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Abstract
We consider stochastic optimization of not necessarily additive but recursive util-

ities over multi-stage decision processes. Without assuming any monotonicity, we
optimize a regular process through a direct dynamic $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{o}}^{\sigma}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ approach. On the
regular decision process, we propose two related conditional decision processes: an a
posteriori conditional decision process and an a priori. When the Markov transition
law degenerates into a deterministic dynamics, the two conditional processes reduce
to the same deterministic decision process. The conditional processes with mono-
tonicity are optimized by the usual backward dynamic $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{o}}^{\circ}\mathrm{T}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$. We show that
under additional convexity the $\mathrm{r}\mathrm{e}\circ \mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\circ$ process dominates the a priori in maximum
value function and the priori does the a posteriori. We show that the a posteriori pro-
cess illustrates Kreps and Porteus’s dynamic choice problem. The numerical example
also verifies the dominace relation in three optimal value functions.

1 Introduction
In this paper we are concerned with a broad class of multi-stage stochastic decision pro-
cesses with recursive utility system. It is well known that a dynamic programming re-
cursive equation is valid under both separability and monotonicity in criterion function
$([1],[5],[6],[22],[23],[26],[27])$ . The criterion for stochastic optimization problem is the ex-
pected value, which is a multiple summation in discrete process $([4],[7],[10],[11],[18],[19]$ ,
[25] $)$ . The expected value of additive or multiplicative utility is easily decomposed into the
current (immediate) return and the resulting remaining. Thus the expected value is sepa-
rable, because of lineality of expectation operator. Of course, it is monotone. We forcus on
the decomposition (separability and monotonicity) of the $e\varphi ected$ value of nonadditively
recursive utility, which is generated by the recursive system.

In Section 2, we optimize a regular process without an explicit monotonicity through a
direct dynamic programming approach.

In Section 3, in contrast to the $\mathrm{r}\mathrm{e}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ decision process, we propose two related $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}arrow$

tional decision processes, which admit separability and monotonicity. One is an a posteriori
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conditional decision process. The other is an a priori. The conditional processes are op-
timized by the usual backward dynamic programming. We show that for a deterministic
dynamioe the two conditional decision processes reduce to a common deterministic decision
process.

In Section 4, we cmpare three decision processes under convexity or concavity. It is shown
that, for convex utility system, the maximum value function of regular process dominates
that of a priori, which in turn dominates $\mathrm{t}\underline{\mathrm{h}}\mathrm{a}\mathrm{t}$ of a posteriori and that the dominance is
reversed for concave system.

In Section 5, we illustrate three decision processes through a three-state, two-decision and
two-stage model. We show that Kreps and Porteus’s dynamic choice problem is nothing
but an a posteriori decision precess.

2 Regular Decision Process
Throughout the paper, the following data is given :

$N\geq 2$ is an integer; the total number of stages
$X=\{s_{1}, s_{2}, \ldots , s_{p}\}$ is a finite state space
$U=\{a_{1}, a_{2}, \ldots, a_{q}\}$ is a finite action space
$g_{n}$ : $X\cross U\cross R^{1}arrow R^{1}$ is an n-th utility function $(1 \leq n\leq N)$

$k:Xarrow R^{1}$ is a teminal utility function (1)

$p$ is a Markov transiiion law
: $p(y|x, u)\geq 0\forall(x, u, y)\in X\cross U\cross X$ , $\sum_{y\in X}p(y|x, u)=1\forall(x, u)\in X\cross U$

$y\sim p(\cdot|x, u)$ denotes that next state $y$ conditioned on $\mathrm{s}\mathrm{t}\mathrm{a}\dot{\mathrm{t}}\mathrm{e}x$ and action $u$

appears with probability $p(y|x, u)$ .

We use the following notations :

$X^{n}:=X\cross X\cdots\cross X$ (n-times)
$H_{n}:=X\cross U\cross X\cross U\cross\cdots\cross X$ ( $(2n-1)$-factors)
$h_{n}:=(x_{1}, u_{1},x_{2}, u_{2}, \ldots , x_{\mathrm{n}})$

$g_{n}(g_{n+1}(\cdots g_{N}(k)\cdots))$

$:=g_{n}(x_{n}, u_{n};g_{n+1}(x_{n+1}, u_{n+1}; \ldots ; g_{N}(x_{N},u_{N};k(x_{N+1}))\cdots))$

$E_{x_{1}}^{\sigma}g_{1}(g_{2}(\cdots g_{N}(k)\cdots))$

$:= \sum_{(x_{2}},\ldots,\sum_{x_{N+1})}\cdots\sum_{\in X^{N}}g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};\cdots ; g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots))$

$\cross p(x_{2}|x_{1}, u_{1})p(x_{3}|x_{2}, u_{2})\cdots p(x_{N+1}|x_{N},u_{N})\}$

$(u_{n}=\sigma_{n}(x_{1}, \ldots, x_{n}) 1\leq n\leq N)$

$E_{x}^{\prime u}l:= \sum_{y\in X}l(y)p(y|x, u)$
for $l=l(\cdot)$
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As a regular decision process, we consider the following optimization problem subject to a
succesive constraint:

Maximize $E_{x}^{\sigma_{1}}g_{1}(g_{2}(\cdots g_{N}(k)\cdots))$ (2)
subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p\langle\cdot|x_{n},$ $u_{n})$ , $u_{n}\in U$ $1\leq n\leq N$

where $E_{x_{1}}^{\sigma}$ denotes the $(\mathrm{r}\mathrm{e}\mathrm{g}\tilde{\mathrm{u}}\mathrm{l}\mathrm{a}\mathrm{r})$ expectation operator on $X^{N}$ induced ffom the conditional
probability functions $p(x_{n+1}|x_{n}, u_{n})$ , a geneml policy $\sigma=\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\}$ and an initial
state $x_{1}$ .

We derive directly a recursive formula for this process. Let us consider for any given
$n(1\leq n\leq N+1),$ $h_{n}=(x_{1}, u_{1}, x_{2}, u_{2}, \ldots, x_{n})\in H_{n}$ the maximization problem:

$v_{n}(h_{n})={\rm Max}\mu E_{h_{\mathfrak{n}}}^{\mu}[g_{1}(\cdots g_{N}(k)\cdots)|(\mathrm{i})_{\mathrm{m}}n\leq m\leq N]$ $h_{n}\in H_{n}$ , $1\leq n\leq N(3)$

$v_{N+1}(h_{N+1})=g_{1}(x_{1},u_{1}; \cdots ; g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots)$ $h_{N+1}\in H_{N+1}$ (4)

where the sequence of action and state $(u_{n},x_{n+1}, u_{n+1}, \ldots, u_{N}, x_{N+1})$ after starting state $h_{n}$

is governed stochastically by a primitive policy $\mu=\{\mu_{n}, \mu_{n+1}, \ldots, \mu_{N}\}$ consisting of decision
functions

$\mu_{m}:H_{m}arrow U$ $n\leq m\leq N$ (5)

as follows :

$\mu_{n}(h_{n})=u_{n}arrow p(\cdot|x_{n}, u_{n})\sim x_{n+1}$

$arrow\mu_{n+1}(h_{n+1})=u_{n+1}arrow p(\cdot|x_{n+1)}u_{n+1})\sim x_{n+2}$

$arrow$ ... $arrow\mu_{N}(h_{N})=u_{N}arrow p(\cdot|x_{N}, u_{N})\sim x_{N+1}$ . (6)

The maximization is taken for all $p7\dot{\tau}mitive$ policies $\mu$ for the subprocess starting from state
$h_{n}\in H_{n}$ at stage $n$ and terminating at state $h_{N+1}\in H_{N+1}$ . Note that any primitive policy
$\mu=\{\mu_{n}, \mu_{n+1}, \ldots, \mu_{N}\}$ for the subprocess yields the expected value in (3) defined by the
multiple summation:

$E_{h_{n}}^{\mu}[g_{1}(\cdots g_{N}(k)\cdots)|(\mathrm{i})_{\mathrm{m}}n\leq m\leq N]$

$= \sum_{(x_{n+1}},\ldots,\sum_{x_{N+1})}\cdots\sum g_{1}(x_{1}, u_{1}; \cdots ; g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots)\in x^{N-n+1}$

$\cross p(x_{n+1}|x_{n}, u_{n})\cdots p(x_{N+1}|x_{N}, u_{N})$ . (7)

Then we have the recursive equation between value $v_{n}(h)$ and two-variable function
$v_{n+1}(h, \cdot, \cdot)$ :

Theorem 1

$v_{n}(h)={\rm Max} E_{x}^{u}v_{n+1}(h, u, \cdot)u\in U$ $h\in H_{n}$ , $n=1,2,$ $\ldots$ , $N$ (8)

$v_{N+1}(h)=g_{1}(x_{1}, u_{1}; \cdots ; g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots)$ $h\in H_{N+1}$ . (9)

Proof The addition $a+b:R^{1}\cross R^{1}arrow R^{1}$ is commutative, associative, and
$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\square$

over multiplication $\cross$ . These properties imply the validity of recursive formula (8).
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Solving the recursive equation (8) yields an n-th optimal decision function $\mu_{n}^{*}$ : $H_{n}arrow U$.
As a whole, we have a $p_{7}\cdot imitive$ optimal policy

$\mu^{*}=\{\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{N}^{*}\}$.

By successively projecting the optimal decision hnction $\mu_{n}^{*}$ : $H_{n}arrow U$ onto the original
state space $X^{n}$ , we obtain a geneml optimal policy

$\sigma^{*}=\{\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{N}^{*}\}$

as follows:

$\sigma_{1}^{*}(x_{1}):=\mu_{1}^{*}(h_{1})(h_{1}=x_{1})$

$\sigma_{2}^{*}(x_{1},x_{2}):=\mu_{2}^{*}(h_{2})(h_{2}=(x_{1}, u_{1}, x_{2}), u_{1}=\mu_{1}^{*}(h_{1}))$

$\sigma_{3}^{*}(x_{1}, x_{2},x_{3}):=\mu_{3}^{*}(h_{3})(h_{3}=(h_{2}, u_{2},x_{3}), u_{2}=\mu_{2}^{*}(h_{2}))$ (10)

$\sigma_{N}^{*}(x_{1}, x_{2}, \ldots,x_{N}):=\mu_{N}^{*}(h_{N})(h_{N}=(h_{N-1}, u_{N-1}, x_{N}), u_{N-1}=\mu_{N-1}^{*}(h_{N-1}))$ .

3 Conditional Decision Processes
In this section, we propose two conditional optimization problems subject to the successive
constraint; one is an a posteriori conditional decision process and the other an a priori.

Throughout this section, we consider the class of all Markov policies on the original state
space $X$. Note that any Markov policy $\pi=\{\pi_{1}, \tau_{12}, \ldots, \tau_{1N}\}$ is specified by a sequence of
Markov decision functions:

$\pi_{n}$ : $Xarrow U$ $1\leq n\leq N$ . (11)

We assume that the utility system $\{g_{n}(x, u;\cdot)\}_{1}^{N}$ is monotone with respect to the third-
variable:

$a<b$ $\Rightarrow$ $g_{n}(x, u;a)\leq g_{n}(x, u;b)$ . (12)

Then we are concerned with optimization of expected value of the backward accumulated
returns :

$E_{x_{1}}^{\pi}g_{1}(g_{2}(\cdots g_{N}(k)\cdots))$

$= \sum_{(x_{2}},\ldots,\sum_{x_{N+1})}\cdots\sum_{\in X^{N}}g_{1}(x_{1}, u_{1}; g_{2}(x_{2}, u_{2};\cdots ; g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots))$

$\cross p(x_{2}|x_{1}, u_{1})p(x_{3}|x_{2}, u_{2})\cdots p(x_{N+1}|x_{N}, u_{\mathit{1}\mathrm{V}})$ (13)

where the sequence of actions are determined through Markov policy $\pi$ :

$u_{n}=\pi_{n}(x_{n})$ $1\leq n\leq N$ .

The multiple summation (13) is not necessarily decomposed into iterative (or repeated)
summation. , We present two types of decomposition by taking backward expectations.
In the following subsections, we optimize such decomposed forms in the class of Markov
policies.
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3.1 A Posteriori Conditional Decision Process
First, we take at each stage backward conditional expectation of remaining process afler
performing take-action for regular decision process. This generates an a poste$7\dot{\mathrm{Y}}\mathrm{O}7\dot{\mathrm{B}}$ condi-
tional decision process ae follows:

Maximize $g_{1}(x_{1}, u_{1};E_{x_{1}^{1}}^{u}g_{2}(x_{2}, u_{2)}\cdots;E_{x_{N-1}}^{u_{l}\mathrm{v}-1}g_{N}(x_{N}, u_{N};E_{x_{N}^{4}}^{u\mathrm{v}}k)\cdots))$ (14)
subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n}, u_{n})$, $u_{n}\in U$ $1\leq n\leq N$.

Here we note that
$E_{x}^{u}l= \sum_{y\in X}l(y)p(y|x, u)$ for $l=l(\cdot)$ . (15)

For the sake of simplicity we use the following short notations :

$E^{n}l$
$:=E_{x_{\mathfrak{n}}}^{u_{n}}l$ (16)

$g_{n}(E^{n}l)$ $:=g_{n}(x_{n}, u_{n};E^{n}l)$ $1\leq n\leq N$ . (17)

Thus the objective function in (14) is written as follows:

$g_{1}(E^{1}g_{2}(\cdots E^{N-1}g_{N}(E^{N}k)\cdots))$

$:=g_{1}(x_{1}, u_{1};E_{x_{1}^{1}}^{u}g_{2}(x_{2}, u_{2};\cdots|.E_{x_{N-1}^{N-1}}^{u}g_{N}(x_{N}, u_{N};E_{x_{N}}^{u_{N}}k)\cdots))$ . (18)

We should remark that Markov policy $\pi$ is implicit in the notation $E^{n}$ in (18). That is,

$E^{n}l=E_{x_{n}}^{u_{n}}l$ , $u_{n}=\pi_{n}(x_{n})1\leq n\leq N$. (19)

Thus the a posteriori conditional expected value in (14) is not always equal to the called
expected value (13). That is, in general, the equality

$E_{x_{1}}^{\pi}g_{1}(g_{2}(\cdots g_{N}(k)\cdots))$ $=g_{1}(E^{1}g_{2}(\cdots E^{N-1}g_{N}(E^{N}k)\cdots))$ (20)

does not hold. However, two typical processes admit the equality (20). One is the additive
process: $g_{n}(x, u\cdot h)\}=g_{n}(x, u)+h$ . The other is the multiplicative process with nonnegative
stage-wise return: $g_{n}(x, u;h)=g_{n}(x, u)\cross h(g_{n}(x, u)\geq 0)$ . Throughout the remainder,
we are mainly concerned with the class of processes which do not admit the equality (20).

Let us consider for any given $n(1\leq n\leq N+1),$ $x_{n}\in X$ the maximization problem:

$w_{n}(x_{n})={\rm Max}\pi[g_{n}(E^{n}g_{n+1}(\cdots E^{N-1}g_{N}(E^{N}k)\cdots))|(\mathrm{i})_{\mathrm{m}}n\leq m\leq N]$ (21)
$w_{N+1}(x_{N+1})=k(x_{N+1})$ . (22)

Then we have the recursive e.quation between value $w_{n}(x)$ and one-variable function $w_{n+1}=$

$w_{n+1}(\cdot)$ :

Theorem 2

$w_{n}(x)={\rm Max} g_{n}(x, u;E_{x}^{u}w_{n+1})u\in U$ $x\in X,$ $n=1,2,$ $\ldots$ , $N$ (23)

$w_{N+1}(x)=k(x)$ $x\in X$ . (24)
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Proof The monotonicity in utility systems implies the validity of the recursive formula.
$\square$

The validity of recursive formula (23),(24) is equivalent to the validity of equality

${\rm Max}_{\pi}g_{1}(E^{1}g_{2}\cdots E^{N-\mathrm{L}}g_{N}(E^{N}k)\cdots))$

$=\wedge{\rm Max} g_{1}(E^{1}\pi_{1}{\rm Max} g_{2}(\cdots E^{N-1}\pi_{2}{\rm Max} g_{N}(E^{N}k)\cdots))\pi_{N}$ (25)

$(u_{n}=\pi_{n}(x_{n})1\leq n\leq N)$ .

We remark that the a posteriori cdp (14) is expressed in the following problem with
backward aggregated return-variables $\{m_{n}(\cdot)\}_{n=1}^{\mathit{1}\mathrm{V}+1}$ :

Maximize $m_{1}(x_{1})$

subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n},u_{n}),$ $u_{n}\in U$ $1\leq n\leq N$ (26)

(ii) $m_{N+1}(x_{N+1})=k(x_{N+1})$

$(\mathrm{i}\mathrm{i}\mathrm{i})_{\mathrm{n}}$ $m_{n}=g_{n}(E^{n}m_{n+1})$ $N\geq n\geq 1$ .

3.2 A Priori Conditional Decision Process

Second, before in turn performing take-action for regular decision process, we take at each
stage backward conditional expectation of remaining process. This generates the following
a prio$7^{\cdot}i$ conditional decision process:

Maximize $E_{x_{1}}^{u_{1}}g_{1}(x_{1}, u_{1}; E_{x_{2}^{2}}^{u}g_{2}(x_{2}, u_{2};\cdots ; E_{x_{N}}^{u_{N}}g_{N}(x_{N}, u_{N};k)\cdots))$ (27)

subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n}, u_{n}),$ $u_{n}\in U$ $1\leq n\leq N$ .

Here we note that

$E_{x}^{u}g_{n}(x, u;l)= \sum_{y\in X}g_{n}(x, u;l(y))p(y|x, u)$
for $l=l(\cdot)$ . (28)

We use the following short notations :

$E^{n}g_{n}(l):=E^{n}g_{n}(x_{n},u_{n};l):=E_{x_{n}^{n}}^{u}g_{n}(x_{n}, u_{n};\mathit{1})$ $1\leq n\leq N$. (29)

Henceforth, the objective function in (27) is written as follows :

$E^{1}g_{1}(E^{2}g_{2}(\cdots E^{N}g_{N}(k)\cdots))$

$:=E_{x_{1}}^{u_{1}}g_{1}(x_{1}, u_{1}; E_{x_{2}^{2}}^{u}g_{2}(x_{2}, u_{2};\cdots ; E_{x_{N}}^{u_{N}}g_{N}(x_{N}, u_{N};k)\cdots))$. (30)

In the above notation $E^{n}$ , the relevant Markov policy $\pi$ is also implicit :

$E^{n}g_{n}(l)=E_{x_{n}^{n}}^{u}g_{n}(l)$ , $u_{n}=\pi_{n}(x_{n})1\leq n\leq N$. (31)

We remark that the a priori conditonal expected value in (27) is not always identical
with the a $.\mathrm{p}$osteriori in (14). It may also different from the so-called expected value (13).
However, the three expected values are identical both for the additive process and for the
multiplicative process. The reason is nothing but the linearity of the expectation operator.
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Let us consider for any given $n(1\leq n\leq N+1),$ $x_{n}\in X$ the maximization problem:

$W_{n}(x_{n})={\rm Max}\pi[E^{n}g_{n}(E^{n+1}g_{n+1}(\cdots E^{N}g_{N}(k)\cdots))|(\mathrm{i})_{\mathrm{m}}n\leq m\leq N]$ (32)
$W_{N+1}(x_{N+1})=k(x_{N+1})$ . (33)

Then we have the recursive equation between value $W_{n}(x)$ and one-variable function
$W_{n+1}=W_{n+1}(\cdot)$ :

Theorem 3

$W_{n}(x)={\rm Max} E_{x}^{u}g_{n}(x, u;W_{n+1})u\in U$ $x\in X,$ $n=1,2,$ $\ldots,$
$N$ (34)

$W_{N+1}(x)=k(x)$ $x\in X$ . (35)

Proof The monotonicity also implies the validity of the recursive formula. $\square$

The recursive formula (34),(35) states the equality

${\rm Max} E^{1}g_{1}(E^{2}g_{2}(\cdots E^{N}g_{N}(\pi k)\cdots))$

$={\rm Max} E^{1}g_{1}({\rm Max} E^{2}g_{2}(\cdots{\rm Max} E^{N}g_{N}(\pi_{1}\pi_{2}\pi_{N}k)\cdots))$. (36)

We remark that the a priori cdp (27) is stated in the following problem with backward
aggregated return-variables $\{m_{n}(\cdot)\}_{n=1}^{N+1}$ :

Maximize $m_{1}(x_{1})$

subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n}, u_{n})$ , $u_{n}\in U$ $1\leq n\leq N$ (37)
(ii) $m_{N+1}(x_{N+1})=k(x_{N+1})$

$(\mathrm{i}\mathrm{i}\mathrm{i})_{\mathrm{n}}$ $m_{n}=E^{n}g_{n}(m_{n+1})$ $N\geq n\geq 1$

3.3 Deterministic Decision Process
We consider the special dynamioe where the Markov transition law $p=p(y|x, u)$ degener-
ates into a deterministic dynamics :

$f=f(x, u)$ represents the successor state of $x$ for action $u$ . (38)

(See also $[5],[6],[8]$ ). Then we have no difference between the a posterior conditional decision
process and the a priori process :

Maximize $g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};\cdots;g_{N}(x_{N}, u_{N};k(x_{N+1}))\cdots))$ (39)
subject to $(\mathrm{i})_{\mathrm{n}}f(x_{n}, u_{n})=x_{n+1},$ $u_{n}\in U$ $1\leq n\leq N$

Then the correponding optimal value functions $\{v_{n}(\cdot)\}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Psi$ the following:

Corollary 1

(i) $W_{n}(x)=w_{n}(x)=v_{n}(x)$ $x\in X$ (40)
(ii) $v_{n}(x)=|\mathrm{M}\sim \mathrm{a}\mathrm{x}g_{n}(x,$$u;v_{\mathfrak{n}+1}(f(x, u))u\in U$ $x\in X,$ $n=1,2,$ $\ldots,$

$N$ (41)

$v_{N+1}(x)=k(x)$ $x\in X$ . (42)
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4 $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}$

In this section, we compare the optimal value functions of regular, a priori and a posteriori
decision processes under an additional convexity or concavity. We say that utility system
$\{g_{n}\}$ is convex (resp. concave) if $g_{n}(x, u;\cdot)^{-}:R^{1}arrow R^{1}$ is convex (resp. concave) for
$(x,u)\in X^{\cdot}\cross U,$ $1\leq n\leq N$.

Theorem 4 Let utility system $\{g_{n}\}$ be convex. Then we have

$E_{x_{n}}^{\pi}g_{n}(g_{n+1}(\cdots g_{N}(k)\cdots))$

$\geq$ $E^{n}g_{n}(E^{n+1}g_{n+1}(\cdots E^{N}g_{N}(k)\cdots))$ (43)
$\geq g_{n}(E^{n}g_{n+1}(\cdots E^{N-1}g_{N}(E^{N}k)\cdots))$

for any Markov policy $\pi=\{\pi_{n}, \pi_{n+1}, \ldots, \pi_{N}\}$ . The inequalities are reversed under concavity.

Proof We prove the inequalities for two-stage convex processes, because the inequalities
for $N$-stage processes are similarly proved. First we note that the convexity implies

$E_{x_{1}^{1}}^{u}g_{1}(x_{1}, u_{1};l)$ $\geq g_{1}(x_{1}, u_{1};E_{x_{1}}^{u_{1}}l)$

and

$E_{x_{2}^{2}}^{u}g_{1}(x_{1}, u_{1)}.g_{2}(x_{2}, u_{2};k))$ $\geq g_{1}(x_{1}, u_{1};E_{x_{2}}^{u_{2}}g_{2}(x_{2}, u_{2};k))$

where

$E_{x_{2}^{2}}^{u}g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};k))$
$= \sum_{x_{3}\in X}g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};k(x_{3})))p(x_{3}|x_{2}, u_{2})$

$g_{1}(x_{1}, u_{1};E_{x_{2}^{2}}^{u}g_{2}(x_{2}, u_{2};k))$
$=g_{1}(x_{1}, u_{1}; \sum_{x_{3}\in X}g_{2}(x_{2}, u_{2};k(x_{3}))p(x_{3}|x_{2}, u_{2}))$

.

Since the expectation operator $E_{x_{1}^{1}}^{u}$ is monotone, we have

$E_{x_{1}}^{\pi}g_{1}(x_{1}, u_{1}; g_{2}(x_{2}, u_{2};k))$

$=E_{x_{1}}^{u_{1}}E_{x_{2}^{2}}^{u}g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};k))$

$\geq$ $E_{x_{1}}^{u_{1}}g_{1}(x_{1}, u_{1};E_{x_{2}}^{u_{2}}g_{2}(x_{2}, u_{2};k))$ .

This implies
$E_{x_{1}}^{\pi}g_{1}(g_{2}(k))\geq E^{1}g_{1}(E^{2}g_{2}(k))$ . (44)

Second, we have
$E_{x_{2}^{2}}^{u}g_{2}(x_{2}, u_{2};k)\geq g_{2}(x_{2}, u_{2};E_{x_{2}^{2}}^{u}k)$.

This together with monotonicity of $g_{1}(x_{1}, u_{1}; \cdot)$ implies

$g_{1}(x_{1}, u_{1}; E_{x_{2}^{2}}^{u}g_{2}(x_{2},u_{2};k))\geq g_{1}(x_{1}, u_{1}; g_{2}(x_{2}, u_{2};E_{x_{2}^{2}}^{u}k))$ (45)

Thus by taking expectation operator $E_{x_{1}}^{u_{1}}$ on both hand-sides, we get

$E_{x_{1}}^{u_{1}}g_{1}(x_{1}, u_{1};E_{x_{2}^{\sim}}^{u9}g_{2}(x_{2}, u_{2};k))$ $\geq$ $E_{x_{1}}^{u_{1}}g_{1}(x_{1},u_{1};g_{2}(x_{2}, u_{2};E_{x_{2}^{2}}^{u}k))$

$\geq g_{1}(x_{1}, u_{1};E_{x_{1}^{1}}^{u}g_{2}(x_{2}, u_{2};E_{x_{2}}^{u_{2}}k))$
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which implies
$E^{1}g_{1}(E^{2}g_{2}(k))\geq g_{1}(E^{1}g_{2}(E^{2}k))$ . (46)

This completes the proof. $\square$

Theorem 5 Let utility system $\{g_{n}\}$ be convex. Then we have for any given $n(1\leq n\leq N)$

(i) $v_{n}(h_{n})\geq g_{1}(x_{1}, u_{1}; \cdots ; g_{n-1}(x_{n-1}, u_{n-1}; W_{n}(x_{n}))\cdots)$

$\geq g_{1}(x_{1}, u_{1}; \cdots ; g_{n-1}(x_{n-1}, u_{n-1}; w_{n}(x_{n}))\cdots)$ (47)
$h_{n}--(x_{1}, u_{1}, x_{2}, u_{2}, \ldots, x_{n})\in H_{n}$

(\"u) $W_{n}(x_{n})\geq w_{n}(x_{n})$ $x_{n}\in S_{n}$ .

The inequalities are reversed for minimization problem under concanity.

Proof We show the inequalities for two-stage convex processes, because the inequalities
for $N$-stage processes are similarly shown. First we note

$v_{3}(x_{1},u_{1},x_{2}, u_{2},x_{3})=g_{1}(x_{1}, u_{1}; g_{2}(x_{2}, u_{2};W_{3}(x_{3})))$ , $W_{3}(x_{3})=w_{3}(x_{3})=k(x_{3})$ .

Let $\pi_{2}^{*}$ : $Xarrow U$ be an optimal (Markov) decision function for the remaining one-stage a
priori process. Then we have

$E_{x_{2}^{2}}^{u^{*}}g_{2}(x_{2}, u_{2};k)=W_{2}(x_{2})$ $u_{2}^{*}=\pi_{2}^{*}(x_{2})$ .

From the definition of $v_{2}(\cdot)$ and convexity of $g_{1}(x_{1}, u_{1}; \cdot)$ we have

$v_{2}(x_{1}, u_{1}, x_{2})$ $\geq$ $E_{x_{2}^{2}}^{u^{*}}g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2}^{*};k))$

$\geq$ $g_{1}(x_{1}, u_{1};E_{x_{2}^{2}}^{u^{*}}g_{2}(x_{2}, u_{2}^{*};k))$

$=$ $g_{1}(x_{1}, u_{1};W_{2}(x_{2}))$ .

Further we get

$v_{1}(x_{1})$ $={\rm Max} v_{2}(x_{1}, u_{1}, x_{2})\pi_{1}$

$\geq$
${\rm Max} g_{1}(x_{1}, u_{1};W_{2})\pi_{1}$

$=$ $W_{1}(x_{1})$ .

Second, taking maximum operator ${\rm Max}\pi_{2}$ on both hand-sides

$E^{2}g_{2}(k)\geq g_{2}(E^{2}k)$

we have
$W_{2}(x_{2})\geq w_{2}(x_{2})$ .

Further by succesive operation of ${\rm Max}\pi_{2}’{\rm Max}\pi_{1}$ for

$E^{1}g_{1}(E^{2}g_{2}(k))\geq g_{1}(E^{1}g_{2}(E^{2}k))$
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we get
$W_{1}(x_{1})\geq w_{1}(x_{1})$ .

This completes the proof. $\square$

Example 1. (Non-additive/Additive Utility System [11]) Let

$g_{n}(x, u;h)=[g_{n}(x, u)+h^{\alpha}]^{1/\alpha}$ $g_{n}(x, u)\geq 0,$ $\alpha>0$ . (48)

Then $g_{n}(x, u;\cdot)$ is increaeing on $[0, \infty)$ . If $0<\alpha<1$ (resp. $\alpha>1$ ), it is concave (resp.
convex). Then the utility function (48) generates the recursive utility:

$(g_{1}(x_{1}, u_{1})+g_{2}(x_{2}, u_{2})+\cdots+g_{N}(x_{N}, u_{N})+k^{\alpha}(x_{N+1}))^{1/\alpha}$ .

If $\alpha=1$ , it is linear. The resulting utility is additive :

$g_{1}(x_{1}, u_{1})+g_{2}(x_{2}, u_{2})+\cdots+g_{N}(x_{N}, u_{N})+k(x_{N+1})$.

Example 2. ( $\mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}/\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}$ Utility System $[9],[12],[13],[14],[15],[16],[17]$ ) Let

$g_{n}(x, u;h)=g_{n}(x, u)\vee h$ (resp. $g_{n}(x,$ $u)\wedge h$ ) $-\infty<g_{n}(x,u)<\infty$ . (49)

Then $g_{n}(x,u;\cdot)$ is nondecreasing and convex (resp. concave) on $R^{1}$ . The utility system
yields the maximum (resp. minimum) utility:

$g_{1}(x_{1}, u_{1})\vee g_{2}(x_{2}, u_{2})\vee\cdots\vee g_{N}(x_{N}, u_{N})\vee k(x_{N+1})$

(resp. $g_{1}(x_{1},$ $u_{1})\wedge g_{2}(x_{2},$ $u_{2})\wedge\cdots\wedge g_{N}(x_{N},$ $u_{N})\wedge k(x_{N+1}).$ )

5 Examples

In this section, we illustrate three decision processes; a regular decision process and two
conditional decision processes. One conditional decision process is the dynamic choice
theory which has been originally introduced by Kreps and Porteus $([20],[21])$ . The other is
its a priori process. In this section, we consider the utility system $\{g_{n}(x, u;\cdot)\}_{1}^{N}$ as follows
:

$g_{n}(x, u;h)=[g_{n}(u)+h^{\alpha}]^{1/\alpha}$ $(g_{n}(u)\geq 0, \alpha>0)$ . (50)

(see also Epstein and Zin [3] and Ozaki and Streufert [24]). For the sake of simplicity we
take the case $N=2$ , $\alpha=2$ over Bellman and Zadeh’s data [2, pp. B154]:

$k(s_{1})=0.3$ $k(s_{2})=1.0$ $k(s_{3})=0.8$ (51)

$g_{2}(a_{1})=1.0$ $g_{2}(a_{2})=0.6$ (52)

$g_{1}(a_{1})=0.7$ $g_{1}(a_{2})=1.0$ (53)

$u_{t}=\underline{a_{1}}-------$ $u_{t}=a_{2}$
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5.1 Regular Decision Process
First we note that

$g_{1}(x_{1}, u_{1}; g_{2}(x_{2}, u_{2};k(x_{3})))$

$=$ $[g_{1}(u_{1})+([g_{2}(u_{2})+k^{2}(x_{3})]^{1/2})^{2}]^{1/2}$

$=$ $(g_{1}(u_{1})+g_{2}(u_{2})+k^{2}(x_{3}))^{1/2}$ . (54)

Then the resulting optimal equations (8),(9) reduce to the recursive equations :
$v_{3}(h_{3})$ $=’$ $(g_{1}(u_{1})+g_{2}(u_{2})+k^{2}(x_{3}))^{1/2}$

$v_{2}(h_{2})$
$={\rm Max} \sum_{x_{3}}v_{3}(h_{2}, u_{2}, x_{3})p(x_{3}|x_{2}, u_{2})u_{2}$ (55)

$v_{1}(x_{1})$ $=$
${\rm Max} \sum_{x_{2}}v_{2}(x_{1}, u_{1}, x_{2})p(x_{2}|x_{1}, u_{1})u_{1}$

where
$\mathrm{M}\mathrm{a}\mathrm{x}u_{n}=u_{n}\in\{a_{1},a_{2}\}{\rm Max}$,

$\sum_{x_{n}}=\sum_{x_{n}\in\{s_{1},s_{2},s\epsilon\}}$
(56)

First, we have $v_{3}(h_{3});h_{3}=(x_{1}, u_{1}, x_{2}, u_{2}, x_{3})$ :
$v_{3}(\cdot,\underline{a_{1}}, \cdot, u_{2}, x_{3})$ $v_{3}(\cdot,\underline{a_{2}}, \cdot, u_{2}, x_{3})$

$u_{2}\backslash x_{3}$ $s_{1} s_{2} s_{3}$ $u_{2}\backslash x_{3}$ $s_{1} s_{2} s_{3}$

$\infty_{a_{2}117901516613928}^{a_{1}133791643215297}$ $\infty_{a_{2}130001612514967}^{a_{1}144571732116248}$

Second we calculate $v_{2}(h_{2});h_{2}=(x_{1}, u_{1}, x_{2})$ :
$v_{2}(\cdot, u_{1}, x_{2}),$ $\mu_{2}^{*}(\cdot, u_{1}, x_{2})$

$u_{1}\backslash x_{2}$ $s_{1} s_{2} s_{3}$

$\ovalbox{\tt\small REJECT}_{a_{2}15813,a_{2}16355,a_{1}14923,a_{1}}^{a_{1}14828,a_{2}15411,a_{1}13876,a_{1}}$

Here we note that

$v_{3}(x_{1}, u_{1}, x_{2}, u_{2},x_{3})=v_{3}(x_{1}’, u_{1}, x_{2}’, u_{2}, x_{3})$ $\forall_{x_{1},x_{2},x_{1}’,x_{2}’}\in X$

$v_{2}(x_{1}, u_{1}, x_{2})=v_{2}(x_{1}’, u_{1}, x_{2})$ $\forall_{x_{1},x_{1}’}\in X$ .
Finally, we get

$v_{1}(s_{1})=1.6301$ , $v_{1}(s_{2})=1.5778$ , $v_{1}(s_{3})=1.5012$

$\mu_{1}^{*}(s_{1})=a_{2}$ , $\mu_{1}^{*}(s_{2})=a_{2}$ , $\mu_{1}^{*}(s_{3})=a_{2}$ .

The optimal primitive policy $\mu^{*}=\{\mu_{1}^{*}, \mu_{2}^{*}\}$ yields an optimal general policy $\sigma^{*}=$

$\{\sigma_{1)}^{*}\sigma_{2}^{*}\}$ :
$\sigma_{1}^{*}(s_{1})=a_{2}$ , $\sigma_{1}^{*}(s_{2})=a_{2}$ , $\sigma_{1}^{*}(s_{3})=a_{2}$ (57)

$\sigma_{2}^{*}(s_{1}, s_{1})=a_{2}$ , $\sigma_{2}^{*}(s_{2}, s_{1})=a_{2}$ , $\sigma_{2}^{*}(s_{3}, s_{1})=a_{2}$

$\sigma_{2}^{*}(s_{1}, s_{2})=a_{1}$ , $\sigma_{2}^{*}(s_{2}, s_{2})=a_{1}$ , $\sigma_{2}^{*}(s_{3}.’ s_{2})=a_{1}$ (58)
$\sigma_{2}^{*}(s_{1}, s_{3})=a_{1}$ $\sigma_{2}^{*}(s_{2}, s_{3})=a_{1}$ , $\sigma_{2}^{*}(s_{3}, s_{3})=a_{1}$ .

Note that this optimal general policy $\sigma^{*}$ is Markov.
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5.2 Dynamic Choice Process

We consider the following conditional optimization problem:

Maximize $[g_{1}(u_{1})+(E_{x_{1}}^{u_{1}}[g_{2}(u_{2})+(E_{x_{2}^{2}}^{u}k)^{2}]^{1/2})^{2}]^{1/2}$ (59)

subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n}, u_{n}),$ $u_{n}\in\{a_{1}, a_{2}\}$ $n=1,2$

Then, the “deterministic” dynamic programming technique, as we have already pointed
in \S 3.1, yields the identity

${\rm Max}\pi[g_{1}(u_{1})+(E_{x_{1}}^{u_{1}}[g_{2}(u_{2})+(E_{x_{2}^{2}}^{u}k)^{2}]^{1/2})^{2}]^{1/2}$

$={\rm Max}[g_{1}(u_{1})+(E_{x_{1}^{1}}^{u}\pi_{1}{\rm Max}[g_{2}(u_{2})+(E_{x_{2}^{2}}^{u}k)^{2}]^{1/2})^{2}]^{1/2}\pi_{2}$ (60)

$(u_{n}=\pi_{n}(x_{n}) n=1,2)$ .

This reduces to the recurrence equations :

$w_{3}(x_{3})$ $=k(x_{3})$

$w_{2}(x_{2})$ $={\rm Max}[g_{2}(u_{2})+( \sum_{x_{3}}w_{3}(x_{3})p(x_{3}|x_{2}, u_{2}))^{2}]^{1/2}u_{2}$ (61)

$w_{1}(x_{1})$ $={\rm Max}[g_{1}(u_{1})+( \sum_{x_{2}}w_{2}(x_{2}))p(x_{2}|x_{1}, u_{1}))^{2}]^{1/2}u_{1}$ .

We have the following optimal solution for the a posteriori conditional process:

$w_{3}(s_{1})=0.3$ , $w_{3}(s_{2})=1.0$ , $w_{3}(s_{3})=0.8$ (62)

$w_{2}(s_{1})=1.2103$ , $w_{2}(s_{2})=1.2932$ , $w_{2}(s_{3})=1.0846$ (63)

$\pi_{2}(s_{1})=a_{2}$ , $\pi_{2}(s_{2})=a_{1}$ , $\pi_{2}(s_{3})=a_{1}$ , (64)

$w_{1}(s_{1})=1.6282$ , $w_{1}(s_{2})=1.5667$ , $w_{1}(s_{3})=1.4845$ (65)

$\pi_{1}(s_{1})=a_{2}$ , $\pi_{1}(s_{2})=a_{2}$ , $\pi_{1}(s_{3})=a_{2}$ . (66)

Now we evaluate $g_{1}(x_{1}, u_{1}; w_{2}(x_{2}))$ :

$g_{1}(\cdot, u_{1}; w_{2}(x_{2}))$

$u_{1}\backslash x_{2}$ $s_{1} s_{2} s_{3}$

$\infty_{a_{2}157001634714753}^{a_{1}147131540313698}$

where
$g_{1}(\cdot, u_{1}; w_{2}(x_{2}))=[g_{1}(u_{1})+w_{2}^{2}(x_{2})]^{1/2}$ .
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5.3 A Priori Process
As an a aprior procees for the Kreps and Porteus’s process $([20],[21])$ , we consider the
following problem:

Maximize $E_{x_{1}^{1}}^{u}[g_{1}(u_{1})+(E_{x_{2}^{2}}^{\overline{u}}[g_{2}(u_{2})+k^{2}]^{1/2})^{2}]^{1/2}$

subject to $(\mathrm{i})_{\mathrm{n}}x_{n+1}\sim p(\cdot|x_{n}, u_{n}),$ $u_{n}\in\{a_{1}, a_{2}\}$ $n=1,2$ . (67)

Then, for the preceding data, the corresponding recursive equation

$W_{3}(x_{3})=k(x_{3})$

$W_{2}(x_{2})={\rm Max} \sum_{x_{3}}[g_{2}(u_{2})+W_{3}^{2}(x_{3})]^{1/2}p(x_{3}|x_{2}, u_{2})u_{2}$ (68)

$W_{1}(x_{1})={\rm Max} \sum_{x_{2}}[g_{1}(u_{1})+W_{2}^{2}(x_{2})]^{1/2}p(x_{2}|x_{1}, u_{1})u_{1}$

yiel&in turn
$W_{3}(s_{1})=0.3$ , $W_{3}(s_{2})=1.0$ , $W_{3}(s_{3})=0.8$ , (69)

$W_{2}(s_{1})=1.2215$ , $W_{2}(s_{2})=1.2940$ , $W_{2}(s_{3})=1.1047$ (70)
$\pi_{2}^{*}(s_{1})=a_{2}$ , $\pi_{2}^{*}(s_{2})=a_{1}$ , $\pi_{2}^{*}(s_{3})=a_{1}$ , (71)

$W_{1}(s_{1})=1.6297$ , $W_{1}(s_{2})=1.5754$ , $W_{1}(s_{3})=1.4990$ (72)

$\pi_{1}^{*}(s_{1})=a_{2}$ , $\pi_{1}^{*}(s_{2})=a_{2}$ , $\pi_{1}^{*}(s_{3})=$. $a_{2}$ . (73)

Now we evaluate $g_{1}(x_{1}, u_{1}; W_{2}(x_{2}))$ :

$g_{1}(\cdot, u_{1}; W_{2}(x_{2}))$

$u_{1}\backslash x_{2}$ $s_{1} s_{2} s_{3}$

$\infty_{a_{2}157861635414901}^{a_{1}148061540913858}$

where
$g_{1}(\cdot, u_{1};W_{2}(x_{2}))=[g_{1}(u_{1})+W_{2}^{2}(x_{2})]^{1/2}$ .

Finally we observe that

$v_{3}(x_{1}, u_{1},x_{2}, u_{2}, x_{3})=g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};W_{3}(x_{3})))=g_{1}(x_{1}, u_{1};g_{2}(x_{2}, u_{2};w_{3}(x_{3})))$

$v_{2}(x_{1}, u_{1},x_{2})\geq g_{1}(x_{1}, u_{1}; W_{2}(x_{2}))\geq g_{1}(x_{1}, u_{1}; w_{2}(x_{2}))$ (74)
$v_{1}(x_{1})\geq W_{1}(x_{1})\geq w_{1}(x_{1})$

and

$k(x_{3})=W_{3}(x_{3})=w_{3}(x_{3})$

$W_{2}(x_{2})\geq w_{2}(x_{2})$ . (75)
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