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Analysis of Colored Symmetrical Patterns

Ma. Louise A. N. De Las Pefias, Rene P. Felix and Ma. Veronica P. Quilinguin

Introduction

The study and classification of colored symmetrical patterns continues to be of interest
in color symmetry today. A meaningful analysis of colored symmetrical patterns involves the
symmetry group G of the uncolored pattern as well as the symmetry group K of the pattern
when it is colored. In certain instancés, not all elements of G permute the colors and we also
consider the subgroup H of elements of G which effect color permutations. This subgroup H
contains K as a normal subgroup of elements of H which fix the colors.

A ;:oloring of a symmetrical pattern may be perfect or non-perfect. Perfect colorings occur
whenever all the elements of G' permute the colors that is, H = G otherwise we have non-
perfect colorings.

Perfect colorings have been studied extensively before in [9]. The problem however lies on
how to study non-perfect colorings systematically. In the paper “A Framework for Coloring
Symmetrical Patterns” by De Las Pefias, Felix and Quilinguin[1], a framework was presented for
analyzing both perfect and non-perfect colorings. Moreover, using the framework, all colorings
of a symmetrical pattern were determined for which the elements of a given subgroup H of the
symmetry group G of the uncolored pattern permute the colors and the elements of a given
subgroup K of G fix the colors. In this paper, we shed more light to the study of perfect and
non-perfect colorings by giving an alternative proof of this result. For the colorings obtained
using the framework, we also find the subgroup H* consisting of elements of G’ permuting the
colors and the subgroup K* consisting of elements of G fixing the colors. In [1], the case where
the index of H in G is a prime p was considered. In this paper, we present an additional

situation where the index of H in G is not prime. Specifically we look at the case where the

index of H in G is the smallest composite 4.

Setting for Coloring Symmetrical Patterns
We first explain the setting in which we will color symmetrical patterns. Consider G to

be the symmetry group of an uncolored pattern. We start with a fundamental domain for G



and a subset R of this fundamental domain. The set {g(R) : g € G} will be referred to as the
G-orbit of R. We assume that the given pattern can be obtained as the G-orbit of some subset
R of a fundamental domain for G. Then the assignment g «— g(R) defines a one-to-one
coxrespondencé between the group G and the G-orbit of R. We then can label the set g(R)
by g and by giving a color to each g € G, we give a color to each set g (R). This assignment
of colors is what we will call a coloring of the pattern. Since this results in a partition of G
wherein the elements assigned the same color form one set in the partition, a coloring may be
treated as simply a partition of the group G or a decomposition of G into non-empty disjoint
subsets. Hence, a coloring of a pattern with symmetry group G will be equivalent to a partition
of G or a decomposition of G.

We give an example which will illustrate the above concepts. Consider the uncolored pattern
in Figure 1.1 which has symmetry group G = Dg = {e,a,a?,a?,a*,a®,b, ab, a?b, a3b, a*b, a®b}
where a is a 60°-counterclockwise rotation about the center of the hexagon and b is a reflection
in the horizontal line through the center of the hexagon. If R is the triangular region labeled “e”
in Figure 1.2, then for each g € G, the triangular region g (R) is labeled “g”. Let us partition
G into the sets {e,a? a%, ab, a3, a®b}, and {a,a®,a’ b, a?,a%b}, and assign white and black
to the first and second sets respectively. Consequently, we obtain the coloring in Figure 1.3.

In the analysis of a‘coloring, three groups play a significant role. These groups are:

G = symmetry group of the uncolored pattern ‘

H = subgroup of elements of G which permute the colors

K = subgroup of elements of G which fix the colors

We will refer to H as the subgroup of color transformations and K as the symmetry group
of the colored pattern. The groups G, H, K are such that K < H < G. Given a color, its
stabilizer in G will lie between H and K. Since H acts on the set C of colors of the pattern,
this action induces a homomorphism f : H — A (C), where A (C) is the group of permutations
of the set C of colors of the pattern. For h € H, f (h) is the permutation of the colors that h
induces. An element h is in the kernel of f if and only if f (k) is the identity permutation, that
is, h fixes all the colors. Thus the kernel of f is K and the resulting group of color permutations
f (h) is isomorphic to H/K. Consequently, K is a normal subgroup of H.
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Enurﬁerating Colorings of Symmetrical Patterns

In this part of the paper, we determine all colorings of an uncolored pattern with symmetry
group G such that the elements of a given subgroup H of G permute the colors and the elements
of a given subgroup K of G fix the colors where K < H < Ng (K).

The assumptions we are to consider in determining the colorings will be as follows. Let G be
a group and H a subgroup of G. Let P be a partition of G. Since a partition of G corresponds

to a coloring, we refer to the set P as the set of colors.

Definition 1 Let G be a group, H < G, Y a complete set of right coset representatives of
H in G, ‘LéJI Y; a decomposition of Y and for each i € I, J; < H. Then the coloring or
T .
decomposition G =_gl hleJH hJ;Y; or the partition of G, P = {hJ;Y;:i € I,h € H} is called a
3

(Y;, Ji)-H coloring.
Lemma 2 A (Y;, J;)-H coloring defines an H-invariant partition of G.

t
Proof. If G :,EJI th hJ;Y; is a (Y;, J;)-H coloring, then it defines an H-invariant partition
. , ’ — , . - ; " . . . . ’ .
since for K’ € H, K'G ——ikeJI th h'hJ}Y; iLeJI hlé)H hJ;Y; since premultiplication by A’ € H simply
permutes the elements of H. M
Also, if K < G such that H < Ng(K) and K < J; for each ¢, then the elements of K fix

each of the sets hJ;Y; because if k € K then khJ;Y; = hK' J;Y; = hJ;Y;.

Lemma 3 If P = {P; :i € I} is a G-invariant partition of the group G, then P is the partition
of G wnsisting of left cosets of some subgroup S of G. This subgroup is the set in the partition

containing e. Moreover, the subgroup of elements of G fixing P = {P; : i € I} is coregS.

Proof. Let e € P; and P; an arbitrary element of P. If g € P, then g”'g € g"'P; and e €
g~ 1P, Thus, g"'P,=P,or P, = gP1. This means that any element of P, P;, can be expressed
as gP; for some g € P;. If we can show that P; is a subgroup of G, then we are done.Now,
g € Gp,, the stabilizer of P, under left multiplication by elements of GogPp=P&gech
because € € P;. Thus, P; is the stabilizer of P and‘ P; is a subgroup of G.

If we _consider a € G, and take any P; of P where P; = gP; for some g € P;, a fixes P; = gP,
or a(gP,) = g(P1) if and only if (g~ ag)P; = P, so that g'ag € P; and a € gP1g~". Thus the

subgroup of elements of G fixing the colors in coregFP;. B



Lemma 4 Let G be a group, X a non-empty subset of G and K a subgroup of G. Then
kX =X for all k in K if and only if X is a union of right cosets of K in G.

Proof. Assume kX = X for all k in K. Then X = gx {z} is contained in gX Kz. Now
@ T
a € LGJX Kz implies a = kz for some k € K and x € X. But kx € kX = X. Therefore a € X.
T
Hence X = U Kz.
z€X
On the other hand, if X is a union of right cosets of K in G, say X = t:JA Kg, where A is a
g

subset of G, then kX =U kKg=U Kg=X. R
g€eEA geA

Theorem 5 Let G be a group and H a subgroup of G; If P is an H-invariant partition of G,
then P corresponds to a decomposition of G in the form G =iglhgﬂ hJ;Y; where iLeJI Yi=Y isa
complete set of right coset representatives of H in G and J; < H for every i € I. If in addition
K < H and K fizes the elements of P, then K < J; for everyi € I.

Proof. Since P is an H-invariant partition of G, H acts on P by left multiplication. Consider
the orbits under the action of H. Let C; be a color in the ith orbit. Moreover, let J; be
the stabilizer in H of C; so that J;C; = C;. By Lemma 4, C; is a union of right cosets of
Ji, say C; = J;Y; where Y; is a set consisting of one representative for each right coset of J;
contained in C;. Hence the ith orbit is the set {hJ;Y; : h € H}. So G =‘_é}1th hJ;Y;. Note that
th hJ;Y; = (th hJ;)Y; = HY; so that G =iLéJI H Y, This implies that ¥ =igl Y; is a complete
set of right coset representatives of H in G. If K < H and K fixes all elements of P then K
fixes C;. This means that K < J;. &

The above theorem ch@racteriZes all partitions of a group G which are invariant under
multiplication on the left by elements of a subgroup H of G and whose elements are left fixed
by multiplication on the left by elements of a subgroup K of H. It should be mentioned that
distinct complete sets of coset representatives of H in G may give rise to the same partition.

This situation is addressed in [1].
The Subgroup H* Permuting the Colors and the Subgroup K* Fixing the Colors

Based on the previous theorem, we have determined all colorings of an uncolored pattern

with symmetry group G such that the elements of a subgroup H of G permute the colors and the
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elements of a subgroup K of G fix the colors. The next step is to actually determine for these
colorings the subgroup H* consisting of elements of G permuting the colors and the subgroup
K* of elements of G ﬁxing the colors. At this point, all we can say is that H is contained in
H* and K is contained in K*. |

In the next theorem, given a (Y;, J;) — H coloring, we establish the condition for determining
when a coloring is perfect, that is, H* = G and for the special case where [G: H] = p we

compute for K*.

1. The subgroup H* permuting the colors.

Theorem 6 Let G be a group, H < G, Y a complete set of right coset representatives of H
in G, JiLeJI Y; a decomp_osition of Y and for eachi € I, ; < H. IfG =iglth hJ;Y; is a given
(Y:, Ji)-H coloring, then this coloring is perfect if and only if 1Y1 is a subgroup of G and for
each i, i € I there is a y; € Y; such that y;1Y1 = J;Y;.

Proof. Assume the coloring is perfect.. Then each set hJ;Y; is a left coset of some subgroup
of G. This subgroup is the set hJ;Y; containing e which is J;Y;. Therefore, J1Y; is a subgroup
of G. Let'y; € Y;. Then y;J1Y1 is one of the sets hJ;Y; since the coloring is pérfect. This set
is J;Y; since y; is in this set. Hence y;J1Y; = J;Y;. Conversely, assume J1Y; is a group of G
and for each i € I there is a y; € Y; such that y;,J1Y; = J;Y;. Then hJ;Y; = hy;J1Y; is a left
coset of the subgroup J1Yi. Hence the coloring is perfect since all elements of G permute the

left cosets. W

The next theorem looks at H* when there is only one orbit of colors under the action of H.

Theorem 7 Let G be a group, H < G, Y a complete set of right coset representatives of H
in G,e€Y, andJ < H. Let P = {hJY : h € H} be a coloring and H* the subgroup of G
congsisting of all elemenis of G which permute the colors. LetY' CY.

(i) If H* = HY' then y'JY = JY forally €Y'.

(4) If y € No(H) and y/JY = JY for ally’ € Y' then HY' C H*.

Proof. (i) Assume H* = HY'. Since y’ € Y' C HY", then y/ permutes the sets in P and 3’ JY
is the set in P containing 3. This set is JY, hence y'JY = JY.
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(i) Assume y € Ng(H) and / JY = JY for all ¥ € Y'. We show ¢/ permutes the sets in

P. Now, 3 € Ng(H) implies that if h € H, there is an h' € H such that ;Q’h = h'y/. Hence
y'hJY = h'y/ JY = h'JY. Thus for all € Y’, 4/ permutes the elements in P, Since H permutes
the elements in P, so does HY". Therefore, HY' C H. R

In the following corollary, we specialize Theorem 7 to the case where the index of H in G is
4.

Corollary 8 Let G be a group, H < G such that [G : Hl =4, Y = {y; = e, Y2,Y3, Y4} a
complete set of right coset representatives of H in G and J < H. Suppose P = {hJY : h € H}
is the given coloring or partition.

(i) The coloring is perfect if and only if JY is subgroup of G.

(it) If H* # G then fori=2,3,4, H* = HU Hy; if and only if HU Hy; is a subgroup of
G and yJY = JY. Otherwise H* = H. |

Proof. (i) This is a consequence of Theorem 6 where JY = J,Y;.
(ii) This follows from Theorem 7 since H is a normal subgroup of HU Hy; = H {e,yi} when
H U Hy; is a subgroup of G.

2. The subgroup K* fixing the colors

Now that we have established for certain cases the condition for determining H*, the sub-
group of GG consisting of elements of G that bermute the colors of the corresponding colored
pattern, we can give for these cases the formulas for K *, the subgroup of G consisting of the
elements of G fixing the colors. Notice that K* is a subgroup of H* so that in determining K*

we consider only the elements of H*.

Theorem 9 Let G be a group, H < G such that (G : H] = p where p is prime, Y a complete set
of right coset representatives of H in G, U Y; a decomposition of Y and for eachi € {1,2,....,t},

J; < H. Suppose G = U hU hJY; is a given (Y;, J;)-H coloring.
=1
(i) If the coloring is perfect then K* = coreq (J1Y).

(ii) If the coloring is non-perfect then K* =_QI coregr (J;).

Proof. (i) If the coloring is perfect, then the given (Y;J;)- H coloring partitions & into the sets
of left cosets of J1Y; in G. It follows that K* = coreg (J/1Y1).
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(ii) On the other hand, if the coloring is non-perfect, then the subgroup H* permuting
the set of colors is H since [G: H] = p and H < H* < G implies H* = H or H* = G.
Thus, in determining K* we consider only elements of H. Let a € K*. Then ahJ;Y; =
hJY; for h € H, for all i € {1,2,..,t}. This implies that if ¥; = {4i,¥is,--» %}, then
ahJiy;, UahJdiyi, U . .ahJiy;, = hJgys, UhJiyi, U . hJiys, . Now a € H so that ahJyy;, € Hy;,,
ahJ;y;, € Hyiy, ..., ahJiyi, © Hy;,. Since a fixes every color, then a takes hJiy;, to itself in
Hyyy, hdsyi, to itsell in Hy;, and so on. Thus for a € K*, we have ahJyy;; = hJsy;; for all
i€{1,2,..,t}, j €{L,2,..,7}. But ahJyy;; = hJ;y;; implies ah € hJ;ora € ﬁJih"l for h € H.
That is, a EhQH hJ;h~! = corepJ;. Therefore K* C corey (J;). The proof of the inclusion

‘QI corey (J;) C K* is straightforWard. m
(2

Theorem 10 Let G be a group, J < H < G, Y a complete set of right coset representatives of
H in G containing e and Y' a subset of Y containing e. Let P = {hJY : h € H} be a partilion
of G. If H* = HY' then K* = coregy: (JY').

Proof. Since H* = HY’, we limit our attention to H*. Now H*NJY = JY' and the partition
P induces the partition P* = {hJY': h € H} on H*. Since P is H*-invariant, it follows that
P* is H*-invariant. Hence the induced coloring P* is a perfect coloring and JY’ is a subgroup
of H*. Correspondingly, the subgroup of H* fixing all the sets or colors in P* is corey+ (JY').
Consequently, this is also the subgroup of elements of H* which fix the sets in P, that is,
K* = coregy: (JY'). W

Corollary 11 Let G be a group, H < G such that [G : H) =4, Y = {y1 = €,92,¥3,¥4} a
complete set of right coset representatives of H in G and J < H. Suppose P = {hJY : h € H}
is the given coloring or partition.

(i) If the coloring is perfect then K* = coreg(JY).

(i) If H* = H then K* = coreq J.

(#ii) If H* = HU Hy; then K* = coregupy,(J U Jy;) fori = 2,3,4.

Proof. We obtain (i), (i) and (iii) by taking Y’ =Y, {e} and {e, 3} in Theorem 10 respectively. B
We conclude the section by looking at the following examples. An illustration of Corollary

11 is given below.



Example 12 Let G = Dg = {e,a,a?,a3,a?, a®, b, ab, a2b, a®b, ab, a®b} and H, K subgroups of
G given by H = {e,a?,a%}, K = {e}.

Now G=HUHbU Ha U Hab

G = {e,a?,a} U {b,a?b, a%b} U {a,a?,a’} U {ab, a3b, a®b} Among the possible Y's are

{e, % b,a%b} , {e,a,ab,atb}, {e,a®, a%,a®b} and {e,a,a*b,a5b}.

We give some colorings P = {hJY :h € H} of the hezagon in Figure 2 such that the
elements of H permute the colors and the elements of K = {e} fix the colors. In the table
below, we give H* and K* as well as the Y wused for each of the colorings. Note that for all
colorings J = {e} so that JY =Y. We use the following notation: w for white, s for striped and
b for black. |

Coloring H Hb Ha Hab
Number | e [a?|a?| b |a’b|a'b|a|a®|a’|ab|a’b|a’b
1 wls|b|wl| s b |blw|s|b| w s
2 wis|b|s| b w |w|s|b|w]| s b
3 w|s|b|b| w s |s|b b 8
4 fw]ls|b|s| Db w |w|s|b]|s b A
Coloring
Number Y used ; H* K*
1 Y = {e,a?,b,a’b} G {e,a®}
2 | Y={ea,aba} H K
3 Y = {e,a%,a?b,a%} | {e,a? a% b,a2b,a’b} K
4 Y = {e,a,a%,a%} | {e,a? a*, ab,ab,a%b} K

Example 13 Consider the colored patterns in Figures 8, 4, 5, 6, 7, 8 which are assumed to
repeat over the entire plane. For all the colored patterns, the symmetry group G of the patterns
with the colors disregarded is a hexagonal plane crystallographic group of type pébm generated
by a, b, x and y where a is a 60° - counterclockwise rotation about the indicated point P, b is a
reflection in a horizontal line through P and z, y are translations as indicated. These colored

patterns have been obtained by choosing the subgroups H =< a,z,y > and K =< a?,z,3 > of
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G. H and K are hexagonal plane crystallographic groups of types p6 and p3 respectively. K
is normal in G so that G = Ng (K). Observe that the colorings in Figure 7 and Figure 8 are
the only non-perfect colorings, that is, H* = H. Moreover, for these colorings, K* = K. All
the other colorings are perfect, so that H* = G. For the perfect colorings in Figures 8, 4, 5, 6,
K*=H,< a?,b,z,y >, < a?,ab,z,y > and K respectively. < a?,b,z,y > and < a?,ab,z,y >
are hexagonal plane crystallographic groups of typés p3lm and p3ml respectively..
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