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Abstract

A Hausdorff space $X$ is called normaUy supercompact (NS for short) if it has a subbase $S$

such that (1) every cover consisting of elements of $S$ has a subcover consisting of at most two

elements, and (2) for any pair $A,$ $B$ of elements of $S$ if $A\cup B=X$ then there exist $C,$ $D\in S$

such that $C\cap D=\emptyset$ and $A\cup C=B\cup D=X$ . A poset $L$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a completely distributive

poset (CDP for short) if (3) every nonempty subset has the $\inf,$ (4) every subset in which every
pair has an upper bounded has the $\sup$ , and (5) the distributive law holds for any existing sups

and existing infs. In this paper, we prove that the category of $\mathrm{a}\mathbb{I}$ NS spaces and the category of
$\mathrm{a}\mathrm{U}$ CDP’s are isomorphic. As a result we deduce that the order in a connected compact linearly

ordered space is unique. Moneover, we also set a corresponding result for zero-dimensional NS
spaces. In particular, we show that a space is zero-dimensional NS if and only if it has a subbase

consisting of clopen sets $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}^{\gamma}\mathrm{i}\mathrm{n}\mathrm{g}(1)$ and (2).
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\S 1 Introduction

In this paper, all spaces are assumed to be Hausdorff topological spaces. In a space $X$ , a
falnily $S$ of subsets is called a closed $s?\iota bbase$ if $\{X\backslash S:S\in S\}$ is a subbase for $X$ . A family
$S$ of subsets is called linked if every pair of elements of $S$ has a nonempty intersection. A
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family of subsets is called binary if its every linked subfamily has a nonempty intersection.
A space is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ supercompact if it has a binary closed subbase [5]. By the Alexander
subbase lemma every supercompact space is compact. All continuous images of linearly
ordered compacta are supercompact [3]. On the other hand, there exist many compact
spaces which are not supercompact. In fact, in [13] and [14] the authoni proved that
in every supercompact space every $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{P}- \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}^{1}$ is the linlit of a nontrivial sequence.
A family $S$ is called normal if for every pair of disjoint elements $A,$ $B$ of $S$ there exist
$C,$ $D\in S$ such that $C\cup D=X$ and $D\cap A=C\cap B=\emptyset$ . A space $X$ with a normal
binary closed subbase is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ normally supercompact ( $NS$ for short) [7]. NS spaces have
very rich”geometric” structures. For example, if they are connected then they are locaUy
connected and generalized arcwise connected. Moreover, a NS space is an absolute retract
if and only if it is an absolute neighborhood retract, if and only if it is connected and
metrizable. In [6] van Mill defined a partial order on a NS space. Many people have
studied NS spaces using this partial order $[7][9][11][12]$ . In [12] we used this order to set
up a correspondence between NS spaces and partially ordered sets which are very like
completely distributive lattices. In the present paper, we prove that this correspondence
can be extended to an isomophic between a category of NS spaces and a category of
CDPs. As a corollary, we deduce that in a connected linearly ordered space the family
of all closed intervals is the unique normal binary closed subbase which is closed under
arbitrary intersections. Moreover, we show that every zero-dimensional NS space has a
normal binary closed subbase consisting of clopen sets.

\S 2 Preliminaries

In this section we present some basic concepts and results on order theory. Please see
[4] for more information about this topic.

Let $L$ be a partially ordered set (poset for short). For $A\subset L$ , we denote the infimum
of $A$ in $L$ , if it exists, by infA. If $A=\{a_{1}, a_{2}, \cdots, a_{n}\},$ $a_{1}\wedge a_{2}\wedge\cdots\wedge a_{n}$ instead of infA.
Similarly, for supremum, by $supA$ and $a_{1}\vee a_{2}\vee\cdots\vee a_{n}$ respectively. The least element of $L$

is denoted $\mathrm{b}\mathrm{y}\perp \mathrm{i}\mathrm{f}$ it exists. For $a,$ $b\in L$ , we say that $a$ is way-below to $b$ , in symbole $a\ll b$ ,
if for every directed set $D\subset L$ with $supD\geq b$ , there exists $d\in D$ such that $d\geq a$ . If
$a\ll a$ , then $a$ is called compact. The set of $\mathrm{a}\mathrm{U}$ compact elements of $L$ is denoted by $C(L)$ .
An element $m\neq\perp \mathrm{i}\mathrm{s}$ called a co-prime element if $m\leq a\vee b$ implies $m\leq a$ or $m\leq b$ . The
set of all co–prime elements of $L$ is denoted by $M(L)$ . For $A\subset L,$ $1\mathrm{e}\mathrm{t}\downarrow A=\{x\in L$ : $x\leq a$

for some $a\in A$}. In particular, $\downarrow a=\downarrow\{a\}$ . $\mathrm{L}\mathrm{e}\mathrm{t}\Downarrow a=\{x\in L : x\ll a\}$ . Dually, we
can $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\uparrow A,$ $\uparrow a\mathrm{a}\mathrm{n}\mathrm{d}\Uparrow a$ . A complete lattice is called a continuous lattice (completely
distributive lauice or $CDL$ for short, respectively) if the distributive law for arbitrary infs
and arbitrary directed sups (arbitrary sups, respectively) holds. It is well-known that a
complete lattice $L$ is a continuous lattice (completely $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}^{1}\mathrm{i}\mathrm{V}_{\backslash }\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{t}_{\backslash }\mathrm{i}\mathrm{c}\mathrm{e}$ , respectively) if

1A point $p$ in a space is callal a $P$-point if $p\not\in(\cup C)^{-}\backslash \cup C$ for any countable fanily $C$ of cloeed sets.
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and only if $x= \sup\Downarrow x$ ($x= \sup(M(L)\cap\Downarrow x)$ , respectively) for any $x\in L$ . In [12], in
order to characterize NS spaces we defined the concept of completely distributive poset.
A subset $A$ of a poset $L$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ relatively directed if for every pair $a,$ $b\in A$ there exists
$x\in L$ such that $a,$ $b\leq x$ . A poset is called a completely distributive poset ( $CDP$ for short)

if
(CDP 1) every nonempty set has the inf,
(CDP 2) every relatively directed set has the $\sup$ , and
(CDP 3) the distributive law holds for arbitrary infs and arbitrary relatively directed
sups.
A CDP is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ algebraic if every element is the $\sup$ of compact elments. A subset $U$

of a poset $L$ is called Scou-open if $U=\uparrow U$ and $L\backslash U$ is closed under directed sups. The
family of all Scott-open sets and all sets of the form $L\backslash \uparrow x$ generates a topology on $L$ ,
which is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the Lawson topology and denoted by $\Lambda L.$ If.L is a continuous lattice or
a CDP then $\Lambda L$ is a compact Hausdorff(!) space. For a CDP $L$ , let $L^{*}=L\cup\{*\}$ and
order $L^{*}$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}*\mathrm{i}\mathrm{s}$ the last element and $L$ is a subposet of $L^{*}$ , then $L^{*}$ is a continuous
lattice. But such $L^{*}$ is not necessarily a completely distributive lattice. However if $L$ is
a CDP, then for every $x\in L,$ $\downarrow x$ is a completely distributive lattice. Thus CDP’s enjoy
some but not all properties of CDL’s. For our purpose, we need the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ facts.

Fact 1 If $L$ is a $CDP$, then $x= \sup(\Downarrow x\cap M(L))$ for all $x\in L$ .

Fact 2 If $L$ is a $CDL$, then $\Lambda L$ coincides wiffi the interval topology generated by { $\downarrow x$ :
$x\in L\}\cup\{\uparrow x:x\in L\}$ as a closed subbase. But this statement is not necessardy true for
CDPs.

We shall use $I$ to denote the interval $[0,1]$ . For any set $T,$ $I^{T}$ , with the pointwise order,
is a CDL and hence a CDP. $\Lambda I^{T}$ is the usual product space and with the canonical closed
subbase consisting of all forms of $\Pi_{t\in T}[a_{t}, b_{\ell}]$ , where $0\leq a_{t}\leq b_{t}\leq 1$ . (There is a slight
difference between the $\acute{\mathrm{d}}$efinition here and the one in [11].)

Now for a NS space $X$ , we fix a normal binary closed subbase $S$ . Let $S^{\cap}$ be the family
of all intersections of elements of $S$ . Then $S^{\cap}$ is also a normal binary closed subbase and
is closed under arbitrary intersection. We call such family a NS structure on a NS space.
That is a $NS$ structure on a NS space is a normal binary closed subbase which is closed
under arbitrary intersection. By Hausdorff separation, every NS structure contains $\mathrm{a}\mathrm{U}$

singletone sets. In [7], on a NS space $X$ with a fixed NS structure $S$ and a fixed point
$\perp\in X$ a partial order with the least $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\perp \mathrm{i}\mathrm{s}$ defined as follows. For $a,$ $b\in X$ , we
use $I(a, b)$ or $I_{S}(a, b)$ (if nece.ssary) to denote $\cap\{S\in S : a, b\in S\}$ . Define $a\leq sb$ if
$a\in I_{S}(\perp, b)$ . In [12] the author proved the following facts:

Fact 3 $(X,$ $\leq s)$ is a $CDP$ and the original topology on $X$ coincides with the Lawson
topology of $(X,$ $\leq s)$ .

Fact 4 For any $CDP(L, \leq)_{J}$ the family $\{\uparrow m:m\in M(L)\}\cup\{L\backslash \Uparrow m:m\in M(L)\}$ is
a normal binary closed subbase for $\Lambda(X, \leq)$ and ihus $\Lambda(L, \leq)$ is a $NS$ space.
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For a CDP $(L, \leq)$ , let $S_{\leq}$ be the NS structure generated by the above normal binary
closed subbase. The following facts proved in [6] [12] are also needed in proving our results.
Fact 5 For any $b\in X$ and $A\subset X,$ $\cap\{S\in S:S\supset A\}\cap\cap\{I(b, a) : a\in A\}$ is a single
point set.

Fact 6 Every element of $S$ is closed under arbitrary infs and arbitrary existing sups
according $to\leq s$ .

Fact 7 If $X$ is connected then every element of $S$ is connected.

\S 3 The isomorphism theorem

By a $NS$ structural space we mean a triplet (X, $S,$ $\perp$), where $X$ is a NS space, $S$ is a
NS structure on $X\mathrm{a}\mathrm{n}\mathrm{d}\perp\in X$ is a point. For two NS structural spaces (X, $S,$ $\perp$) and
$(Y, T, \perp)$ , a mapping $f$ : $Xarrow Y$ is called a NS mapping if $f(\perp)=\perp \mathrm{a}\mathrm{n}\mathrm{d}f^{-1}(T)\in S$

for any $T\in \mathcal{T}$. Let NS be the category consisting of $\mathrm{a}\mathrm{U}$ NS stmctural spaces and all
NS mappings. This category was defined and studied in [10]. Let CDP be the category
consisting of all CDP’s and ffi mappings preservin$\mathrm{g}$ existing infs and sups. Then we have
the following theorem:

Theorem 1 There exist two funcfors $\Psi$ : $\mathrm{N}\mathrm{S}arrow \mathrm{C}\mathrm{D}\mathrm{P}$ and $\Phi$ : CDP $arrow \mathrm{N}\mathrm{S}$ such
that $\Psi 0\Phi=id_{\mathrm{C}\mathrm{D}\mathrm{P}}$ and $\Phi 0\Psi=id_{\mathrm{N}\mathrm{S}}$ .
Proof. For each (X, $S,$ $\perp$) $\in \mathrm{N}\mathrm{S}$ , we define

$\Psi(X,S, \perp)=(X, \leq_{S}, \perp)$ .
For a mapping $f$ in $\mathrm{N}\mathrm{S}$ , we define $\Psi(f)=f$ . For $(X,$ $\leq, \perp)\in \mathrm{C}\mathrm{D}\mathrm{P}$ , we define

$\Phi(X, \leq, \perp)=(X,S_{\leq}, \perp)$ .
For a mapping $f$ in CDP, we define $\Phi(f)=f$ . It follows ffom Fact 3 and Fact 4 that
the two functors are well-defined for the objects. The remainder of proof of the theorem
follows from the following lemmas:

Lemma 1 If a mapping $f$ : (X, $S,$ $\perp$) $arrow(Y,\mathcal{T}, \perp)$ is in $\mathrm{N}\mathrm{S}_{f}$ then $f$ : $(X,$ $\leq s, \perp)arrow$

$(Y, \leq\tau, \perp)\dot{w}$ in CDP.

Proof As the $\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}_{\mathrm{o}}\sigma \mathrm{i}\mathrm{e}\mathrm{s}$ on $X$ and $Y$ are $\Lambda(X, \leq s, \perp)$ and $\Lambda(Y, \leq\tau, \perp)$ respectively,
and $f$ is continuous, we have that $f$ preserves all down-directed infs and directed sups. It
suffices to verify that $f$ preserves ffiite infs and finite existing sups. Notice that $f$ preserves
order. Now for any $a,$ $b\in X$ we have $f(a\wedge b)\leq f(a)\wedge f(b)$ . If $f(a)\wedge f(b)\not\leq f(a\wedge b)$ ,
then $f(a)\wedge f(b)\not\in\downarrow f(a\wedge b)$ . Thus there exist $T_{1},$ $T_{2}\in \mathcal{T}$ such that $T_{1}\cup T_{2}=Y$ and
$T_{1}\cap\{f(a)\wedge f(b)\}=T_{2}\cap\downarrow f(a\wedge b)=\emptyset$. Let $S_{1}=f^{-1}(T_{1}),$ $S_{2}=f^{-1}(T_{2})$ . Then $S_{1},$ $S_{2}\in S$

and $S_{1}\ni a\wedge b,$ $\perp$ , but $a\not\in S_{1}$ nor $b\not\in S_{1}$ . Thus $a,$ $b\in S_{2}$ , but $a\wedge b\not\in S_{2}$ , which contrffiicts
Fact 6. Similarly, $f$ preserves finite existing sups.
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Lemma 2 If a mapping $f$ : $(X,$ $\leq, \perp)arrow(Y, \leq, \perp)$ is in $\mathrm{C}\mathrm{D}\mathrm{P}_{f}$ then $f$ : (X, $s_{\leq},$ $\perp$) $arrow$

$(Y,S_{\leq}, \perp)$ is in $\mathrm{N}\mathrm{S}$ .

Proof. It suffices to verify that $A=f^{-1}(\uparrow y)$ and $B=f^{-1}(Y\backslash \Uparrow y)$ are in $S_{\leq}$ for any
$y\in M(Y)$ . It is easy to show that $A=\emptyset$ or $A=\uparrow infA$ . Thus $A\in S_{\leq}$ . In order to
show $B\in S_{\leq}$ , suppose $x\not\in B$ . Then Fact 1 implies $y \ll f(x)=\sup\{f(m)$ : $m<<x$ and
$m\in M(X)\}$ . Hence, it follows from $y\in M(Y)$ that there exists $m\in M(X)$ such that
$m\ll x$ and $y\ll f(m)$ . Thus $x\not\in X\backslash \Uparrow m\supset B$. Moreover, $X\backslash \Uparrow m\in S_{\leq}$ . So, $B\in s_{\leq}$ . $\iota$

Lemma 3 $\Psi 0\Phi=id_{\mathrm{C}\mathrm{D}\mathrm{P}}$ and $\Phi\circ\Psi=id_{\mathrm{N}\mathrm{S}}$ .

Proof. We only prove the second equation, that is, for any NS structural space (X, $S,$ $\perp$),
$S$ is the smallest NS structure includin$\mathrm{g}A=\{X\backslash \Uparrow m : m\in M(X)\}\cup\{\uparrow m$ : $m\in$

$M(X)\}$ , where the partial order on $X$ is $\leq s$ . At first $A\subset S$ . For any $x,y\in X$ , if $y\not\in\uparrow X$ ,
there exists $S\in S$ such that $y,$ $\perp\in S$ but $x\not\in S$ . The normality of $S$ implies that there
exist $A,$ $B\in S$ such that $A\cup B=X$ and $A\cap S=B\cap\{x\}=\emptyset$ . Then $\uparrow x\subset A\geq y$ . In fact,
otherwise, there exists $z\in\uparrow X\cap B$ . It follows $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\perp\in B$ that $x\in B$ , a contradiction.
Thus $\uparrow x$ is an intersection of elements of $S$ and hence it is in $S$ . Now for any $m\in M(X)$

and $y\not\in X\backslash \Uparrow m$ , let $x= \sup(\downarrow y\cap(X\backslash \Uparrow m))$ , which exists since the set is included in
$\downarrow y$ . Then it follows from $m\in M(X)$ that $x\in X\backslash \Uparrow m$ . $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}\downarrow x\cap\{y\}=\emptyset$ . By the
normality of $S$ there exist $A,$ $B\in S$ such that $A\cup B=X$ and $A\cap\downarrow x=B\cap\{y\}=\emptyset$ .
Then $y\not\in B\supset X\backslash \Uparrow m$. In fact, otherwise, choose $z\in(X\backslash \Uparrow m)\cap A$ then $y\wedge Z\in X\backslash \Uparrow m$

and hence $y\wedge z\not\in A$, a contradiction. Thus $X\backslash \Uparrow m$ is also an intersection of elements of $S$

and hence it is in $S$ . Secondly, for any $S\in S$ and any $x\not\in S$ , there exists $A\in A$ such that
$A\supset S$ and $x\not\in A$ . In fact, let $y=infS$ . If $y\not\leq x$ , then $A=\uparrow y$ satisfies the conditions.
If $y\leq x$ , then, by the normality of $S$ , there exist $C,$ $D\in S$ such that $C\cup D=X$ and
$C\cap S=D\cap\{x\}=\emptyset$ . Then $D\ni\perp$ . It follows from Fact 6 and $x= \sup(\Lambda I(X)\cap\Downarrow x)$

that $M(X)\cap\Downarrow x\not\subset D$ . Thus there exists $m\in M(X)\cap\Downarrow x\cap C$ . Let $A=X\backslash \Uparrow m$ . Then
$A$ satisfies the conditions. So, we have proved that $S$ is an intersection of elements of $A$ .

From above theorem and its proof it is natural to wonder whether the NS structures of
a space are all identical. At ffist we note that for any NS $\mathrm{s}\mathrm{t}\mathrm{I}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}S$ on a space $X$ and
any homeomorphism $h:Xarrow X,$ $h(S)=\{h(S) : S\in S\}$ is ako a NS structure on $X$

and $(X,$ $\leq s, \perp)$ is a CDL if and only if so is $(X,$ $\leq_{h(S)}, h(\perp))$ . Moreover, for $X=I\cross I$ ,
it is easy to give a homeomorphism $h$ : $Xarrow X$ such that $h(S)\neq S$ , where $S$ is the
canonical closed subbase on $I\cross I$ . NS structures on $I$ $\mathrm{x}$ $I$ are not unique. Thus we
ask whether every NS structure on a space may be a homeomorphic image of a ffied NS
structure. The answer is no. We give two counterexamples. One is a linearly ordered
space and the other is $I\cross I$ .

Example 1 Let $X=\{*\}\cup L$ , where $*\not\in L$ and $L=\omega_{1}\cross[0,1)\cup\{\omega_{1}\}$ is ordered
in such a way that $\omega_{1}\cross[0,1)$ is in the lexicographical order and $\omega_{1}$ is the last element.
Topologize $X$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}*\mathrm{i}\mathrm{s}$ an isolated point and $L$ has the ordering topology. Then $X$

is a NS space. We extend the order on $L$ into two linear orders on $X$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}*\mathrm{i}\mathrm{s}$ the
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last element and the least element, respectively. The two linear orders produce two NS
structures on $X$ . It is easy to see that these two NS structures are not homeomorphic.
On the other hand, by the following Corollary 1, these are the only NS structures on $X$ .

Example 2 Let $X=I\cross I$ and $S$ the canonical closed subbase on $X$ . Let $\mathcal{T}$ be
the family of ffi polygons whose sides are sides of $I\cross I$ or straight lines with the incli-
nations 1 or-l. Then $\mathcal{T}$ is a NS stmcture on $X$ (cf. [11]). It is trivial to check that
$(X,$ $\leq s, (0,0))$ is a CDL but $(X,$ $\leq\tau, (a, b))$ is not a CDL for any $(a, b)\in X$ . Thus $S$ and $\mathcal{T}$

are two NS structures on $X$ and each of them is not any homeomorphic image of the other.

But we have the following theorem.

Theorem 2 Let $X$ be a $NS$ space and $S,$ $T$ two $NS$ structures on X. If $S\subset \mathcal{T}$, then
$S=\mathcal{T}$.

Proof. Suppose that there exists $A\in \mathcal{T}\backslash S$ . Let $B=\cap\{S\in S : S\supset A\}$ . Choose $b\in$

$B\backslash A$ . Then, by Fact 5, $B \cap\bigcap_{x\in A}I_{S}(x, b)=\{b\}$ . Since $S\subset \mathcal{T}$ , we have $I_{\mathcal{T}}(x, b)\subset I_{S}(x, b)$

for all $x\in A$ . Moreover, $A\subset B$ and $b\not\in A$ . Thus $A \cap\bigcap_{x\in A}I_{\mathcal{T}}(x, b)=\emptyset$ . This contradicts
the assumption that $\mathcal{T}$ is binary.

Corollary 1 For a connected compact linearly ordered space $X,$ $\{[a, b] : a, b\in X\}$ is the
unique $NS$ structure on $X$ .

Proof. Let $X$ be a connected compact linearly ordered space and $S$ a NS structure on
X. It follows ffom Fact 7 that $S\subset\{[a, b] : a, b\in X\}$ . Thus $S=\{[a, b] : a, b\in X\}$ . 1

Corollary 2 For a connected compact linearly ordered space $(X,$ $\leq),$ $\leq is$ the unique
partial order $R$ such that $(.X, R)$ is a $CDP$ and has the same least element with $(X,$ $\leq)$

and $\Lambda(X, \leq)=\Lambda(X, R)$ .

Proof. This follows directly from Theorem 1 and the above corollary.

Another application of the above theorems is to show that there exists a NS space
which is not homeomorphic to any CDL with the Lawson topology or equivalent with the
interval topology. In fact, Let $X=$ { $(a,$ $b,$ $c)\in I^{3}$ : $a=b=0$ or $b=c=0$ or $c=a=0$}.
Using the same method as the proof of Corollary 1, it may be proved that $S|X$ , where $S$

is the canonical closed subbase for $I^{3}$ , is the unique NS structure on $X$ and hence $X$ is a
NS space. However, for $\mathrm{a}\mathrm{n}\mathrm{y}\perp\in X,$ $(X, \leq_{S|X}, \perp)$ is not a CDL. Thus, by Theorem 1, $X$

is not homeomorphic to any CDL with the Lawson topology.

\S 4 Zero-dimensional NS spaces

In this section we at first show that the two functors deffied in the last section restrict to
isomorphisms between the category of all zero-dimensional NS structural spaces and that
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of all algebraic CDP’s. Then we prove that every zero-dimensional NS space has a normal
binary closed subbase consisting of clopen sets. Let ONS be the $\mathrm{f}\mathrm{u}\mathrm{U}$ subcategory of NS
consisting of ffi zero-dimensional NS structural spaces and ACDP the ffill subcategory
of CDP consisting of all algebraic CDP’s.

Theorem 3 $\Psi$ : $\mathrm{O}\mathrm{N}\mathrm{S}arrow \mathrm{A}\mathrm{C}\mathrm{D}\mathrm{P}$ and $\Phi$ : $\mathrm{A}\mathrm{C}\mathrm{D}\mathrm{P}arrow \mathrm{O}\mathrm{N}\mathrm{S}$ are isomorphic.

Proof. It is well-known that $\Lambda L$ is $\mathrm{z}\mathrm{e}\mathrm{r}(>\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ if and only if $L$ is algebraic for any
continuous lattice $L$ (see, for example, [4]). Thus the proof follows from Theorem 1. 1

Theorem 4 For a space $X$ , the following statements are equivalent:
(1) $X$ is zero-dimensional $NS,\cdot$

(2) $X$ has a normal binary closed subbase consisting of clopen sets;
(3) $X$ has binaw closed subbase which is dosed under $complements_{\mathfrak{j}}$

(4) $X$ is homeomorphic to $\Lambda L$ for some algebraic $CDPL$ .

Proof. (1) $\Rightarrow(4)$ has been proved in the above theorem. (3) $\Rightarrow(2)$ and (2) $\Rightarrow(1)$ are trivial.
Now we show (4) $\Rightarrow(3)$ . Suppose that $X$ is homeomorphic to $\Lambda(L, \leq)$ , where $L$ is a
algebraic CDP. Let $B=C(L)\cap M(L)$ . We show that $B$ satisfies the following condition:
$(\mathrm{S}\mathrm{B})$ For every $x\in L,$ $x= \sup\{b\in B:b\ll x\}$ .
In fact, for any $c\in C(L)$ , since $c= \sup\{m\in M(L) : m\leq c\}$ , there exists a finite set
$A\subset M(L)$ such that $c=supA$. Without loss of generality, we may assume $A$ is an
anti-chain. Then $A\subset B$ . In fact, for any $a\in A$ and any directed $D$ with $a=supD$ .
Then $\sup((A\backslash \{a\})\cup D)=supA=c$. Hence there exists a finite subset $F\subset(A\backslash \{a\})\cup D$

such that $c\leq supF$ . By $a\in M(L)$ and $a\leq c$ we have $a\leq f$ for some $f\in F$ . Then
$f\in D$ since elements of $A$ are not comparable. This shows $a\in C(L)$ . Hence $a\in B$ . It
follows that $B$ satisfies $(\mathrm{S}\mathrm{B})$ since $L$ is algebraic. By Lemma 2.8 in [12] we have

$S_{B}=\{L\backslash \uparrow b : b\in B\}\cup\{\uparrow b : b\in B\}$

is a closed subbase for $\Lambda L$ . Moreover, by $B\subset M(L)$ and Fact 4 we have $S_{B}$ is binary.
Thus $\Lambda L$ has a binary closed subbase which is closed under complements. 1

Remark 1 In [1], Bell and Ginsburg gave an example to show that not every zero-
dimensional supercompact space has a binary closed subbase consisting of clopen sets.

Remark 2 In [8] a pair (X, $S$) is called an $07\mathrm{f}\mathrm{f}\mathrm{l}opair$ if $X$ is a Hausdorff space and $S$ is
a subbase for $X$ satisfying (3) in the above theorem. Ovchinnikov proved in [8] that there is
a bijective correspondence between the $0$rffloposets (see [2]) and orthopairs. Hence, he set
up an exact topological andogs to offioposets which is simdar to the Stone Representation
Theorem for Boolean algebra.
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Every NS space can be embedded into a Hilbert cube $I^{T}$ as a special subspace. In
1978, van Mill and Wattel in [7] showed that a space is a NS space if and only if it can
be embedded into $I^{T}$ as a closed and triple convex subspace. (A subset $A$ of $I^{T}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$

triple convex if $(x\wedge y)\vee(y\wedge z)\vee(z\wedge x)\in A$ for all $x,$ $y,$ $z\in A.$ ) In 1992, Szymanski
in [11] showed that this is equivalent to ask that the restriction to this subspace of the
canonical closed subbase of $I^{T}$ is binary. In 1993, the author in [12] showed that a space
is NS if and only if it can be embedded into a Hilbert cube as a subspace which is closed
with arbitrary infs and arbitrary relatively directed sups. It is trivial that such subspace
is closed and triple convex. But the converse is not true. For example, the anti-diagonal
in $I\cross I$ is closed and triple convex but not closed with finite infs. Now we consider
embedding of $\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{c}\succ \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ NS space into a Cantor cube $2^{T}$ .
Theorem 5 For a topological space $X$ the following conditions are equivalent:
(1) $X$ is a zero-dimensional $NS$ spacej
(2) $X$ can be embedded into a Cantor cube $2^{T}$ as a closed and triple convex subspace,$\cdot$

(3) $X$ can be embedded into a Cantor cube $2^{T}$ as a subspace which is closed with arbitraw
infs and arbitrary rdatively directed sups.

Proof. (3) $\Rightarrow(2)$ and (2) $\Rightarrow(1)$ are trivial (cf. [11] [12]). We have only to show (1) $\Rightarrow(3)$ .
We suppose that $L$ is a algebraic CDL and $X=\Lambda(L, \leq)$ . By the proof of Theorem 4 we
have that $S_{B}$ is a closed subbase for the space $X$ . For every $b\in B$ , let $f_{b}$ : $Xarrow 2=\{0,1\}$

by $f_{b}(x)=1$ if and only if $b\leq x$ . This generates a continuous one-to-one mappin$\mathrm{g}$

$F$ : $Xarrow 2^{B}$ . It is not difficult to verify the image of $X$ is closed with any finite infs
and finite relatively directed sups in $2^{B}$ . Moreover, the image of $X$ is compact subspace
of $2^{B}$ . Thus, it is closed with arbitrary infs and relatively directed sups.

It is well-known that every $\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{e}\succ \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ compact space of the countable weight can
be embedded into the Cantor set $2^{N}$ as a closed subspace and hence it is homeomorphic
to a CDL with the interval topology. But this statement is not true for zero-dimensional
NS spaces of larger weights. In fact, let $A(m)$ be the one-point compactification of the
discrete space of weight $m$ . Then $A(m)$ is a zertdimensional NS space but $A(m)$ is not
homeomorphic to any CDL with the interval topology unless $m$ is countable.

I would like to thank Professor Y. Yasui for his valuable suggestions for the improvement
of the paper.
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