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We will first consider the non-linear generalized Schr\"odinger equations of
the form

$(\mathrm{N}\mathrm{L}\mathrm{S})$

where $F:\mathbb{C}^{2n+2}arrow \mathbb{C}$ is a polynomial with no constant or linear terms, and
$L= \sum_{j=1}^{k}\frac{\partial^{2}}{\partial x_{j}^{2}}-\sum_{j=k+1^{\frac{\partial^{2}}{\partial x_{j}^{2}}}}^{n}$ . The reasons for considering this type of equation

may become apparent later. We want to establish local and global (in time)
well-posedness (existence, uniqueness, continuous dependence on the data)
in Sobolev spaces (or weighted Sobolev spaces). When $F=G(u,\overline{u})$ , the
standard energy estimate applies, and we obtain local well-posedness in $H^{s}$ ,
$s>n/2$ . For power-like non-linearities, more refined results can be obtained
by means of “mixed norm estimates” and their generalizations (Strichartz
estimates, $X_{s,b}$ spaces, etc.), using the contracting mapping principle in suit-
able spaces. In the general case, the difficulty stems from trying to “recover”
the derivative in the non-linear term, in order to apply the energy method.
This can be done in some cases:

$n=1$ $F=\partial_{x}(|u|^{k}u)$

$n\geq 1$ $F=F(u, \overline{u}, \nabla_{x}\overline{u})$

$n\geq 1$ $\partial_{\partial x_{j}u}F,$ $\partial_{\partial x_{j}\overline{u}}F,$ $j=1,$ $\ldots,$
$n\in \mathbb{R}$

(Tsutsumi-Fukuda [T-F1], [T-F2], Klainerman [K], Klainerman-Ponce [K-
$\mathrm{P}]$ , Shatah [Sh] $)$ , but not in general. In 1991, Kenig-Ponce-Vega [KPVI]
developed a method for general $F$ , using the “local smoothing” properties of
the linear problem

(LIVP)

namely, if $\mathbb{R}^{n}=\bigcup_{\alpha}Q_{\alpha},$ $Q_{\alpha}$ are non-overlapping unit cubes, and we introduce
the norms $|||v|||_{T}= \sup_{\alpha}||v||_{L^{2}(Q_{\alpha}\cross[-T,T])},$ $|||v|||_{T}’= \sum_{\alpha}||v||_{L^{2}(Q_{\alpha}\cross[-T,T])}$ , and
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we let $J=(I-\triangle_{x})^{\frac{1}{2}}$ , we have, for $w=e^{itL}w_{0}+ \int_{0}^{t}e^{i(t-t’)L}f(t’)dt’$ ,

$|^{\sup_{t|\leq T}||w(t)||_{H^{s}(\mathbb{R}^{n}}+|||J^{s+\frac{1}{2}}w|||_{T}\leq C\{||w_{0}||_{H^{s}(\mathbb{R}^{n})}+|||J^{s-\frac{1}{2}}f|||_{T}\}}$ .

Notice that, in the passage between $f$ and $w$ , a derivative is gained, which
allows us, through the use of Duhanel’s formula

$u(t)=e^{itL}u_{0}+ \int_{0}^{t}e^{i(t- t’)L}F(u,\overline{u},\nabla u,\nabla\overline{u})dt’$ ,

to prove:

Theorem 1 [K-P-VI]: If $F$ is cubic or higher, there is $s=s_{n}$ such that, if
$s\geq s_{n},$ $||u_{0}||_{H^{s_{n}}}\leq\delta_{n},$ $\delta_{n}>0$ , (N.L.S.) is locally (in time) well-posed. If $F$

is quadratic, we need in addition $||u_{0}||_{H^{s_{n}}}+||u_{0}||_{L^{2}(\mathbb{R}^{n},|x|^{m_{n}}dx)}\leq\delta_{n}$ , then the
same result holds.

Theorem 2 [K-P-V2]: If in addition $\partial^{\alpha}F(\mathrm{O})=0,$ $|\alpha|\leq 4$ , for small data
we actually have global well-posedness.

Problem: In Theorem 1, to obtain a local results, we need smallness. Let
me explain why: let us consider, for example, when $n=1$ ,

By Duhamel’s formula, we have

$u(t)=e^{it\triangle}u_{0}+ \int_{0}^{t}e^{i(t- t’)\Delta}u^{2}\frac{\partial u}{\partial x}dt’=e^{it\triangle}u_{0}+\frac{\partial}{\partial x}\int_{0}^{t}e^{i(t- t’)\triangle}\frac{u^{3}}{3}dt’$

and we attempt to solve the integral equation by an appropriate fixed-point
argument.

We start by estimating

$|||J^{s+\frac{1}{2}}u|||_{T}\leq C||u_{0}||_{H^{s}}+C|||J^{s+\frac{1}{2}}(u^{3})|||_{T}’$

$\leq$ $C||u_{0}||_{H^{s}}+C|||u^{2}J^{s+\frac{1}{2}}(u)|||_{T}’+\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ order terms.
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Now,

$|||u^{2}J^{s+\frac{1}{2}}(u)|||_{T}’= \leq\Sigma_{\alpha}||u^{2}J^{s+\frac{1}{2}(u)||_{L^{2}(Q\alpha\cross[- T,T])}}(\sup_{\alpha}||J^{s+\frac{1}{2}}(u)||_{L^{2}(Q\alpha\cross[- T,T])})\cdot(\Sigma_{\alpha}||u||_{L^{\infty}(Q\alpha\cross[- T,T])}^{2})$

$=|||J^{s+\frac{1}{2}}u|||_{T}(\Sigma_{\alpha}||u||_{L(Q_{\alpha}\cross[-T,T])}^{2}\infty)$ .

This seems to be fine, but in order to map a ball into itself, one needs to
have that

$\sum_{\alpha}||u||_{L(Q_{\alpha}\cross[-T,T])}^{2}\infty$

is small. But since this is an $L^{\infty}$ norm, it forces the initial data to be small.
The method of proof also allowed us to obtain corresponding results for the
Zakharov-Schulman systems [Z-Sc]:

(Z-S)

where $L_{1},$ $L_{2}$ are non-degenerate second-order, not necessarily elliptic, and $L_{3}$

is of order 2. These systems model the interactions of small amplitude high
frequency waves with acoustic waves. When $n=2$ they coincide with the
Davey-Stewartson [D-S] systems, for which Linares-Ponce [L-P] had obtained
the analog of Theorem 1. In general, we have

Theorem 3 [K-P-V3]: Local well-posedness for (Z-S) with small data in
weighted Sobolev spaces.

To see the connection between these problems, in (Z-S), we solve for $\varphi$ ,
so that $\varphi=L_{2}^{-1}L_{3}|u|^{2}$ , and thus, (Z-S) reduces to the single equation

If $L_{2}$ is elliptic, $L_{2}^{-1}L_{3}$ is of order $0$ , and this equation behaves like a cubic
Schr\"odinger equation. If $L_{2}$ is not elliptic, $L_{2}^{-1}$ “recovers” only one derivative,
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and hence $L_{2}^{-1}L_{3}$ is “of order 1,” going back to the equations we started
discussing.

Question: Can one remove smallness?

In 1992, Hayashi and Ozawa [H-O] were able to remove smallness in
Theorem 1, when $n=1$ . Their idea was to eliminate the “bad” first-order
term (“bad” from the point of view of the energy method) by using a change
of the dependent variable $u$ (by means of an “integrating factor”), setting

$v=u(x, t) \exp(-\frac{1}{2}\int_{-\infty}^{x}\frac{\partial F}{\partial_{\partial_{x}u}})$ ,

and then seeing that $v$ verifies an equation that can be treated by the energy
method. Then, in 1995, H. Chirara [C] succeeded, in the case when $L=\triangle$ ,
in removing the smallness for all $n$ in Theorem 1. I want to outline (briefly)
his method, for future reference. It has two main steps:

Step 1: Diagonalization.

The idea here is to use the method used in the theory of symmetric hyper-
bolic systems. One writes the equation as a system in $w^{\neg}=( \frac{u}{u})$ . Then, one
“eliminates the terms in $\frac{\partial}{\partial x}\overline{u}$ ”, by diagonalizing this system. This involves

a transformation $varrow=\Lambda\vec{w}$ , where $\Lambda=I-S,$ $S=$ , and $s_{i}$ are

classical pseudodifferential operators of order-l. It is at this point that the
ellipticity of $\triangle$ is crucial.

Step 2: Energy estimates via the “sharp $\mathrm{G}\circ \mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ inequality.”

After step 1 and “linearization” one is reduced to considering single equa-
tions of the form

where $C$ is a zero’th order, classical pseudodifferential operator in the $x$

variable.
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Problems of this kind had been considered for a long time. For instance,
when $C=0$ , Mizohata [M] showed that a necessary condition for the estimate

$|^{\sup_{t|\leq T}||v(t)||_{L^{2}(\mathbb{R}^{n})}\leq C_{T}||v_{0}||_{L^{2}(\mathbb{R}^{n})}}$

is
$\sup_{x\in \mathbb{R}^{n},\omega\in S^{n-1}}|{\rm Im}\int_{0}^{R}b_{1}(xarrow+r\omega)\cdot\omega dr|<\infty$ ,

and Mizohata [M] also showed that

$\sup_{x\in \mathbb{R}^{n},\omega\in S^{n- 1}}\int_{0}^{\infty}|D^{\alpha_{b_{1}(x+r\omega)1dr\leq C_{\alpha}}^{arrow}}$ ,

for all $\alpha$ , is a sufficient condition. Mizohata’s proof involved the use of
the (exotic) pseudodifferential class $S^{0,0}$ of Calder\’on-Vaillancourt [C-V]. An
alternative approach to this problem, using only classical pseudodifferential
operators, was found by S. Doi [D], who, by introducing an appropriate
classical zero’th order, positive pseudodifferential $\Psi$ , and letting $w=\Psi v$ ,
writing the system in $w$ , using the “positivity of the commutator $i[\triangle, \Psi]$

”

and the sharp $\mathrm{G}\circ \mathrm{a}$rding inequality, succeeded in implementing the energy
method in this context. It was the approach of Doi that Chihara used, thus
finishing the proof. We will see more explicit details of all this later on.
Unfortunately, this elegant approach does not seem to be applicable to the
case of general $L$ .

As far as the smallness in Theorem 1, we now have:

Theorem 4 [K-P-V4]: Theorem 1 holds without the smallness condition.

I will now try to sketch the ideas used in the proof of Theorem 4. Let
us illustrate our reduction to a linear problem, through the example used
before:

We rewrite the equation as

$\frac{\partial u}{\partial t}--i\frac{\partial^{2}}{\partial x^{2}}u+u_{0}^{2}\frac{\partial u}{\partial x}+(u^{2}-u_{0}^{2})\cdot\frac{\partial u}{\partial x}$ .

40



Note that now $(u^{2}-u_{0}^{2})$ is zero at $t=0$ , and thus, it is small for small $T$ .
Thus, if we had the same estimates for the variable coefficient linear equation
$\frac{\partial u}{\partial t}=i\frac{\partial^{2}u}{\partial x^{2}}+u_{0}^{2_{\frac{\partial u}{\partial x}}}$ , with constants depending on appropriate norms of $u_{0}^{2}$ , the
previous method would apply. We were thus led to studying the following
class of linear problems:

(IVP)

and try to establish the estimate

$(*)$
$|^{\sup_{t|\leq T}||u(t)||_{H^{s}}+|||J^{s+\frac{1}{2}}u|||_{T}\leq A_{T}\{||u_{0}||_{H^{s}}+|||J^{s-\frac{1}{2}}f|||_{T}’\}}$ ,

where $A_{T}$ depends on suitable norms of $b_{i},$$a_{i}arrow$ and $T$ . As we mentioned before,
the work of Mizohata shows that even when $L=\triangle,$ $b_{1}arrow$ must decay. Also,

$\mathrm{f}\mathrm{u}11\mathrm{o}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{f}\mathrm{f}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$
”

$\mathrm{g}\mathrm{a}\mathrm{i}\mathrm{n}(\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}f\equiv 0)\mathrm{i}\mathrm{n}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}n=2L=\partial_{xy}^{2},\mathrm{i}\mathrm{f}b_{2}\mathrm{d}\mathrm{o}\mathrm{e}\mathrm{e}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{y},\mathrm{i}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{s}\neg(*)\mathrm{m}\mathrm{a}\mathrm{y}\mathrm{f}\mathrm{a}\mathrm{i}1.\mathrm{I}\mathrm{n}[\mathrm{K}\mathrm{P}- \mathrm{V}4]]\mathrm{i}\mathrm{t}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{w}\mathrm{n}\mathrm{i}\mathrm{n}[\mathrm{K}\frac{-}{}\mathrm{P}- \mathrm{V}5]\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}$

is shown that, if $b_{i}arrow$ decay, $a_{i},$
$b_{i}arrow$ are smooth enough, then $(*)$ holds. I will

now sketch a proof of this. For simplicity, assume $a_{i}\equiv 0,$ $f\equiv 0,$ $b_{i}arrow\in C_{0}^{\infty}$ .

Step 1: Eliminate $b_{1}arrow$ without “spoiling” $b_{2}arrow$ .
We introduce a pseudodifferential $C$ “of order zero” with symbol $C(x, \xi)$

and let $v=Cu$ . The equation for $v$ is:

$\partial_{t}Cu=iLCu+i[CL-LC]u+Cb_{1}(x)\nabla(u)arrow+Cb_{2}(x)\nabla\overline{u}arrow$.

We want to choose $C$ so that, modulo errors “of order zero,”

$i[CL-LC]+Cb_{1}(x)\nablaarrow=0$ , and

$Cb_{2}(x)\nabla\overline{u}=b_{2}(x)\nabla\overline{Cu}arrowarrow$.
If $L= \sum_{j=1}^{k}\frac{\partial^{2}}{\partial x_{j}^{2}}-\sum_{j=k+1^{\frac{\partial^{2}}{\partial x_{j}^{2}}}}^{n}$ , then $q(\xi)=-(\xi_{1}^{2}+\cdots+\xi_{k}^{2})+(\xi_{k+1}^{2}+\cdots+\xi_{n}^{2})$

is its symbol, and if we let $\tilde{\xi}=$ $(\xi_{1}, \ldots , \xi_{k+1}, -\xi_{k+1}, \ldots , -\xi_{n})$ , at the symbol
level, modulo error “of order zero,” we need

$-2\tilde{\xi}\nabla_{x}C(x, \xi)=C(x, \xi)ib_{1}(x)\cdot\xiarrow$ , and

$C\overline{u}=\overline{Cu}$ , so that $C(x, -\xi)=C(x, \xi)$ .
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If we write $C(x, \xi)=\exp\gamma(x, \xi)$ , we want

$-2\tilde{\xi}\cdot\nabla_{x}\gamma(x,\xi)=ib_{1}(x)\cdot\xiarrow$,

$\gamma$ even in $\xi$ . The equation is odd in $\xi$ , so if $\gamma_{0}(x, \xi)$ is a solution, so is
$\gamma(x, \xi)=\frac{1}{2}\{\gamma_{0}(x, \xi)+\gamma_{0}(x, -\xi)\}$ . To find $\gamma_{0}$ , we integrate the ODE, and
obtain

$\gamma_{0}(x, \xi)=\frac{1}{2}\int_{0}^{\infty}ib_{1}(x+s\tilde{\xi})\cdot\xi dxarrow$ .

We thu.s see the point of Mizohata’s condition.

Problem: $\gamma_{0}$ is not in any “reasonable” symbol class.

In fact, the estimates for $\gamma_{0}$ are

$| \partial_{x}^{\beta}\partial_{\xi}^{\alpha}\gamma_{0}(x,\xi)|\leq C_{\alpha,\beta}(\frac{\langle x\rangle}{|\xi|})^{|\alpha|}$ ,

where $\langle x\rangle=(1+|x|^{2})^{\frac{1}{2}}$ . Unfortunately, symbols with these bounds need
not give $L^{2}$-bounded operators. When $L=\triangle,$ $\gamma_{0}$ falls in a class of symbols
considered by [C-K-S], and one can proceed with this program (see [K-P-V6]).
This cannot be done using the results in [C-K-S], when $L$ is not elliptic. In
[K-P-V4], the way out was to consider

$\gamma_{0,R}(x,\xi)=\gamma_{0}(x,\xi)\theta(\frac{R\langle x\rangle}{\langle\xi\rangle})\cdot\psi(\frac{\langle\xi\rangle}{R})$ ,

where $\theta\in C_{0}^{\infty},$ $\theta\equiv 1$ near $0,$ $\psi\in C^{\infty},$ $\psi\equiv 1$ at infinity, and $R>1$ . Then
$\gamma_{0,R}$ is in the class $S_{0,0}^{0}$ , and we obtain $L^{2}$-boundedness by the Calder\’on-
Vaillancourt theorem [C-V]. (This idea originates in [T].) Unfortunately, the
class $S_{0,0}^{0}$ does not have a very good calculus, but this is overcome in [K-P-V4]
by taking $R$ large.

Step 2: “Energy method.”
After step 1, we have

$\partial_{t}v=iLv+b_{2}(x)\nabla\overline{v}arrow+Av$ ,

where $A$ is $‘\iota_{\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}}$ zero.” The energy method then applies to give $H^{s}$ esti-
mates. Once they are obtained, Doi’s approach [D] gives the “local smooth-
ing” estimate.
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There is also an alternative approach, which is developed in [K-P-R-V],
and which shows that $\gamma_{0}(x, \xi),$ $\exp(\gamma_{0}(x, \xi))$ give rise to $L^{2}$ bounded operators
for all $L$ . The point is that the redeeming feature of $\gamma_{0}(x, \xi)$ is that its
$\xi$ support is contained in a cone, with opening angle of size $1/|x|$ , and is
homogeneous of degree $0$ in $\xi$ . The “bad $\xi$

” are those for which $\xi\cdot\tilde{\xi}=0$

(the characteristic directions). This is a “small set.” An almost orthogonality
argument then gives the $L^{2}$-boundedness, and a “partial calculus” (they are
not an algebra), where everything is done composing with smooth cut-off
functions. This allows us to extend the $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\grave{\mathrm{s}}$ just mentioned to variable
coefficient $L$ , where the multiplication by $\theta(\frac{R\langle x\rangle}{\langle\xi\rangle})$ does not work. We thus
have:

Theorem 5 [K-P-V-R]: The IVP

is locally well-posed in appropriate Sobolev spaces, where

$Lu= \sum_{j,k}\frac{\partial}{\partial x_{j}}(a_{jk}(x)\frac{\partial}{\partial x_{k}}u)+b_{1}(x)\nabla_{x}u+b_{2}(x)\cdot\nabla_{x}\overline{u}+C_{1}(x)u+C_{2}(x)\overline{u}arrowarrow$,

where the $b_{1}arrow$ are smooth and decay, the $C_{i}$ are smooth and bounded, and
$A(x)=(a_{jk}(x))$ is real, smooth, symmetric, invertible, with non-trapped
bicharacteristics, and such that, outside of a compact set,

$\mathrm{A}(x)=(000001$ $..00000$

.

$000001$ $-100000$ $..00000$

.

$-100000)$

Then $F$ is smooth, of polynomial growth, and the Taylor coefficients of
$F(x, t, -, -,$ $-,$ $-)$ at the origin vanish for order $\leq 1$ .
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We now turn to a different problem, where this circle of ideas has proved
local well-posedness for large data, for the first time. It is the system intro-
duced by Ishimori [I], as a two-dimensional generalization of the Heisenberg
equation in ferromagnetism. It is the system (when $c_{0}=1,$ $c_{1}=0$ , Heisen-
berg system)

and $S(-, -, t)$ : $\mathbb{R}^{2}arrow \mathbb{R}^{3},$ $|S|^{2}=1,$ $Sarrow(0,0,1)$ as $(x, y)arrow\infty$ and
$\wedge \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the wedge product in $\mathbb{R}^{3}$ . The constants verify $(c_{0}, c_{1}, c_{2}, c_{3})=$

$(1, c_{1}, -1, -2)$ (elliptic-hyperbolic) or $(c_{0}, c_{1}, c_{2}, c_{3})=(-1, c_{1},1, -2)$ (hyperbolic-
elliptic). When $c_{1}=1$ , it can be studied by inverse scattering [Su]. By using
sterographic projection, we can eliminate the constraint $|S|^{2}=1$ . Thus let
$u:\mathbb{R}^{2}arrow \mathbb{C}$ , and let $S=(S_{1}, S_{2}, S_{3})= \frac{1}{1+|u|^{2}}(u+\overline{u}, -i(u-\overline{u}),$ $1-|u|^{2})$ . We
then rewrite the Ishimori system in $u$ :

(IS)

The “hyperbolic-elliptic” case is easier, since we can solve for $\varphi$ , and, since
$\triangle^{-1}$ recovers two derivatives, we are left with an equation with “no deriva-
tives in $\overline{u}$ . ” One can then use a version of the method of Doi [D] to obtain lo-
cal well-posedness. This was carried out by Souyer [S]. The elliptic-hyperbolic
case is much more involved. In 1997, Hayashi [H] showed local well-posedness
for small data in weighted Sobolev spaces. We now have:

Theorem 6 [K-P-V7]: The elliptic-hyperbolic (IS) is locally well-posed in
weighted Sobolev spaces, for large data.

The strategy is to reduce things once more, to studying a linear system.
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When $c_{0}=1,$ $c_{2}=-1$ , after a rotation in the $(x, y)$ plane, we obtain

(IS’)

We then reduce this to a single equation

$(\mathrm{I}\mathrm{E}’)$

We wish to apply related ideas in our previous methods.

Problems: (1) $\int_{-\infty}^{x}$ does not decay in $x$ , only in $y$ . (2) $\int_{-\infty}^{x}$ is not a $-1$

order pseudodifferential operator (not $L^{2}$-bounded).

Way out: For (2) we observe that we have a “cubic” non-linearity, which
gives rise, when we linearize, to terms like $\varphi_{1}\int_{-\infty}^{x}\varphi_{2}$ , where the $\varphi_{i}$ decay
in $x$ . This actually is an order $-1$ pseudodifferential operator in $x!$ For
(1), we use pseudodifferential operators in each variable separately, viewed
as Hilbert space valued pseudodifferential operators, and use vector valued
sharp $\mathrm{G}[mathring]_{\mathrm{a}}$rding inequalities. After many calculations, this method works.
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