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1. Introduction

We consider the initial value problem for the Hamilton-Jacobi equation of form

$u_{t}+H(x, ?lx)=0$ in $\mathrm{R}^{n}\cross(0, \Gamma l^{\tau})$ , (1a)

$’(\iota(0, aj)=\tau\iota 0(\prime x),$ $.\prime ri\in \mathrm{R}^{n}$ , (1b)

where $\tau\iota_{t}=\partial\tau\iota/\partial l$ and $\uparrow\iota_{x}=$ $(’\partial_{x_{1}}n, \cdots , \partial_{x_{n}}?\mathrm{A}),$ $\partial_{x_{i}}’\iota L=\partial’\uparrow\iota/\mathit{0}x_{i;}\infty\geq r_{l’}>0$ is a
fixed number. Our main goal is to find a suitable notion of solution when $u_{0}$ is
discontinuous. The theory of viscosity solutions initiated by Crandall and Lions [CL]
yields the global solvability of the initial value problem by extending the notion of
solutions when $u_{0}$ is continuous (cf. $[\mathrm{E}$ , Chap.10], [L], [B]). In fact, if initial data
$’\downarrow\iota_{0}$ is bounded, uniformly continuous, it is well-known [CL], [L] that the initial value
problem $(\mathrm{l}\mathrm{a})-(\mathrm{l}\mathrm{b})$ admits a unique global (uniformly) continuous viscosity solutions
when II is enough regular} for example $H$ satisfies the Lipschitz conditions

$|H(x,p)-H(x, q)|\leq C|p-q|$ (2a)

$|H(_{\mathit{9}j},p)-H(y,p)|\leq C(1+|p|)|x-y|$ . (2b)

We only refer to [B], [L] and [CIL] for the basic theory of viscosity solutions. The
notion of viscosity solution has been extended to semicontinuous functions. This
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is very important to prove the existence of solutions without appealing hard esti-

mates. Such a method is first introduced by [I]. However, if $u_{0}\mathrm{i}\mathrm{s}_{7}$ for example, upper

semicontinuous, a classical semicontinuous viscosity solution may not be unique.

Recently to overcome this inconvenience, Barron and Jensen [BJ] introduced

another notion of viscosity solutions for semicontinuous functions when the Hamil-

tonian $H=H(x,p)$ is concave in $p$ and proved the existence and the uniqueness of

their solution for (1a), (1b) for bounded ($\mathrm{h}\mathrm{o}\mathrm{m}$ above), upper semicontinuous initial

data $u_{0}$ . Their solution is now called a bilateral solution [BD]. For later development

of the theory as well as other approaches we refer to [BD] and references cited there.

However, their theory is limited for concave H. (In [BJ] $H$ is assumed to be con-

vex but they consider the terminal value problem which is easily transformed to the

initial value problem with concave Hamiltonian by setting $T-t$ by $t.$ )

In this paper we introduce a new notion of a solution which is unique for a

given initial upper semicontinuous initial data. For (1a), (1b) we consider auxiliary

problem

$\psi_{t}-\psi_{y}H(X, -\psi_{x}/\psi_{y})=0$ in $\mathrm{R}^{n+1}\cross(0,T)$ , (3a)

$\psi(0,x,y)=^{\psi_{0(}}x,y)$ , $(x,y)\in \mathrm{R}^{n}\cross \mathrm{R}$ . (3b)

The equation (3a) is called the level set equation for the evolution of the graph of

$u$ of (1a). In fact, if a level set of a solution $\psi$ of (3a) is given as the graph of a

function $v=v(t, x)$ , then $v$ must solve (1a). For given upper semicontinuous initial

data $u_{0}$ : $\mathrm{R}^{n}arrow \mathrm{R}\cup\{-\infty\}$, shortly $u_{0}\in \mathrm{U}\mathrm{S}\mathrm{C}(\mathrm{R}^{n})$ , we take

$\psi \mathrm{o}(x,y)=-\min\{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}((x, y), K_{0}), 1\}$ , (4)

where
$K_{0}=\{(x, y)\in \mathrm{R}^{n}\cross \mathrm{R};y\leq u_{0}(X)\}$ . (5)

We solve (3a), (3b) and set

$\overline{u}(t,x)=\sup\{y\in \mathrm{R};\psi(t,x,y)\geq 0\}$, (6)
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where $\psi$ is the continuous viscosity solution of (3a), (3b). We $\mathrm{c}\mathrm{a}\mathbb{I}\overline{u}$ an L–solution of

(1a), (1b). Such a solution uniquely exists globally in time under suitable condition

on $H$ .

Theorem 1. AssuIne that the recession function

$H_{\infty}(x,p)= \lim_{\lambda\downarrow 0}\lambda H(x,p/\lambda)$ , $x\in \mathrm{R}^{n},$ $p\in \mathrm{R}^{n}$ (7)

exists and that $H$ satisfies $(\mathit{2}\mathrm{a}),$ $(\mathit{2}b)$ . Then there exists a global unique L-solution
for an arbitrary $u_{0}\in USC(\mathrm{R}^{n})$ .

One may relax the assumptions on $H$ (cf. Remark right before references) but in
this paper we shall always assume $(2\mathrm{a}\rangle, (2\mathrm{b})$ and (7). These assumptions guarantee
that the singularity at $\psi_{y}=0$ in (3a) is removable if we restrict $\psi \mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\infty \mathrm{n}\mathrm{g}\psi_{y}\leq 0$ .
Moreover, (3a), (3b) admits a unique global solution for any bounded, uniformly
continuous initial data $\psi_{0}=\psi \mathrm{o}(x, y)$ which is nonincreasing in $y$ . (The monotonicity
of the solution $\psi$ in $y$ is preserved for $t>0.$ )

2. Comparison and uniqueness

Since a solution of (3a), (3b) enjoys a comparison principle, so does an L-solution
(1a), (1b).

Theorem 2 (Comparison). Let $u$ and $v$ be the $L$-solution of (1a), $(\mathit{1}b)$ with
initial data $u_{0}$ and { $J_{0}$ , respectively, where $u_{0},$ $v_{0}\in USC(\mathrm{R}^{n})$ . If $u_{0}\leq v_{0}$ on $\mathrm{R}^{n}$ ,
then $u\leq v$ on $\mathrm{R}^{n}\cross(0, T)$ .

In the definition of an $L$-solution the specific form of $\psi_{0}$ given by (4) is not important.

Theorem 3 (Uniqueness). Assume that $\psi_{0}$ is a bounded uniformly continuous
function such that $\{\psi_{0}\geq 0\}=K_{0}$ and that $y$ }$arrow\psi_{0}(x,y)$ is nonincreasing. Let $\psi$ be
the solution of $(\mathit{3}\mathrm{a}),$ $(\mathit{3}b)$ . Then

$\tilde{u}(t,x)=\sup\{y\in \mathrm{R};\psi(t,x,y)\geq 0\}$ , $t\in(\mathrm{O}, T),$ $x\in \mathrm{R}^{n}$
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agrees with the $L$-solution of (1a), $(\mathit{1}b)$ .

The key observation for the proof is that the set $\{\psi\geq 0\}(=\{(t, x,y);\psi(t, x,y)\geq$

$0\}$ depends only on $K_{0}$ and is independent of the choice of $\psi_{0}$ . This is a typical

uniqueness property of a level set equation. It is based on invariance of solution

under the change of the dependent variable as stated below (which is slightly more

general than stated in references [ESou], [ES], [CGGI], [G], [IS] since $\theta$ need not be

continuous).

Lemma 4 (Invariance). Assume that $\psi$ is a subsolution (resp. $s\mathrm{u}$persolution)

of $(\mathit{3}\mathrm{a})$ . Assume $th\mathrm{a}t\theta$ is upper (resp. lower) semicontinuous and nondecreasing.

Assume that $\theta\not\equiv-\infty$ (resp. $\theta\not\equiv+\infty$). Then th$\mathrm{e}$ composite function $\theta 0\psi$ is also a

subsolution (resp. supersolution of $(3\mathrm{a})$).

If $\{\psi\geq 0\}$ were a bounded set, a comparison principle for (3a), (3b) and Lemma

4 would yield the uniqueness of $\{\psi\geq 0\}$ as in [ES], [CGGI], [G]. However, since

$\{\psi\geq 0\}$ is unbounded, we actually argue as in [IS] to get the uniqueness of $\{\psi\geq 0\}$ .

3. Consistency

We shall compare other notion of solutions.

Theorem 5. Let $\overline{u}$ be the $L$-solution of (la), (1b) with $u0\in U\mathrm{S}C(\mathrm{R}^{n}).$ Then $\overline{u}$

be a $\mathrm{v}i_{S}cosit\mathrm{y}r$ solution of (la) provided tha$t\overline{u}$ does $\mathrm{n}ott\mathrm{a}k\mathrm{e}\pm\infty$ .

Sketch of the proof. Let $\psi$ be the solution of (3a), (3b) with $\psi_{0}$ in (4). By

Lemma 4 the function $I^{-}\mathrm{o}\psi$ is a subsolut\‘ion of (3a), where $I^{-}(\sigma)=0$ for $\sigma\geq 0$ and

$I^{-}(\sigma)=-\infty$ for $\sigma<0$ . Rom this it is easy to see that $\overline{u}$ is a viscosity subsolution.

To prove that $\overline{u}$ is a viscosity supersolution we need to use the fact that $y$ ト\rightarrow

$\psi(x,y)$ is nonincreasing. This implies that the lower semicontinuous envelope $(\overline{u})_{*}$ of
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$\overline{u}$ equals

$\underline{u}(t,x)=\inf\{y\in \mathrm{R};(t,x, y)\in\overline{\{\psi<0\}}\}$ $t\in(\mathrm{O},T),$ $x\in \mathrm{R}^{n}$ .

Since $I^{+}\circ(\psi+1/m)$ is a supersolution of (3a) by Lemma 4, we see, by stability as
$marrow\infty$ , that

$\Psi(t, x, y)=\{$ $0\infty$ $\mathrm{f}\mathrm{o}\mathrm{r}(t,X\mathrm{f}\mathrm{o}\mathrm{r}(t,X,’ yy)\in)\in\frac{\mathrm{i}\mathrm{n}\mathrm{t}\{\psi\geq}{\{\psi_{<0}\}}\mathrm{o}\}$

,

is a subsolution of (3a), where $I^{+}(\sigma)=0$ for $\sigma\leq 0$ and $I^{+}(\sigma)=\infty$ for $\sigma>0$ . Thus
$\underline{u}$ is a supersolution.

Theorem 6. Assume that $u_{0}$ is bounded, uniformly continuous. Then the
$bo$unded, lmiformly continuous viscosity solution $u$ of (la), (1b) is an L-solution.

This follows from Theorem 3 by choosing $\psi=$ $((y-u(t, X))$ A $M$) $\vee M$ for $M= \sup|u|$ .

Theorem 7. Assume that $prightarrow H(x,p)$ is concave. Let $\overline{u}$ be the $L$-solution of $(\mathit{3}\mathrm{a})$ ,
$(\mathit{3}b)$ with $u_{0}\in U\mathrm{S}C(\mathrm{R}^{n})$ and $\sup u_{0}<\infty.$ Then $\overline{u}$ is a bilateral viscosity solution
with initial data $u_{0}$ .

For the proof we use the property that the bilateral solution is given as a mono-
tone limit of continuous viscosity solution [BJ]. Thus the proof is reduced to the next
lemma.

Lemma 8. Assume that $u_{0\epsilon}\downarrow u_{0}\in U\mathrm{S}C(\mathrm{R}^{n})$ with $u_{0\epsilon}$ which is Lipschitz in $\mathrm{R}^{n}$ .
Assume that $u_{0\epsilon}\geq u_{0\epsilon’}+\epsilon-\epsilon’$ for $\epsilon>\epsilon’>0$ . Le$tu_{\epsilon}$ be th$\mathrm{e}$ solution of (la), (1b)

with $u_{0}=u_{0\epsilon}$ . Then $\lim_{\epsilonarrow 0}u_{\epsilon}$ is an $L$-solution of (la), (1b) (so that it agrees with
$\overline{u})$ .

The sequence $u_{0\epsilon}$ is easily constructed by setting $u_{0\epsilon}=u_{0}^{\epsilon}+\epsilon$ with sup-convolution
$u_{0}^{\epsilon}$ of $u_{0}$ .

4. Right accessibility
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It is not clear in what sense the initial value is attained for L–solutions (unless

initial data is continuous.) Since the viscosity solution of (3a), (3b) with $\psi_{0}$ in (4) is

continuous up to $t=0$, the set $\{\psi\geq 0\}$ is closed in $[0,T)\cross \mathrm{R}^{n}\mathrm{x}\mathrm{R}$ so that

$u_{0}(X)\geq\overline{yarrow 1\dot{\mathrm{m}}_{0}t\downarrow x}\overline{u}(t,y)$

. (8)

However, in general it is not clear whether there is a sequence $t_{m}arrow 0,$ $\tau/marrow x$ such

that

$u_{0}(x)= \lim_{marrow\infty}\overline{u}(t_{m},y_{m})$ . (9)

We call this last property the right accessibility as in [CGG2]. Since $\overline{u}$ is upper

semicontinuous in $[0, T)\cross \mathrm{R}^{n}$ , the property (9) is equivalent to $u_{0}(x)=(\overline{u}|_{\langle 0,\tau)}\mathrm{X}\mathrm{R}n)_{*}$

$(0, x)$ .
We give a simple criterion for right accessibihty without mentioning its proof.

Lemma 9. Assume that $F\in C(\mathrm{R}^{N})$ is positively homogeneous of degree one.

Let $A$ be a closed convex set in $\mathrm{R}^{N}$ . Let $w$ be the $L$-solution of

$w_{t}+F(w_{z})=0$ , $z\in \mathrm{R}^{N},$ $t>0$ ; $w|_{t=0}=w0$ .

with $w_{0}(z)=0,$ $z\in A$ and $\sup${$w_{0}(z)j$ dist $(z,$ $A)\geq\delta$ } $<0$ for $\delta>0$ . Then

$w(t, Z)=\{$
$0$ $z\in A+tW_{\alpha}$

$<0$ otherwise.

Here

$W_{\alpha}=\{z\in \mathrm{R}^{N};1^{\sup_{p|1}}=(_{Z}\cdot p-\alpha(p))\leq 0\},$
$\alpha(p)=-F(-p)$ .

The set $W_{\alpha}$ is often called the Wulff shape with respect to $\alpha$ if $\alpha$ is positive. The

set $W_{\alpha}$ may be empty. For example if $F(p)=|p|$ , then $W_{\alpha}=\emptyset$ . Thus if we consider

(1a), (lb)with $H(p)=|p|$ and $u_{0}(x)=0,$ $x=0;u_{0}(x)=-\infty,$ $x\neq 0$ , then the

L–solution $u(t, x)=-\infty$ for all $t>0$ . Thus (9) is not fulfilled.

Theorem 10. If $H$ is homogeneous degree of one, and independen$\mathrm{t}$ of $x$ , then an
$L$-solution is right accessible for any $u_{0}\in USC(\mathrm{R}^{n})$ if and only if $W_{\alpha}\neq\emptyset$ .
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Remark 11. Our results up to \S 3 can be generalized for more general equation

$u_{t}+H(x, u,ux)=0$ ,

when $H$ fulfills

(i) $H\in C(\mathrm{R}^{n}\cross \mathrm{R}\cross \mathrm{R}^{n})$ and $H_{\infty}$ exists;
(ii) There exists a modulus $m_{1}$ that satisfies

$|qH(x, y-p/q)-qH(xy’, -’,p/q)|\leq m_{1}((|X-X’|+|y-y|’)(|p|+|q|+1)$;

(iii) For each $C_{1}>0$ there exists a modulus $m_{2}$ such that

$|qH(x, y-p/q)-q’H(_{X}, y, -p’/q’)|\leq m_{2}(|p-p|’+|q-q’|)$

for all $x\in \mathrm{R}^{n},$ $y\in \mathrm{R},$ $p,p’\in \mathrm{R}^{n},$ $q,q’<0\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi \mathrm{i}\mathrm{n}\mathrm{g}|p|,$ $|p’|,$ $|q|,$ $|q’|\leq C_{1;}$

(iv) $y\mapsto H(x, y,p)$ is nondecreasing.

Lipscmzz $\mathrm{a}\mathrm{n}\alpha \mathrm{u}\underline{<_{\backslash }}p\underline{\backslash }\perp,$ $\mathit{0}\underline{>}\cup$ .

References.
[BD] M. Bardi and I. $\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{u}_{\mathrm{Z}}\mathrm{z}\mathrm{C}\succ \mathrm{D}\mathrm{o}1_{\mathrm{C}}\mathrm{e}\mathrm{t}\mathrm{t}\mathrm{a}$ , Optimal Control and Viscosity Solutions

of Hamiltonian-Jacobi-Bellman Equation, Systems &Control: Foundations &
Applications, Birkh\"auser, Boston, (1997)

[B] G. Barles, Solutions de Viscosit\’e des Equations de Hamilton-Jacobi,
Math\’ematiques&Applications, vo1.17, Springer-Verlag, Paris, (1994)

[BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions of Hamilton-
Jacobi equations with convex Hamiltonians, Commun. in Partial Differential
Equations, 15(1990), 1713-1742

[CGGI] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions
of generalized mean curvature flow equation, J. Differential Geometry, 33(1991),
749-786. (Announcement: Proc. Japan Acad., Ser. A., 65(1989), 207-210)

123



[CGG2] Y.-G. Chen, Y. Giga and S. Goto, Remarks on viscosity solutions for evolution

equations, Proc. Japan Acad., Ser.A., 67(1991), 323-328

[CL] M. G. Crandal and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equa-

tions, TRans. Amer. Math. Soc., 277(1983), 1-42

[CLI] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of

second order partial differential equations, Bull. Amer. Math. Soc., 27(1992),

1-67
[E] L. C. Evans, Partial Differential Equations, Graduate Studies in Math., vo1.19,

Amer. Math. Soc., Providence, (1998)

[ESou] L. C. Evans and P. E. Souganidis, Differential games and representation formulas

for solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33(1984),

773-797
[ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I. J. Differ-

ntial Geometry, 33(1991), 635-681

[G] Y. Giga, A level set method for surface evolution equations, Sugaku Expositions,

10(1997), 217-241 (translated from S\={u}gaku 47 (1995), 321-340)

[GGIS] Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity

preserving properties for singular degenerate parabolic equations on unbounded

domains, Indiana Univ. Math. J., 40(1991), 443-470

[I] H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J., 55

(1987), 369-384
[IS] H. Ish\"u and P. E. Souganidis, Generalized motion of noncompact hypersurfaces

with velocity having arbitrary growth on the curvature tensor, T\^ohoku Math.

J., 47(1995), 227-250

[L] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes

in Math. 69, Pitman, $\mathrm{B}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\cdot \mathrm{L}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{o}\mathrm{n}$-Melbourne, (1982)

124


