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Abstract

Let G, H be finite groups of the form G = C x H, G’ = U x H where C is a a cyclic
p-group, U is any abelian group with |U] = |C|, and H is any finite abelian group. Using
a lexicographic ordering of U, we define a bijection f : ZG — ZG' which we call a folding.
We show that X € ZG and f(X) € ZG' up to roots of unity have the same character
values provided that p? fexp H and the character values of X up to roots of unity lie in
Q(€p, €exp ). The main consequence is that folding preserves combinatorial properties like
being a difference set, relative difference set, building set, or a group invariant weighing
matrix. The results can be generalized to cases where H is nonabelian.

1 Introduction |

In this paper, we study the problem of switching groups for various types of difference sets
and related structures. That is, for nonisomorphic groups G, H of the same order, we ask
whether we can find bijections between G and H preserving certain combinatorial properties
like being a difference set. The main motivation is to gain more insight into the existence
of these combinatorial objects. If we can find bijections which work for many H, then the
construction of a single difference set, for instance, solves the existence problem for difference
sets in many groups simultaneously. ,

There are some known bijections preserving difference sets. For example, Dillon ([17], [3])
found such a bijection from generalized dihedral groups to abelian groups and Bruck ([4])
constructs nonabelian projective planes by finding bijections from cyclic groups to nonabelian
groups preserving the difference set property. However, these two constructions only work for
very special types of groups. The aim of this paper is to find bijections preserving difference
sets for more general groups. But when we try to find such bijections for general groups, we
meet with some at first sight discouraging facts:

1) Difference sets with Singer parameters ([20], [17], [3]) exist in cyclic groups, but in many
cases it can be shown that they don not exist in any other abelian groups of the same order.
So, bijections from G to H where H has lower exponent (and higher rank) than G cannot work
in general.

2) Turyn/Davis/Kraemer ([21], [8], [16]) proved that an abelian 2-group G of order 22¢ has
a difference set if and only if ezpG < 2%*1. So bijections from G to H where H has higher
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exponent, also cannot work in general.

3) Arasu/Davis/Jedwab/Sehgal ([1], [2]) proved that an Hadamard difference set in Zy x Zs x
Z3s X K with K abelian, |[K| = 3¢, exists if and only if K is cyclic. So bijections from G to H
with expH = expG, rankH > rankG also cannot work in general.

However, we still will be able to exhibit quite general difference set preserving bijections
by using an appropriate lexicographic ordering. Let us recall some basics on difference sets in
order to explain the main results of this paper.

A k-subset D of an abelian group G of order v is called a (v, k, \)-difference set of G if
the list of 2y~!(z,y € D) contains each nonidentity element of G exactly A times. We call
n:=k — X the order of D.

In the group ring ZG, a subset S of G is identified with T ,cgs. Also, Y.es s* is denoted
by S®. So D = Yyepd, DIV = Tyepd™ and G = Ty 9. Then a k-subset D isa (v, k, \)-
difference set in G if and only if

DDV =n. 142G (1)

in Z@G, where 1 is the identity element of G. This is equivalent to
x(D)x(D) =n for all nontrivial characters xy of G

where @ is the complex conjugate of a.

Let G = C x K, H = U x K be finite groups where C' is a a cychc p—group U is any abelian
group with |U| = |C| and H is any finite abelian group such that p? jw := exp H. Using a
lexicographic ordering of U, we define a bijection f : ZG — ZH which we call a folding. We
will show that for any difference set D in G such that x(D)u, € Q[,, ] for every character x
of G and for some root of unity u,, the folding f(D) of D is also a difference set in H. We get
similar results for several other combinatorial structures which can be described by group ring
equations like (1). Finally, we note that the “small field condition”, i.e., x(D)u, € Q[&, &), is
often satisfied automatically by a theorem of [19] which we will state in Section 3,5 .

2 Preliminaries

We write &; for a primitive complex t-th root of unity, [k] for the set {0,1,...,k — 1}, and G*
for the character group of an abelian group G. The cyclic group of order k is denoted as Zj,
and is often identified with Z/kZ or [k] without explicitly mentioning it.

Let m > 1 be an integer, and let p be a prime. For any partition (ry,79,...,7) of m, we
define the lexicographic order on [p™] x [p™]... x [p™] by

(by,bay ..., bs) > (b, 0,,... b)) <= b, > b, fort = min{i|b; # b}.
Using this ordering of U, we can define a bijective map naturally: |
fK:=2/p"72 — K :=Z[p"ZxZ[p™*Z x...x Z|p™Z

sending the element i of K = [p™] to the i-th element of K’ = [p™] x [p™]... x [p™]. We call f
the folding map from K to K'.
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We extend f to a bijection between G = K x H and G' = K’ x H for any group H by
setting f((z,y)) = (f(z),y). This map is also denoted by f and called the folding map from G
to G'. For T'= Y cx Hyg € ZG with Hy, € ZH, we define the folding f(T) € ZG" by

f(T) = Z Hf—x(k)k.

ke K!

We say f(T') is the folding of T. Note that f=1(by,...,b,) = Y5, bipXimitr i

Write K = Z/p™Z = (9), K' = Z[p"Z X ... X Z[p™Z = (g:) X ... x {g,), n = Epm 1 = Epri.
"The following correspondence between the absolutely irreducible representations of G and G’
is essential all our results on folding maps. For the background on representation theory, see

[7].

Definition 1 Let G = K x H and G' = K’ x H as above where H is any finite group. For
P € K™ with ¥(g1,...,9.) = 708 ...n%, 0 < a; < p”, we define the character wy € K*
corresponding to P by wy(g) = n* where t = ay + agp™ + agp™t™ + ... + apntetra-r,

By Brauer’s theorem [7, Thm. 41.1], F := Q(€expc) is a splitting field for G as well as .
Moreover, any irreducible F'G' representation 7 can be written as 7 = ¢ @ @ for a character
¥ of K’ and an irreducible FH representation (. Then Y, := wy @ ¢ will be called the FG
representation corresponding to 7. Note that 7 and y, are actually characters if H is abelian,
so we speak of the character x, corresponding to 7 in this case.

3 The Folding Theorem

In this section, we prove the main result of this paper which improves and generalizes a result
of [12]. Our result will show that some combinatorial properties like being a difference set,
relative difference set, building set, or group weighing matrix are preserved by folding maps.
 We shall introduce these applications in section 4.

Theorem 2 Let G = Zym X H where H is an abelian group and p? does not divide exp(H ),
m 2> 2. Let K be an abelian group of order p™, and let f : G — G' = K x H be the folding
map. LetT € ZG. Let 7 € G'™*, and let x, € G* be the corresponding character of .

If X+u € Qléexp i, &p) for some root of unity u, then

r(f(T)) = xo(T), | (2)
for some root of unity u'.

Proof. Write K = Zyry X.... X Zya =< g1 > X...X < gs>,let f: G — G =K x H be
the folding map and let 9 = &m,n; = €. Let T € ZG., .

All we have to proof is that for any 7 € K*, p € H*, if x, ® p(T)u € Qlexp 1, &) for some
root of unity u, then.
| TQ p(f(T)) = x» ® p(T)¥', . (3)

for some root of unity «', where x, € Z;. is the corresponding character of 7.
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Since p € H*, and p? fexp(H), for x,(g) = 1, we can write

X-®p(T)= Y dy- 0™
belpm]
with some dy € Q[¢p, {u], and for 7(g1, ..., ) = n? ... 0% we can write
T P(f(T)) Z df"l(bl,...,bs) . ,’,Ilﬁlbl ,ngzbz . nfs.ba.
(b15esbs)E[PT1] X .. X [P

Hence Theorem 2 follows from the next lemma.

Lemma 3 Let p? Jw. For non-negative integers 3, 3;, let

d(ﬁ) = Z db ' 77ﬂba
- belpm)

d(Br,.... ) = > iy, - TG et
(bl,""bs)E[Prllx...X[p"al
where all dy € Q[€p, €w]. Suppose ‘
d(pta’)u E Q[€p1£w]

for some root of unity u where (p,a) = 1. Then, for any Bj41,...,0s € Z, there is a root of
unity v’ = w'(Bj41,...,0s) such that

d(0,...,0,p%a, Bit1,---,0s) = d(p'a)u’

where i =ri+re+...+rj+ewith0 <e<ry.

Note that d'(0,...,0,p%, Bj41,...,08s) = d'(0,...,0,p°a + p"it, B;41,...,B,) for any t since

n;?rj =1,ie. d(B,...,B:) =d(f~*(1,...,Bs)) for some roots of unity v’ for any f,..., 0, €
Z

Proof. Let w =&, =nP"

(au= Y Y dyygmeim 0P € QLo &l

be[pm—-i-—ll te[pi+l}

-1 mi—1

=n"" . Now

But 7', (P'9)2, ..., (nP'@)?" =1 are independent over Q[w, &,]. So since dj € Q[w, £,], there
is an unique b = by such that

Z dbo—Hpm“"—l -wu € Q[w,fw])

e [pH-l]

and all the other sums are 0.

d = d(0,...,0,p%,B41,---,0s)
pabj Bjtibjta Bsbs

= Z d’f-](blv""bs) ) n] 77]+1 ctt ns
(b1 0,05 )E[PTL]X... X [pT8)
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Let »
L:= f"l(O, oy Oybjgt, o ybg) 0 P L by pMTTE T,

Then we have

pea‘b'. . Y .
d’ _ Z Z Z dL+t-p'"""‘1 ; watnj Jnfﬂl j+1 L ’I’]f’ bs,
B €[p"i T T Bryesbica B 1yensba tE[peF] '

—e~1

“a\p"i — .0 ri—e—1, m—ri—..=T; .o pym—i—1
because (7} *)? = w® and p"i LpmTT i=p .
@b Bitribji

So if we fix b},bj11,...,b,, then the coefficient of n} = 57 coomfBebs g

Z Z dL+t.pm—i~1 . (.Uat.

by yeenbj1 tE[pH]

If we put ,
N = fﬁl(()» e 70a bj+l7 s ,bs) + b] : pm—rl—rg—...-—r,-’

then we can write

L = N + bl . pm—m + b2 . pm-m-—r?. +... 4+ bj—-l . pm—r1—r2—...~rj_1
= N+k ‘pve+1 . pm-—i——l

for some k. Since w? = 1 and & runs all over [p"*+*"i-1] when b;,...,b;_1 run through all
. . . at :
values, the above coeflicient 32y, 1. Fiepert] dpqppm-i-1 - w® is

14
Z, Z dN+(k.pe+l +t)pm—~i—1 i wa
. ke[pr1+...+rj__1] te[pe-)-l]

= Z ' . dN+t.pm~i—1 . (Uat

te{pr1+...+rj_1+e+l]

= z dN.H.pm—-i—l . w"‘.
telp+1]

If bj,...,b, run through all values, N = f~1(0,...,0,bj41,...,bs) + b; - p™ ™ ~""i runs
through all values of [p™~i~]. ‘

So the coefficients correspond to the coefficients of d(p‘a). Then except only one case, for
any (s — j + 1)-tuple (b;,...,b,), the coefficients are 0, and the non-zero cace is

Z dbo+tpm—"—1,

te[pi+1]

i.e. d = d(p'a)u’ for some root of unity u'. O

For the sake of completeness, we mention that the folding theorem can be generalized to the
case where H is nonabelian. The proof of the following theorem is a straightforward adaptation
of the proof of Theorem 2 and will be omitted.
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Theorem 4 Let G = Zym X H where H is a (possibly nonabelian) group and p? does not divide
expH. Let K be an abelian group of order p™, and let f : G — G' = K x H be the folding
map. Let F := Q(€expg), let T be an irreducible FG' matriz representation, and let x, be the
corresponding FG representation, see Definition 1. If, for some T € ZG, the matriz x.(T)u
has entries in Q[éexp a,&p) only for some root of unity u, then

T(f(T)) = (T, (4)

for some root of unity u'.

The basic assumption necessary to make folding work is that the character values of the
group ring element we want to fold up to a root of unity lie in a rather small field. For the
combinatorial applications we have in mind, the character values will be cyclotomic integers of
prescribed absolute value. From the following consequence of [19, Theorem 3.5] we see that the
“small field assumption” is satisfied automatically in many cases.

Theorem 5 ([19]) Assume XX = n for X € Z[{,] where n and m are positive integers,
m = p*m’, (p,m’) = 1, and p is an odd prime. Let P be the set of prime divisors of m. For
each prime divisor q of n define my := [l,ep\(qy 7. Consider the following assumption.

A(m,n,p): ¢®4ma(@ = 1 mod p? for all prime divisors q # p of n.

If A(m,n,p) holds, then .
' ngn € Z[gpm’] ' (5)
for some j. In particular, (5) always holds if n is a power of p.

4 Applications

4.1 Difference sets

Theorem 6 Let G = Z,m X H be an abelian group of order v such that P Jw = expH.
Suppose there is a (v, k, \)-difference set D in G such that for any x of G, x(D)u, € Q[&,,€w)
for a root of unity u,. Then for any partition (r1,7a,...,7,) of m, the folding f(D) of D is a
(v, k, \)-difference set in G' = Zyri X Zyra X ... X Zyre X H.

Proof. For any character 7 # id of G', we have 7(f(D)) = x.(D)u, for some root of unity
u, by Theorem 2. Then, '

T(f(D))7(f(D)) = x+(D)urx-(D)u; = x+(D)x+(D) = n

concluding the proof. O

Remark 7 By applying Theorem 6 to the Anown families of difference sets, we do not obtain
the existence of difference sets in any groups which previously had not been known to contain
difference sets. However, wee believe that Theorem 6 is important for the understanding of the
phenomenon that difference sets with (v,n) > 1 seem to “prefer” groups of low exponent and
high rank. Also, Theorem 6 certainly is of interest for the study of putative new families of
difference sets and Lander’s conjecture, see Corollary 9.
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Combining Theorem 6 with Theorem 5 we get the following result.

Cororally 8 Let G = Zym x H be an abelian group bf order v such that p* JexpH, p # 2.
Suppose there is a (v,k, A, n)-difference set in G and that the assumption A(exp G,n,p) from
Theorem 5 holds. Then there is a (v, k, X)-difference set in U x H for any abelian group U of
order p™.

An important unsolved conjecture of Lander [17] asserts that the Sylow p-subgroup of an
abelian group containing a (v, k, A, n)-difference set with p|(v,n) cannot be cyclic. In view of
Lander’s conjecture, the following special case of Corollary 8 is of particular interest. Note that
in this situation, folding works without any assumptions besides the existence of a difference
set.

Cororally 9 Let G = Zym X H be a abelian group where (p,|H|) = 1, p # 2. If there is a
(v, k, A, n)-difference set in G and n is a power of p, then there is a (v,k, \)-difference set in
U x H for any abelian group U of order p™.

Now we are going to describe the nonabelian version of Theorem 6. We encounter slight
technical difficulties here, since, for an arbitrary nonlinear matrix representation p of a group
G and D € Z@G, the matrix p(D(‘jD_is_, slightly more difficult to obtain from p(D) than in the
linear case where just p(D(-V) = p(D). However, the following lemma is enough to escape all
trouble.

Lemma 10 Let H be a finite group, let F' be a subfield of the complex numbers, and let p be
an FH matriz representation. Then

p(h) =B p(h) E (6)
for allh € H where E =3 ey mp(g).

Proof Note that E is nonsingular since it is a positive hermitian matrix. Thus (6) follows from

p(h) Ep(h) = };{ o(Gh) p(gh) = E.

O

Theorem 11 Let G = Zym X H where p is a prime, and H is a (possibly nonabelian) group
with p? fexp H. Let F := Q(€expn), and let T be any complete set of nonequivalent irreducible
FH matriz representations. Let D be a (v,k,A,n)-difference set in G. Suppose that, for
any w € Zym and ¢ € T, there is a root of unity u(w,p) such that all entries of the matriz
w(w, )|w ® p(D))] lie in Q(&p,Eexprr). Then, for any partition (r1,7,...,1,) of m, the folding
f(D) is a (v, k, A, n)-difference set in G' = K x H where K = Zyy X Zys X ... X Zprs .

Proof By a standard result on difference sets (see {?], for instance), it suffices to show

CT(f(D)(F(D)Y) = nl
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for every nontrivial irreducible FG' representation 7. Here I is an identity matrix of the
appropriate size. Note that any such representation 7 is equivalent to a representation of the
form 1 ® @ where ¥ € K* and ¢ € T. Now, by Theorem 4 and Definition 1 we have

¥ @ p(f(D)) = u wy ® p(D) (7)

for some root of unity . Since D is a (v, k, A, n)-difference set in G, we know that

[wy ® p(D)]fwy @ p(DV)] =nl. (8)
;From (6) we get

Y@ (X)) = 3 (e p(a™)

z€X

= Y Y@ Ep() E

zeX

= E'[@op(X)] E

for any X C G’ and similarly
Wy ® (V) = B [0y @ oY) | B
for any Y C G. Thus, using (7), (8) and v@ =1,

& o (DN 8 (F D)D) = (D) B FoaFDN) B
i we ® o(D)E™" [u s @ A(D)) B
[wy ® p(D)][wy ® (D))

nl

Il

concluding the proof. O

4.2 Relative difference sets

Let G be a group of order mn with a normal subgroup N of order n. A k-subset D of G is
called an (m,n, k, \)-relative difference set relative to N if the list of quotients vy~ x,y € D,
contains each element of G \ N exactly A times and contains no nonidentity element of V. In
terms of the group ring, a k-subset D of G is a (m, n, k, A)-difference set in G if and only if

DDV =k .1+ MG\ N)

in ZG where 1 is the identity element of G.
This is equivalent to

kE+Xmn—n) forx=xo
x(D)x(D) =4 k—An for x|v = id, x # Xo
k for x|n # id

Generally the proof for relative difference sets is more difficult than for difference sets
because of the special role of N. But in this case, the correspondence for characters guarantees
the same property.
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Theorem 12 Let G = Z, x H be an abelian group such that p? fw = exp(H), 1 > 1. Suppose
D is a (m,n,k,]) -relative difference set in G such that for any x of G, x(D)u, € Z[€p, &)
Jor a root of unity u,. Then for any partition (ry,rq,...,7,) ofl the folding D' = f(D) of D
is a (m,n, k,\)-relative difference set in G' = Zyy X Zpra X ... X Zyrs X H.

Proof. Since DD = k + A(G\ N) for some N < G of order n, we have xo(D)xo(D) =
k+ A(mn —n), x(D)x(D) = k — An for x|y = id,x # xo and x(D)X(D) = k for x|y # id.
Let G=ZyXH=<g>xH, G =2y X...X Zps xH=<g1 >%X...Xx<g,>xH. Let
n =&y, i = &pri. We have 7(D')7(D') = XT(D)XT(D) by Theorem 2. And we see that for any
ac sz
(1) if x(a) = 1 then Tx(f(a)) =
(2) if x(@) = & then 7 (f(@)) = ‘Sp

Thus, for any z € G, if x(z) = 1, then 7, (f(z)) = 1 since x(h), 7(h) € Z[&p, Eexpa)] for any
Xof G, Tof G',h€ H. Let N' = f(N) Then N’ is a subgroup in G’ of order n, and we see
that x|y = id if and only if 7|y = id for any 7 of G'.

Claim: D'D"V = k + A\(G' \ N').

Proof of the claim:
Case 1: 7= 7y = 1d. Then 79(D")p(D") = k + A(mn — n).
Case 2: 7|yt = id, 7 # 7. Then, since X,|n = id, X1au # Xo, We have T(D’)T(D’) =k - An.
Case 3: 7|y # id. Then, since x,|y # id, we have 7(D')7(D’) =
This proofs the claim and the theorem. O

4.3 Building sets

Davis and Jedwab [9] introduced building sets and covering extended building sets (CEBSs)
as a powerful tool for the construction of difference sets. In this section, we apply the folding
method to CEBSs. Similar results also can be obtained for all other types of building sets.

An (a,m, h,+)-covering extended building set (CEBS) in an abelian group G is a family
{D1,..., D} of subsets of G with the following properties.

1)}D1 atmand |D;| =afori=2,...,h.

2) For every nonprincipal character x of G’ there is exactly one 7 Wlth
X(D;) =0if j #1i.

As was shown in [9], a CEBS in G can be used to construct difference sets in many abelian
groups which contain G as a subgroup.

x(D;)] = m and

Theorem 13 Let G = Zy X H be an abelian group such that p* Jw = exp(H), 1 > 1. Suppose
{D1,...,Dr} bea(a,m, h , &) covering EBS in G such that for any x of G, x(D)uy € Z[¢,,£,)
for a root of unity u,,.

Then for any partition (r1,73,...,7s) of I, the folding {f(D),..., f(Dn)} of {Ds,..., Dy}
is also a (a,m, h,x) covering EBS in G' = Zyri X Zyrs X ... X Zpra x H.

Proof. 1) |f(D1)| = |D1| =axm and |f(D;)| = |Dil =afori=2,...,h.

2) For every nonprincipal character 7 of G', 7(f(D;)) = x-(D;) from Theorem 2. Then we see
that there is exactly one ¢ with |7(f(D:))| = |x-(D;)| = m and |7(f(D;))| = |x~(D;)| = 0 if
j#i O
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4.4 Group invariant weighing matrices

A weighing matriz W(m,n) is an m x m matrix H with entries —1,0,1 such that HH' = nl
where I is the identity matrix. The integer n is called the weight of H. Weighing matrices have
been studied intensively, see [10] for a survey and [5, 6, 11, 18] for some more recent results. Let
G be a group of order m. We say that a matrix H = (hyg)seec is G-invariant if hpp g = hy,
for all k € G. If we identify a G-invariant weighing matrix H with the element 3" e hi1,4g of
ZG we get the following useful necessary criterion, see [19], for example.

Lemma 14 Let G be an abelian group of order m, and let H be a G-invariant m X m matriz
with entries —1,0,1. Then H is a weighing matriz W(m,n) if and only if

X(H)x(H) =n
for all characters x of where H is viewed as an element of ZG.

Theorem 15 Let G = Z,u X K be an abelian group such that p? Jw = exp(K), l > 1. Suppose
H is a G-invariant weighing matriz such that for any x of G, x(H)u, € Z[¢,,&w] for a root
of unity u,. Then for any partition (r1,7a,...,7s) of l, the folding H' = f(H) of H is a
G’ -invariant weighing matriz where G' = Zyn X Zyrs X oo X Zypea X I,

The proof is similarly.
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