL*)(Q).

A <A

Let §>(n+3)/2 and f € L*(Y) be regulated in Q. Then the following hold.

(i) The following conditions are equivalent.
(ia)
6 _ -1
” sxf = f“Loo(K) - O<)‘ )
as A — oo for gvery compact set K in Q.

(ib) Af € L2 (Q).
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(ii) The following conditions are equivalent.

(iia)
6 - -1
“ f - f“Loo(K) - O(_)‘ )
as A — oo for every compact setu K m Q.
(iib) A f wvanishes in Q.
Our aim is to give a generalization of Theorem A. Let { kx(t)} be a family of bounded
Borel functions on [0,00). We can define the bounded operator k, (fl) in L*(Q).
Example 1. Suppose that there exist a complete orthonormal system {u;} of smooth
functions in L?(Q2) and a sequence {);} such that —Aw; = )\;u; in Q. Let
fi= [ 1@ u@)dz,  fe1¥(9).
Let A be the selfadjoint extension of —A defined by
p(8)-{rerm; £ x1nr <o
i=1 |
and
Af=z>\jfj’ll,j, fED(A)
=

For any f € Lé( Q) the spectral decomposition of f is given by

E((—oo,t])f =Y fiu

A&t

and k) (/1) is defined by

a(d) f= i kx(Aj) fiwg,  f € L*(Q).
=1
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Example 2. Let Q@ =R". Let

f( £ = ‘/%n fR" F(z) e i¢® dz, f € L*(R").

In this case, there is a unique nonnegative selfadjoint ext?nsion A of - A defined by
D(A)={fer*®™; EPfO e P (RY}

and

1
yzx”

Then the spectral decomposition of f € L2 (R™) is given by

Af@)= s [, EPF @O feD(4).

B((=cot)) fe) = oo [ FlE) e de

and ky(A) is defined by

ia(A) £0) = = fon b (KP) (O =S, f eI (RY).

For k3 > 0 and 1 < p < oo, we say (—A)* f belongs to L, () if for every bounded

open set G in Q with the closure G contained in 2, there is a constant Cg such that -

| [ 1@ (~8)9 @) d=| < Collollr g

for any infinitely differentiable function g with support contained in G, where 1/p +

1/p' =1.

Qur results are stated as follows.
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Main theorem. Let Q be an open domain in R™ and A be a nonnegative selfadjoint ex-
tension of — A m Q. Let {kx(t)} be a family of bounded piecewise smooth functions on
[0,00) and ki,ks > 0 such that k,\(t)\/?l/z_m-kll2 € Ll_(O,oo), AR (ks (t) — 1]
are uniformly bounded in X and t € [0,00), and A"t~ [ky(t)—1] converge to a
nonzero constant as A — oo for any t € [0, 00). |

- Suppose that { k(t )} satisfies the conditions (1.1), (1.2) and (1.3) as A — co. Let f be
a regulated function in L*(Q). Furthermore, suppose that 1 < p < co and f € IE ().

Then the following hold.

(i) The following two conditions are equivalent.

- (ia)

i) £ = 7], =0 ()

Lp(K)

as A — oo for every compact set K in .

(ib) (=A)f € L ().
(i) Let G C Q be any open set.

(iia) Suppose that (—A)*f vanishes in G. Then

[r(4) 7 - 1

) ° ()‘_m>
as X — oo for any compact set K C G.>

(iib) If |

) - ° ()‘—m)

as A — oo for any compact set K C G, then (—A)™f wvanishes in G.

[1r(4) £ - 1
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¥ §> (n+3)/2 and ka(t) = (1 —t//\z)i, then the conditions (1.1), (1.2) and

(1.3) are satisfied. Therefore we have the following :

Corollary 1. Let Q be an open domain in R" and Abea nonnegative selfadjoint
extension of — A in Q. Let s§ = (1 - A/)\z)i and 6§ > (n+3)/2. Let f be a requlated
loc

function in L?>(Q). Suppose that 1 < p < oo and f € L} (). Then the following

hold.

(i) The following are equivalent.

(ia)
|s5f—f

L?(K) =0 ()\_2)

as A — oo for every compact set K in €.
(ib) Af € L (92).
(ii) Let G C Q be any open set.
(iia) Suppose that Af vanishes in G. Then

wao = °(27)

as A — oo for any compact set K C G.

|s3f -1

(iib) If
“ Sf-f HLP(K) =0 ()‘—2)

as A — oo for any compact set K C (7, then A f wvanishes in G. |

Our main theorem follows from Theorem 1 in §2 and Theorem 2 in §3. Corollary 1

is proved in §4
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2 Saturatidn of the approximation.

Let Q be an open domain in the n-dimensional Euclidean space R™. Let

{(21) A=Y a,(z)D"

la|<m
be a differential operator, where o = (a;, ag,-.., an), |a| = a1 + oz + -+ + ozn,‘
D= (—1)l*1(8/821)* .- (8/82,)* and a, € C*=(€2). We consider A as an operator
in L?(2) with the domain of definition D(A) = C (). Suppose that A is formally
selfadjoint and semibounded. If A is a selfadjoint exteﬁsion of A with the same lower

bound ¢, then A can be represented in the form of

fl:/cootE(dt).

Let {kx (%)} be a family of bounded Borel functions on [c,00), k1,%2 > 0 and

k() =1

(22) T/JA(t) = A“'il 453 .

Suppose that
(1) ¥a(t) are uniformly bounded in A and ¢ € [¢, o), and

(2) ¥a(t) converge to a nonzero constant C' as X\ — oo for any ¢ € [¢,00).

Lemma 1. If f € L*(?) and g € D (A%), then = (kx(4) f - f,9) — C (£, A™g)

as A — 00.
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Proof. By the definition of ky (fi), we have

X (ky(A) £ - £,9) = 2@ fm[kx(t)—-ll (E(dt)f,9)

[T RO (5, B )

k —
= e ;——(t‘)‘t_ t* (f, B(dt)g)

I

= /cmm(t)t“z(f,E(dt)g)

= (£,9x(4) 4=9)
= /coosz(t)(f,E(dt)jl”zg).

Let p = (f, E(-) fl’”g) and |p| be the total variation of p. Then

[ 101@t) < Iz | A7

rgy <

Therefore, by Lebesgue’s dominated convergence theorem, it follows that

lim X (ka(4) £ - £,9) = Jim [" a(t)p(dt)

[ tm st p(at)y=c [~ p(dt)=c > (£479).

Thus Lemma 1 is proved.

Let G be an open subset in ) with compact closure G and 1 < p < o0o. We say

Anfelr(G) if

A= f IILP(-‘)

Amg(z)dz
llgll, l(——)—

where 1/p +1/p’ =1 and g is an infinitely differentiable function whose support is

contained in G.
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Theorem 1. Let Q be an open domain in R™ and A be a formally selfadjoint semi-
bounded dzﬂerehtéal operator with coeﬂ‘icients in C°(Q) given by (2.1). Suppose that A
is a selfadjoint extension of A with the same lower bound c. Let {kx(t)} be a family
of bounded Borel functions on [c,00) and k1,69 > 0 such that the sequence {¥a(1)}
of Borel functions on [c,00) gz'v;n by (2.2) satisfies (1) and (2). Let f € L*(Q),

1<p <oo and G be any open set in Q with compact closure G. Then the following

hold.
@) If
i) =11,y = 0 (17
as A — oo, then A®f € LP (@)
) 1

[5s(4) 1 = £]p gy =2 (X7)

as A — oo, then A*:f vanishes in G.

Proof. Let g be an infinitely differentiable function and supp g be the support of g.

Suppose that supp g C G. Then by Lemma 1

(2.3) N (ka(A) f - f.9) — C(f,A"g) as A—oco.

On the other hand, we have

(2.4)

¥ (ka(4) 1 £.0)] < 2

ka(A) f -1

L,,(@)”QHLP’(E)-
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»(3) =0 (A™™) as X — oo, then by (2.4) for any A

It | ka(4) f - f

X (ka(4) £ = £,9)| < C'llg v (g)

with some constant C’ > 0. Therefore, by (2.3), we have

| [ 1) Ay () da

=|(£,479)| < C7C"llgllzm (5
for any g. Thus (i) is proved.

If | ka(4) £ - f

G =o0(A7") as A — oo, then in the same way as in (i), (ii) is

proved.

Examples. (1) Riesz summation: For k > 0 and § > 0, the Riesz summation is

given by the multiplier kx(t) = [1- (t'/A?)“}i. In this case, (A2/t)" [kx(t) — 1] are

uniformly bounded in A and t € [¢,00) with a constant ¢ > 0 and

k-1 (1-s)'-1 -1 _
L e L A

for any ¢ € [c,00). Thus &1 =2k, k = £ and C = —§, where C is a constant in (2).
(2) Fejér-Korovkin summation is defined by

4 t i 1 T . wt 2
k,\(t)= (1v7)-\3)cos_—)(—-2—_+-—_;5cotﬁ51nﬁ t< N,

0 > \2,

In this case, (A2/t)*[kx(t) — 1] are uniformly bounded in A and t € [¢,00) and

-1 g, cosme— ] . cos’ms — 1 . sin s s

Aron (A—ztf - s_,I-Eo s2 = oo s? (cosms + 1) - 3—&1" 5% (cosms + 1) T2

2

for any t € [¢,00). Thus &y =4, k; =2 and C =~n?/2.



(3) Rogosinski summation is given by

' nt
COS —— t < A2,
ka(t) = 2\

0 t> A2,

In this case, (A%/t)”[kx(t) — 1] are uniformly bounded in A and t € [¢,00) and

7r o T
k@ -1 _ cos 5-8—‘1 i sin 53 (w)z 1 72
—_— == _— - — |lim = - — P — = —
oo (A2)7 et 82 o g2 (cos Tt 1) 2/ 2 8
for any ¢ € [c,00). Thus k1 =4, k3 =2 and C = —72/8.
(4) Jackson summation is given by
[ 3 /t\2 3/t\? \
| -5 +i(w) eem
3
ka(t) = ¢ 2(2_5‘%) A <t< 222
0 t> 2\
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In this case, (A?/t)*[kx(t)—1] are uniformly bounded in X and t € [¢,00) and

JTim (X /1) [ka(t) — 1] = =3/2. Thus 5y =4, k=2 and C = —3/2.

(5) Gauss-Weierstrass summation: We consider the multiplier ¥%¥ () = exp (— ¢ /).

‘The function of ¢ (A /¢)[kx(t) — 1] is bounded uniformly in A, and we have

- -5 _ 1
hmM—l= im S~ = — lim e~* = —1.
A—oo A1t s—+0 8 s——+0
Thus £; = k2 =1 and C = —1. Poisson summation is given by the function k§(t) =

exp (——ﬁ/)\), and we have k; =1 and ks =1/2.

3 Estimates of & A(/l) f-17.

The aim of this section is to prove the following theorem.
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Theorem 2. Let Q be an open domain in R™ and A be a nonnegative selfadjoint
‘extension of — A in Q. Suppose that K is a compact set in and K' is a closed subset
of K with dist(K',K°) > 0. Let {kx(t)} be a family of bounded piecewise smooth
. . n [2—2k2+1/2 1 .

functions on [0,00) such that ky(t)V't € L'(0,00) with a constant k3 >0

and k»(0)=1 for any A.

Suppose that {kx(t)} satisfies the conditions (1.1), (1.2) and (1.3) with a constant
k1 >0 and 0 < R <dist(K',K°) > 0. Let f be a regulated function in L*(Q). |
Suppose that 1 <p < oo and f € LP(K ). Then the following hold.

() If (-A)=2f € LP(K), then

[ #2(4) £ - £

e 0] ()\_”1) as A — oo.

(i) If (—=A)™f vanishes in K, then

@) -5

LP (K =0 ()\“ ""1) as A\ — 0o.

3.1 Generalized eigenfunction system.

In order to prove Theorem 2, we shall use the generalized eigenfunction system cor-

responding to an ordered representation of L2({Y) associated with the Laplace operator.
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We shall begin with several definitions. We consider A = — A as an operator in
L*(Q) with the domain of definition D(A) = C>(Q). Let A be a nonnegative selfadjoint
extension of A. Let B be the Borel field on R and E be the unique spectral measure

corresponding to A. For h € L2(R2), we define the following closed subspace of L2(Q):

’ H(h) := {F(fl) h; F is a Borel function on R and hED(F(fl))}

= {F(A)h; Fe L*(R,8,(E() h,h)) }.

If f € H(h), then we can write uniquely f = F (fl) h,where F € L*( R,B,(E(-)h,h))
and

Iz = ( [, lF(t)Iz(E(dt)h,h)>1/ .

Therefore we can define an isomorphism U, from H(k) onto L*( R,B,( E(-)h,h)) by

Unf = F, which preserves inner products.

There exist a sequence of functions {k;} C L*(2) and a sequence of sets {e;} C
B, called the set of multiplicity, with the following properties (see [3, XI1.3.16] 0r4[4

?

Chap.14] ):
(1)
Q) = ? H(h;).
That is, H (h; ) are mutually orth;)gonal and span L*( Q).
(IT) R=¢; DeD---.

D) (E(e)hsh;)=(B(eNe;) hi,hy)  forany ec .
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By (1), for f € L?(Q) we can write uniquely

f=ZF,-(A)h,-,
2
where F; € L>(R,B,(E(-) hj,h;)) and

1/2
2 .
LZ(Q)) = ||fllz2(@) < oo.

1/2
(z/ﬂmaw?wwwwn) =(Z_||Fj(f1)hj
Therefore we can define an isometry U from L?*(Q) onto @Lz (R,B,(E(-)Rhj,hy)),
which is equivalent to say
@) - {m};ﬂ- € I* (BB, (E()hy,hy)) and X [ |0 (B(de) by, hy) < oo} ,

and the correspondence is given by U f := { F;}. We denote F; =: (Uf);.

By (III') we have

D L (R, (E() hj ) = D L* (&5, (E () b1y b))
i j
Let p:= (E (-) h1,h1). Then U is an isomorphism from L?(Q) onto @;L*(e;,p) which

preserves inner products, that is, for any f,g € L?>(Q) it holds that

(3.1) (F.90@ =3 [ (U0 T, p ()

U is called an ordered representation of L?(2) with respect to, A.
With these understood, there exists a sequence of functions {u;(z,?)} defined on the
product space of  x R such that the following conditions are satisfied (see [3, XIL.3 and

XIV.6] or [4, Chap.15]):

i) The functions u;(z,t) are dz X dp(t)-measurable and vanish outside Q X e;,
i j

where dx is the Lebesgue measure.
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(i) ~ For any fixed ¢ € R, each u;(z,?) belongs C () and satisfies

(3.2) - = Au(x,t) = tui(z,t), z € ().
(ii) For each compact subset K of Q and each bounded Borel set e in R

/ 2 o
esssup [ |u;(x,t)|" p(dt) < 0.
zeK Je :

(iv) For each f e L*(Q)

(33) U0 = [ 1@)usla 1) dz,

where the integral exists in the sense of L2 (e;, p).

(v) Foreach f e L*Q) and each e € B
(9  BQf@ =Y [UNt)ulat)p (),
J .
where the integral exists and the series converges in the sense of L*(Q).

{u;} is called the generalized eigenfunction system of A corresponding to U. By (v),

for f € L*(2) we have

(35) @) =3 [(UNi(t)us(z,t) pldt)
and

(3:6) Ex(4) £ ) = 3 [ ka () (UD;(t) us(a,t) pld).
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3.2 Decomposition of k,\(ﬁ) f-f.

Throughout what follows, {2 denotes an open domain in R™ and A is a nonnegative
selfadjoint extension of —A. Let U denote an ordered representation of Z*(2) with
respect to A, {u;} the generalized eigenfunction system and p the measure associated
with U. We denote the gamma function by T, the unit sphere in R" by S™7!, the
Lebesgue measure on the unit sphere S™! by o and the surface area 2/7"/T'(n/2) of

5™ 1 by w, . Let ko be a constant in (1.1), (1.2) and (1.3), and v =n/2 — 2Ky + 1.

Lemma 2. Let f € L*(Q),z € Q and R>0. Then

ka(A) f(z) - f(x)
Ju+1 (\/i 3)

= _ZLW t (Uf)](t) U](xat)p(dt) /(;R IA("') r""'ldr /Or W sds

+3 J£ = {vf }ffj)__tfff(”’t) p(dt) /R * L) J, (Vir) rdr

1 °° v+l
£&) % 3051 [R I(r)rHidr,
where
I(r)= /:o ks (52) J, (rs) sV Tlds.

Proof. First observe that the function k() is piecewise smooth on [0,00) and
kx(t) V1" is integrable on (0,00). By Hankel’s integral formula ([2, p.73,(60)]), we

have

ky (52) J, (rs)s*tlds

i

kA(t) \/1?, /Ooo Jy (ﬁr) rdr/[;
1
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Then, by (3.5), (3.6) and the fact that kx(0) =1, we have

ka(4) (=) - £(2)
=3 ), RO = ONUN O us(a,t) o)

J r rv .
_zf (U);(®) uj(=, t)p(dt)/ { (‘? ) 2ur(y+1)}1,\(r)rdr
> L Wniw e pan [ { - ‘/f) o 1)}A (r)rdr

g, r v
+Z/ (Uf)J(t)u](:v,t)p(dt)/ { (Vg ) _ 2IIF(V_I_l)}I,\(r)rdr.

Now apply the formula ([7, p.45])

Ju(ﬁ?’)'_ rv — / u+1( ts)
NE 2T(v+1) d 0 (\/ES)V-H sds.

Note that for the second term, we have

oo : o | J, r rY :
Z/O (U£);(1) uj(x,t)p(dt)/R { \(/‘g ) - 2”F(V+1)}I,\(r)rdr

=Zj:° (Uf)JE;){jJ(‘T,t) p(dt) /ROOIA(T)JV (\/_t-r) rdr

1 o
— f(z) x 2—1/1_‘—(1—/—_1-:—1-5/}2 Iy(r)r“tidr.

Thus we get Lemma 2.

3.3 Proof of Theorem 2.

Let f be a regulated function in L?(2). Let K be a compact set in Q and K’ be
a closed set in K with dist (K’,K°) > 0. We choose 0 < R < dist (K', K°). Let &,

and K, be constants in (1.1), (1.2) and (1.3). Let ¥ =n/2 — 2k, +1 and 1 < p < oco.
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Suppose that f € LP(K) and (—A)*f € L*(K). By Lemma 2, we have

“ k'\(fi) f—f ”L?(K’) < Hoftlee ey % ‘zj‘f(—l”_":‘l")‘]/m L(r) r**tdr

+ /0 IA(r)r”"'ldr/& sdsZ/ t(UF);(t) ui(-,t) E:/l_(;/il) p(dt)
L7 (K')
(37) + Z_/(;oo (Uf)J\(;);t:J(7t) p(dt) L"O I)‘(T) J,, (\/?7') rdr
, j | 1 (i)
Lemma 3. We have
l /0 Iy (r)r+idr / sdsz / t(UF); () ui(-t) e (‘/fﬂ) p(dt)
(\/— ) L? (K"

SCATN(=A)" Fllze k) -

Proof. Let £t € K!' and 0 < s < R. Put

1 o0
9:(y) = W/O Jo1( 87 )nja-1(lylr)dr,
@) = gz —y)

If |y| > s, then g,(y) = 0 ([7, p.404,(6)]). Therefore supp g C K C Q. Then, by (3.3),

we have

(Ug); 1) = [ g2 us(u,t)dy
= [ 9wz =u,t)dy
—_ #/UJ(-T y,t)dyl }nlﬂ 1 j°° ,,+1(S’I‘)Jn/2_1(!ylr)dﬂr

1 00 — o0
= sV+1/0 9"/2dq/5u-1 ui(x — qw,t)cr(dw)/0 Jyr1(87)dny2-1(gr) dr.
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On the other hand, by (3.2), u;(y,t) € C>*(Q), and we have — A ui(y,t) = tu;(y, t)

for y € Q. Thei‘efore, by the mean-value formula, we have

Joues (2 = 1) o) = VI=" %ww

(Vig

Thus, by Hankel’s formula, we have

VAT
7-7,75:1—8;+—ua z,t) / Jn/z 1 (\/_ q qdgq / V+1(Sr)Jn/2 1(gr)dr

V21" T, (\/_ )
\/znlzsu—l-l

(Ug3); (1) =

u;(z,1).

We can assume that f € C°(Q2) by approximation. Then, by (3.1), we have

V+1 (\/—+1)
(Vis)
W > [ (U0 (Te2); @) old)

3, t DSl St

_ ﬁ_ | 1=2)= £()] g2 (w)dy

(z — y)dy.

Therefore we have

o1 (Vis +1)
(VEs)
N \_/—2_7 /0 Iy(r)r**idr /0 s ds /lyl<s [(-A)"f(z — y)] ga(y) dy

/0 In(r) r+dr / sdsz / (U F);(t) us(z, t) p(dt)
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Applying successively Minkowski’s inequality for integral, we have

Ju+1 (\/z 5)
(ﬂ s) . L? (K')

s _\/% /oRSds I/R In(r)rdr /|y1<8 (=AY f(-—y)] g(y) dy

p(dt)

/(-)RI,\(’I‘) ru+1dr/0rsdszfowt(Uf)j(t)uj(.,t)

L7 (K)

R
sds / I (r)r"Tidr

J A HC = )lanw) dy

1 R
—\/27rn/0

L?(K')

1 R R
< v+1
\/_2_7;,,]0 sds /s I (r)r”*dr

1
<

R
Vord SR AEA T AL

[ A= 9) g lonw)] dy

R
/ In(r)r dr

/|y|<s |9s(¥)] dy.

On the other hand, we have

1 1 oo
/kas gy = — 5 /ly|<s|'y”|n/7fdy| /0 Tyr1(37)njz-1(ly|r) dr

Wn § n o0
= Su+1/0 q /2d9’/0 Jv41(s7)Jns2-1(gr) dr

wn T((2v + n 4+ 2)/4)
T(n/2)T((2v — n + 6)/4)svtn/2+1

x /0 2Py (20 +n+2)/4, (20 — n+2)/450/2, ¢ /5) | " dg

Cr,
BV—n/2+1 ’

<

where 2F1(a,f;7v;2) is Gauss’ hypergeometric function. Therefore the last term is

bounded by

Ko B 2691 R v+1
Cu l (=AY Fllipiry [ 87 ds | [* Ia (r)r+dr

By the condition (1.1), we get the bound C'A™" ||(=A)* f ||, &, for the last term. Thus

Lemma 3 is proved.



We shall use the following lemma ([1, p.655] ).

Lemma 4. Under the assumptions above, if K is a compact set contained in ), then

1/2
(ZL<ﬁ<T+1 l’ll,j(.’lf,t”? p(dt)) < Ck (T+ 1 )(n-—l)/2,
J =V =

where Ck is a constant independent of T >0 and z € K.

Lemma 5. We have

s )"\(;){3" GO ) /R T L) 7, (Vir) rdr

~o (3

L= (K)

as A — o0,

Proof. We have, by Schwarz’s inequality,

Zfom (Uf)jsj)_tgj(fvat) p(dt) /: L(r)J, (Vir) rdr

1/2
< (z_ L 1@nsr p(dn)

)1/2

(Z/ Iu;(w t)? (dt)U I,\(r)J ﬁr) rdr

Now, by (3.1), we have

1/2
(Z [ I(Uf)j(t)lzp(dt)) =11l

29
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By Lemma 4, there exists a constant Cx such that

2)1/2
2)1/2

(}: /""'—(tm o) [ 1) 3, (Vi) e

oo
<C T%%2=3 max
= VK (IZ—O T<s<T+1

/ L(r)J,(sr)rdr

uniformly in « € K. Therefore, by (1.3), we have

Z/ﬁm (Uf)j(t)gj(x’t) p(dt) /Roo I\(r) J, (ﬁ r) rdr|=o ()\“"1)

Vit

uniformly in # € K as A — oo. Thus Lemma 5 is proved.

We remark that

> v+1
/R L(r) rdr

=0 (/\"‘1) by the assumption (1.2).

=0(A"") as A = oo.

By (3.7) together with Lemmas 3 and 5, H kx (fl) i L7CK"

If (—=A)2f vanishes in K, then by Lemma 3

T (VF2)
(Vis)™

Therefore, by (3.7) and Lemma 5, we have H ka (fl) f—Ff

“ / Iy (r) r*Hidr / sdsz / tUD; 0w t) p(dt) = 0.

L? (K')

=o0(A7") as A — oo.

LP(K')

Consequently, Theorem 2 is proved.
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4 Applications of main theorem.

4.1 Proof of Corollary 1.
Let kx(t)=(1-1¢/ /\2)‘3_.. Then we have the formula (see [2, p.92,(34)])

k)\(t) e

2°T(6+1) /oo n/2+6 (A1) Jn22—1 (\/ET) p

AS-n/2, /7 ré

and can take k5 = 1. We have
I\(r) =/°°kA () Tnjpa (rt)t™/2dt = 2°T(§+ 1) A"/278 7, 1y 5 (Ar)r=o-L,
0

To check the conditions (1.1), (1.2) and (1.3), let R > 0 and § > (n — 3)/2. Then we

have
e n nf2— oanZ é )\’l") n— -
I./R I,\(r)r/zdr _26P(6+1),)‘ o= /1; —7/3%{/2(Tdr SC&R)‘( 2=,

On the other hand, we have

R
/ sds
0

R R
f I(r) ™2 dr =26r(5+1))\"/2-6/ sds
8 0

/R Jnja+s(Ar) drl

7"5_"/2+1
Cs A (7=9)/2-5 if (n-3)/2<6<(n+1)/2,
< CsAm=32-8106 ) if §= (n +1)/2,

Cs A2 if 5> (n +1)/2.

\

We now apply the estimates (see [6, p.202, Lemma 18.10 al)

/00 Jn/2+6 (A 7') ;]n/2—1 (S 7") dr
R

;
CspA~125-1/2 if s,A>0,
-3/2.1/2
< 5,33/\—-8— +CspA™2s712 if 0<s< ),
- 8

A1/24-3/2
A

+CG,R A"12g-3/2 if 0<X<s.
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Then we have

(Z <s<%(+1

T=

2)1/2
| 1/2
f n/2+6(/\7“)Jn/2 1(37") \ )

’I"

/;o I\(r) Jnje-1(s7) rdr

=2'5I‘(§+1))\"/2“’S (ZT max

T=0 T<s<T+1

S C& R by (n—1)/2— 6.

If § > (n+3)/2, then the last term is 0(A™?). Thus Corollary 1 follows from Main

theorem.

4.2 The Gauss-Weierstrass summation.

Let k¥ (t) = e ¥* (X — c0). We then have

®© v ®© N Avtlpy Ar?
(4.1)/0 kY (tZ) J(rt)t +1dt=/0 e g, (rt)tv T dt = rrealony (_T)

(cf. [2, 7.7.3]). Let Q be an open domain in R* and A be a nonnegative selfadjoint

extension of — A in (.

Corollary 2. Let f be a requlated function in L*(Q). Suppose that 1 < p < oo and

€ L} (Q). Then the following hold.

(1) The following are equivalent.

(ia)
| (4) £ -7

LK) ()‘_1)

as A — oo for every compact set K in ).

(ib) Af € L .(Q).
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(ii) Let G C Q be any open set.

(iia) Suppose that Af vanishes in G. Then

“kA f f

o= (A7)
as A - oo for any compact set K C G.

(iib) If |

LK) (A— 1)

as A — oo for any compact set K C G, then Af vanishes in G.

| (4) f -1

Proof. For the Gauss-Weierstrass summation method we take k3 = 1. Let R be a

small positive number. By (4.1), we have
w2 COW (2 +1 A2 peo -1 Ar? -1
/R r dr/o ky (t)J,,(rt)t dt=<-2—> /R r exp(-——4—)dr=o()\ ),

/odes / "/2dr/ Y (#) 7, (rt)t”“dtl,

( )nﬁ/ sds/ exp( 2)dr—o()r1)

and

(I:i <s<T+1 /Rco Jn/2~1(87')rdr/000 ]CKV (t2) Ju(rt)tu+1dt

= ([ eren (22) )" =0 ).

Thus Corollary 2 follows from Main theorem.

2) 1/2
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