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Abstract.
In this paper, we will show that every four-weight spin model with ex-
actly two values on $W_{2}$ is associated with a regular Hadamard design with
parameters $(16r^{2},8r^{2}-2r, 4r-22r)$ . We also show the necessary and suf-
ficient condition for a regular Hadamard design to admit a four-weight
spin model with exactly two values on $W_{2}$ .

1. Introduction. Spin model introduced by $\mathrm{V}.\mathrm{F}$ .R. Jones is the
concept to construct invariants of knots and $\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{S}[8]$ . It was generalized by
Kawagoe, Munemasa and $\mathrm{W}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}[9]$ . Finally, Bannai and Bannai intro-
duced the much more general four-weight spin $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}[2]$ . Guo constructed
examples of some four-weight spin models with exactly two values on $W_{4}$

(see [4,5]). M.Yamada constructed two-weight spin models of symmetric
Hadamard type from Hadamard $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{e}\mathrm{s}[11]$ . Yamada’s two-weight spin
models have exactly two values on $W_{+}$ , too. All four-weight spin models
with exactly two values on $W_{2}$ , including Guo’s example and Yamada’s
spin models, have parameters $(16r^{2},8r^{2}-2r, 4r^{2}-2r)$ . We will see the
following theorem.

Theorem 1 The followings are equivalent.

i) There exists a four-weight spin model with exactly two values on $W_{2}$

ii) There exists a regular Hadamard design (X, $B$) with the parameters
$(16r^{2},8r^{2}-2r, 4r^{2}-2r)_{-}$ satisfying the following conditions.
a) The residual design of (X, $B$) is a quasi-symmetric design with exactly
two intersection numbers $2r^{2}-2r$ and $2r^{2}-r$ .
b) For any four blocks $B_{x},$ $B_{y},$ $B_{z}$ and $B_{w}$ in $B$ , the following equation
holds.

$f(B_{y} \cap B_{z}\cap B_{w})=\frac{f(B_{xyz}\cap B\cap B)}{f(B_{x}\cap B_{y}\cap Bw)f(B_{x}\cap B_{z}\mathrm{n}B)w}$ (1)
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,where $f$ is a function defined by the following

$f(B_{x}\cap By\mathrm{n}B)z=\{$

$-1$ $(|B_{x}\cap B_{y}\cap B_{z}|=2r^{2}-2r)$

1 $(|B_{x}\cap B_{y}\cap B_{z}|=2r^{2}-r)$

(2)

We can express $W_{2}$ of a four-weight spin model with exactly two val-
ues on $W_{2}$ as $\alpha(2E-J)$ , where $E$ is an incidence matirx of the regular
Hadamard design of ii) in Theorem 1 and $\alpha$ is non-zero complex num-
ber. $W_{1},$ $W_{3}$ and $W_{4}$ are determined by the definition of four-weight spin
models. In section 3, we give the construction of $W_{1}$ . In section 2, we
will see definitions and known facts about four-weight spin models and
regular Hadamard designs.

2. Preliminaries.
2.1 Four-weight spin models
The concept of four-weight spin models was defined by Bannai and Ban-
$\mathrm{n}\mathrm{a}\mathrm{i}[2]$ . It was represented by four non-symmetric matrices and finite
non-empty set. Let $X$ be a finite set with $|X|=n$ and $\mathrm{J}/I_{C}(x)$ be the set
of all the matrices over complex number field $C$ with rows and columns
indexed by $X$ . In this paper, we denote the identity matrix with $I$ and
the matrix whose entries are all equal to 1 with $J$ .

Definition 1(Bannai and Bannai). Four-weight spin model on a
finite non-empty set $X$ is a 6-tuple (X, $W_{1},$ $W_{2},$ $W_{3},$ $W_{4};D$), where $D^{2}=$

$|X|$ and $W_{1},W_{2},W_{3},W_{4}$ are in $M_{C}(X)\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathfrak{h}r$ the following equations for
all $a,$ $b,$ $c\in X$ ,

1) $\Sigma_{x\in x^{W}1}(a, x)W3(x, b)=\Sigma_{x\in x^{W_{2}}}(a, x)W4(x, b)=|X|\delta_{a,b}$,
2) $W_{1}(a, b)W_{3}(b, a)=W_{2}(a, b)W4(b, a)=1$ ,
$3)- \mathrm{a}$ $\Sigma_{x\in x}W_{2}(a, x)W_{2}(b, x)W4(X, C)=DW_{1}(b, a)W_{3}(a, c)W3(c, b)$ ,
$3)- \mathrm{b}$ $\Sigma_{x\in x}W2(x, a)W_{2}(x, b)W_{4}(c, X)=DW_{1}(a, b)W_{3}(b, c)W_{3}(c, a)$ .

The equation 2) in the Definition 1 shows that four-weight spin models
are determined by two matrices $W_{1}$ and $W_{2}$ .
The equations $3$ ) $- \mathrm{a}$ and $3$ ) $- \mathrm{b}$ imply that there exists a non zero complex
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number $\mu$ , called the modulus of the spin model, such that for all $a\in X$

the following conditions hold.

4) $W_{3}(a, a)=\mu^{-1}$ , $\Sigma_{x\in \mathrm{x}^{W_{2}}}(a, X)=\Sigma_{x\in \mathrm{x}^{W_{2}}}(X, a)=D\mu^{-1}$ .
5) $W_{1}(a, a)=\mu$ , $\Sigma_{x\in X}W_{4}(a, X)=\Sigma_{x\in X}\mathrm{M}_{4}’(\gamma X, a)=D\mu$.
If we assume $W_{1}\in\{W_{2},{}^{t}W_{2}\},(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{y}W_{3}\in\{W_{4},{}^{t}W_{4}\})$ then the
conditions 1), 2) and 3) give the conditions of two-weight spin model (of
Jones type) (X, $W_{+},$ $W_{-};$ $D$ ) $[3]$ . conversely if we have a two-weight spin
model (X, $W_{+},$ $W_{-;}D$), then (X, $W_{+},$ $W_{+},$ $\mathrm{T}fl,f-,$ $W-;D$) is a four-weight
spin model.
If we assume , $W_{1}\in\{W_{4},{}^{t}W_{4}\}$ and $W_{3}\in\{W_{2},{}^{t}W_{2}\}$ , then the conditions
1), 2) and 3) give the conditions of the two-weight spin models of psuedo
Jones type.
If we assume $W_{1}\in\{W_{3},{}^{t}W_{3}\}$ and $W_{2}\in\{W_{4},{}^{t}W_{4}\}$ , then the condi-
tions 1), 2) and 3) give the conditions of the two-weight spin models of
Hadamard type.
Although not all four-weight spin models have a symmetric $W_{1}$ , it is
known that any four-weight spin model is gauge equivalent to a four-
weight spin model with symmetric $W_{1}$ and $W_{3}(\mathrm{s}\mathrm{e}\mathrm{e}[7])$ . Therefore a spin
model of Hadamard type is always gauge equivalent to a four-weight spin
model satisfying $W_{1}=W_{3},$ $W_{2}={}^{t}W_{4}$ and ${}^{t}W_{1}=W_{1}$ . These spin models
have exactly two values on $W_{2}$ .
The main theorem of this paper, Theorem 1, shows that every four-weight
spin model with exactly two values on $W_{2}$ is gauge equivalent to a four-
weight spin model which is naturally obtained from a two-weight spin
model of Hadamard type.

2.2 The Regular Hadamard Design and Quasi-symmetric De-
sign
In this chapter, we see some definitions and notations of designs. For
more details, $\mathrm{s}\mathrm{e}\mathrm{e}[1,10]$ .

Let $X=\{x_{1}, x_{2}\ldots\ldots X_{v}\}$ be a finite set of elements called points and
$B=\{B_{1}, B_{2}, \ldots\ldots.B_{b}\}$ be a finite set of distinct $k$-subsets of $X$ called
blocks. Then the pair $D=(X, B)$ is called a $t-(v, k, \lambda)$ design if every $t$

distinct points of $X$ incident with precisely $\lambda$ blocks.
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Suppose (X, $B$ ) is a $t-(v, k, \lambda)$ design. The cardinality $|B_{i}\cap Bj|,$ $Bi,$ $Bj\in$

$B(i\neq j)$ , is called an intersection number of (X, $B$). If a 2-design has
exactly one intersection number, then it must necessarily be symmet-
ric design. A 2-design with exactly two intersection numbers is called a
quasi-symmetric design.[10]

Let $D=(X, B)$ be a design, $x\in X$ and $B\in B$ . Define sets as follows;
$X^{B}=X-\{x|x\in X,x\in B\};^{g_{B}B-}=\{B\}$ . Then $D^{B}=(X^{B}, \beta_{B})$ are
called the residual design of $D$ at the block $B$ .

Let $D=(X, B)$ be a $2-(v, k, \lambda)$ design. Then residual design $D^{B}$ is a
$2-(v-k, k-\lambda, \lambda)$ design, where $B\in B$ .

A matrix $H$ is an Hadamard matrix provided $H(i,j)=\pm 1$ for all $i$ and
$j$ and $H^{t}H=mI_{m}$ , where $I_{m}$ is the $m\cross m$ identify matrix, $H$ being also
$m\cross m$ . We call $m$ the size of the Hadamard matrix. It is known that if
$m>2$ , then $m$ is divisible by 4.

Theorem 2
Suppose $H$ is an Hadamard matrix of size $m=4n$ with the property
that $\sum_{x\in X}H(i, x)=\Sigma_{x\in X}H(x, j)=const$ . for all $i,$ $j\in X$ . Then $n$ is a
square and the constant is either $2\sqrt{n}$ or $-2\sqrt{n}$ . Setting $n=N^{2}$ , then
$\log_{-1}(H)$ , whose $(i,j)$-entry is defined by $\log_{-1}(H)(i,j)=\log_{-1}(H(i,j))$

for all $i,j\in X$ , is an incidence matrix of either a $(4N^{2},2N2-N, N2-N)-$

design or a $(4N^{2},2N^{2}+N, N^{2}+N)$ -design, depending on whether the
constant is positive or negative.

We call the design of Theorem 2 the regular Hadamard design.

2.3 Four-weight spin models with exactly two values on $W_{2}$ .
It is known that the elements of each row or each column of $DW_{4}$ give the
set of eigenvalues including $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{S}[4,5]$ . Guo showed the following
in his $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\Gamma[4,5]$ .
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If there exist a four-weight spin models with exactly two values on $W_{2}$ ,
then we may express $W_{2}$ as $\alpha E+\beta(J-E)$ , where $\alpha,$

$\beta$ are complex
numbers and $E$ is an $(0,1)$-matrix satisfying $EJ=kJ$. $k$ is a positive
integer.
By the definition of fo.ur-weight spin models, we obtain a positive integer
$\lambda$ such that

$E^{t}E=(k-\lambda)I+\lambda J$

It is easy to see that there exist a symmetric design $(X, \beta)$ which has the
incidence matrix $E$ . The numbers of points and blocks of (X, $B$) are both
$n$ . Every bloks contains precisely $k$ points. Every two distinct points are
together incident with precisely $\lambda$ blocks. And we denote the intersection
number of any three blocks in $B$ with $s$ , then we obtain the following
equation.

$s=n^{-1}(k\lambda+\lambda-k\pm(k-\lambda)\sqrt{k-\lambda})$

Because $s$ is a positive integer, $k-\lambda$ is a square of a positive integer. In
addition, by using parameters $(n, k, \lambda, S)$ in the conditions 3) of definition
1, we obtain the condition b) of Theorem 1.

2.4 Two-weight spin models of Hadamard type
$\mathrm{A}.\mathrm{A}$ . Ivanov and $\mathrm{I}.\mathrm{V}$ . Chuvaeva showed that symmetric amorphous asso-
ciation schemes of class 4 obtained from Hadamard matrices. An infinite
family of Hadamard matrices can be constructed by fusing the relations
of these amorphous association schemes. M.Yamada show the necessary
and sufficient condition that these Hadamard matrices give two-weight
spin models of symmetric Hadamard type.[11]
$\mathrm{A}.\mathrm{A}$ . Ivanov and $\mathrm{I}.\mathrm{V}$ . Chuvaeva proved the following $\mathrm{t},\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}[6]$ .
Theorem 3
Let $H=(h_{i,j})_{i,j\in\Omega}$ be $\mathrm{a}\mathrm{n}^{-}$ Hadamard matrix of size $4n$ and $\Omega=\{0,1,2,$ $\cdots$

, $4n-1\}$ . Put $X=\Omega\cross\Omega$ . The subsets $R_{i},$ $(0\leq i\leq 4)$ of $X\cross X$ are
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defined by

$R_{0}$ $=$ $\{(x, x)|X\in x\}$

$R_{1}$ $=$ $\{(x_{1,2}X), (y_{1}, y2)|_{X=}1y1, x2\neq y2\}$

$R_{2}$ $=$ $\{(X_{1\}}x2),$ $(y_{1,y_{2}})|X1\neq y_{1},$ $X_{2y_{2}\}}=$

$R_{3}$ $=$ $\{(X1, X2), (y_{1,y2})|x_{1}\neq y1, x2\neq y2, hx1,x2h_{y_{1}},h_{x\iota}h,x2=1\}y21y_{2}y1$

$R_{4}$ $=$ $\{(x_{1,2}X), (y_{1}, y2)|X_{1}\neq y_{1,2}X\neq y_{2}, hx_{1},x2y1y_{2}x_{1}h,y_{2}h_{y_{1^{X_{2}}}}h,,=-1\}$

Then (X, $R_{0},$ $R_{1},$ $R_{2},$ $R_{3},$ $R_{4}$ ) is an amorphous association scheme of class
4.

Yamada showed the following theorem by using the ammorpous associa-
tion schemes given above.

Theorem 4
Let $\mathrm{A}_{i}(0\leq i\leq 4)$ be adjacency matrices of an amorphous association
scheme obtained from an Hadamard matrix of size $4n$ by Theorem 3.
Then
$M_{1}=A_{0}+A_{1}+A_{2}+A_{3}-A_{4}$ ,
$M_{2}=A_{0}+A_{1}-A_{2}-A_{3}+A_{4}$ ,
$M_{3}=A_{0}-A_{1}+A_{2}-A_{3}+A_{4}$ ,
are regular symmetric Hadamard matrices of size $(4n)^{2}$ .

Yamada gave a necessary and sufficient condition that each Hadamard
matrices $M_{i}(1\leq i\leq 3)$ in Theorem 4 give a two-weight spin model of
symmetric Hadamard type.

Theorem 5
Let $H$ be a normalized Hadamard matrix of size $4n$ and $A_{i}(0\leq i\leq 4)$

be adjacency matrices obtained from $H$ .
(1) $W_{+}=W_{-}=M_{1}=A_{0}+\mathrm{A}_{1}+A_{2}+A_{3}-\mathrm{A}_{4}$ gives a two-weight spin
model of symmetric Hadamard type if and only if the following condition
$(\star)$ is satisfied for any $\beta_{1},$ $\beta_{2},$

$\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}=\{0,1, \cdots , 4n-1\}$ :
$(\star)\Sigma_{l=-n}^{n}\theta_{l}l=(h_{\beta_{1_{)}\beta_{2}\beta_{1},2\gamma\beta 2}}h_{\gamma},h1\gamma 2\gamma h1,+1)n/2$

,where $\theta_{l}=\#\{x_{1}|hx_{1},\beta 2hx_{1,\gamma_{2}}=1, \Sigma_{j=}^{4n-}0h_{\beta 1}1h_{0,j},jh_{\gamma}1.jh_{x_{1},j}=4l\}$ .
(2) $W_{+}=W_{-}=M_{2}=A_{0}+A_{1}-A_{2}-A_{3}+A_{4}$ gives a two-weight spin
model of symmetric Hadamard type if and only if the above condition $(\star)$
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is satisfied for any $\beta_{1},$ $\beta_{2},$
$\gamma 1$ and $\gamma_{2}\in\Omega^{*}$ .

(3) $W_{+}=W_{-}=M_{3}=A_{0}-A1+A_{2}-A_{3}+A_{4}$ gives a two-weight spin

model of symmetric Hadamard type if and only if the transpose matrix
${}^{t}H$ satisfies the above condition $(\star)$ for any $\beta_{1},$ $\beta_{2},$

$\gamma_{1}$ and $\gamma_{2}\in\Omega^{*}$ .

2.5 Guo’s examples
Guo constructed examples of four-weight spin models by using the sym-
metric design with the symmetric defference $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{y}[4,5]$ . In this section,

we study his construction. At first, we give the definition of the symmet-

ric defference.

Definition $2$ ( $\mathrm{S}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ defference)
Let $S$ and $T$ be subsets of the point set $X$ of a block design$(X, B)$ . Sym-
metric defference $S\triangle T$ is defined by $S\triangle T=(S\cup T)-(S\cap T)$

A symmetric design is said to be have the symmetric defference prop-
erty when $B\triangle C\triangle D$ is either a block or the complement of a block for
any three blocks $B,$ $C$ and $D$ of the design.

It is known that if (X, $B$) is a symmetric design with the symmetric def-
ference property then its parameters $(v, k, \lambda)$ are of the form $(4\mu^{2},2\mu^{2}-$

$\mu,$ $\mu^{2}-\mu)$ , where $\mu=2^{m-1}$ and $m$ is any positive integer.

In the symmetric design (X, $B$ ) with the symmetric difference property,

the number of points containing in an intersection of any three blocks of
$B$ has exactly two values. Let those be $x$ and $y$ . Let $f$ be a function
defined by the following equation for any three blocks $A,$ $B$ and $C$ in $B$ .

$f(A\cap B\cap C)=\{$
$-1$ $(|A\cap B\mathrm{n}c|=x)$

1 $(|A\cap B\cap C|=y)$
(3)

Guo’s example
Guo showed that if a symmetric design (X, $B$) with symmetric defference
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property satisfing the certain condition, then we can construct a four-
weight spin model on $X$ . We can express the condition he gave in [4] as
follows.
Condition
For any four blocks $A,$ $B,$ $C$ and $D$ in $B$

$f(A\cap B\cap C)f(A\cap B\cap D)f(A\cap C\cap D)f(B\cap C\cap D)=1$

3. The construction of $W_{1}$

Let (X, $W_{1},$ $W_{2},$ $W_{3},$ $W4;D$) be a four-weight spin model with exactly two
values on $W_{2}$ . Then we can express $W_{2}$ as $\alpha(2E-J)$ , where $E$ is an
incidence matrix of the regular Hadamard design of theorem 1 with the
parameter $(16r^{2},8r^{2}-2r,4r^{2}-2r).$ Since $\frac{1}{D}\Sigma_{x\in}x^{W}4(a, X)=\alpha^{-1}$ by the
equation 4) in section 2.1, we define $W_{1}(x, x)=\alpha^{-1}$ for any $x\in X$ .
Fix $c\in X$ and Let $a=b\neq c$ in the conditions 3) of the definition 1, then

$\sum_{x\in x}\frac{W_{2}(a,x)^{2}}{W_{2}(c,x)}=x\in\sum_{X}\frac{W_{2}(C_{\}}X)^{2}}{W_{2}(a,X)}=D\alpha 2$ (4)

So we define $W_{1}(c, x)=W_{(}x,$ $C)=\epsilon_{x}\alpha^{-1}$ .
By the equations 3) of the definition 1 and the condition (a) of the theo-
rem 1, we can define the other entries of $W_{1}$ as the following.

$W_{1}(a, b)= \frac{W_{1}(a,C)W_{1}(c,b)}{D}\sum_{x\in X}\frac{W_{2}(a,x)W_{2}(b_{X}))}{W_{2}(c,x)}$

,

$=f(B_{a}\cap Bb\cap B)c\alpha$

,where $f$ is a function defined in theorem 1 and $B_{x}$ i8 a block of the reg-
ular Hadamard design of theorem 1. By the condition (b) of Theorem 1,
we can prove that these $W_{1}$ and $W_{2}$ give a four-weight spin model.
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