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Semicontinuous solutions for Ha'milton-Jacobi equations

with general Hamiltonians

deK - B %ﬁ '%,_. (Yoshikazu Giga)

EWTA- T 4 56 (oto-Hiko Sato)

1. Introduction
We consider the initial value problem for the Hamilton-Jacobi equation of form

ug + H(z,uz,) =0 in R™ % (0,7), (1a)
w(0,2) =up(x), 2€R", (1b)

where u; = Ou/0L and vy = (O, u,--- , 05, u), Op,u = Ou/dx;; co > T > 0is a
fixed number. Our main goal is to find a suitable notion of solution when ug is
discontinuous. The theory of viscosity solutions initiated by Crandall and Lions [CL]
yields the global solvability of the initial value problem by extending the notion of
solutions when ug is continuous (cf. [E, Chap.10], [L], [B]) In fact, if initial data
ug is bounded, uniformly continuous, it is well-known [CL], [L] that the initial value
problem (1a)-(1b) admits a unique global (uniformly) continuous viscosity solutions

when H is enough regular, for example H satisfies the Lipschitz conditions
|H (z,p) — H(z,q)| < Clp—q (2a)
|H(@,p) = Hy,p)| < O+ p)e —yl. (2b)

We only refer to [B], [L] and [CIL] for the basic theofy of viscosity solutions. The

notion of viscosity solution has been extended to semicontinuous functions. This
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is very important to prove the existence of solutions without appealing hard esti-
mates. Such a method is first introduced by [I]. However, if u, is, for example, upper
semicontinuous, a classical semicontinuous viscosity solution may not be unique.

Recently to overcome this inconvenience, Barron and Jensen [BJ] introduced
another notion of viscosity solutions for semicontinuous functions when the Hamil-
tonian H = H(z,p) is concave in p and proved the existence and the uniqueness of
their solution for (1a), (1b) for bounded (from above), upper semicontinuous initial
data ug. Their solution is now called a bilateral solution [BD]. For later development
of the theory as well as other approaches we refer to [BD] and references cited there.
However, their theory is limited for concave H. (In [BJ] H is assumed to be con-
vex but they consider the terminal value problem which is easily transformed to the
initial value problem with concave Hamiltonian by setting T'— ¢ by t.)

In this paper we introduce a new notion of a solution which is unique for a
given initial upper semicontinuous initial data. For (1a), (1b) we consider auxiliary

problem

hy — Py H(x, —g/1Py) =0 in R™* x (0,T), (3a)
"p(oa T, y) = ’lpo(ﬂf, y)) ' (.’1?, y) € R" xR. (3b)

The equation (3a) is called the level set equation for the evolution of the graph of
u of (1a). In fact, if a level set of a solution 1) of (3a) is given as the graph of a
function v = v(t, z), then v must solve (1a). For given upper semicontinuous initial
data ug : R®» — R U {—o00}, shortly uo € USC (R"), we take

1/}0(:177 y) - mln{dISt((m7 y)7 KD)’ 1}7 (4)

where
Ko ={(z,y) e R" X R; y < up(x)}- (5)

We solve (3a), (3b) and set

a(t,z) = sup{y € R; (¢, 2,y) > 0}, (6)



where 1 is the continuous viscosity solution of (3a), (3b). We call @ an L-solution of

(1a), (1b). Such a solution uniquely exists globally in time under suitable condition
on H.

Theorem 1. Assume that the recession function
Hyo(z,p) = gi{g)\H(m,p/A), zeR", pcR" (7)

exists and that H satisfies (2a), (2b). Then there exists a global unique L-solution
for an arbitrary ug € USC (R").

One may relax the assumptions on H (cf. Remark right before references) but in
this paper we shall always assume (2a), (2b) and (7). These assumptions guarantee
that the singularity at ¢, = 0 in (3a) is removable if we restrict ¢ satisfying 1, < 0.
- Moreover, (3a), (3b) admits a unique global solution for any bounded, uniformly

continuous initial data 1o = 9o(,y) which is nonincreasing in y. (The monotonicity

~of the solution v in y is preserved for ¢ > 0.)

2. Comparison and uniqueness

Since a solution of (3a), (3b) enjoys a comparison principle, so does an L-solution
(1a), (1b).

Theorem 2 (Comparison). Let u and v be the L-solution of (1a), (1b) with
initial data ug and vo, respectively, where ug,ve € USC (R"). Ifug < vy on R7,
then u <v on R™ x (0,T).

In the definition of an L-solution the specific form of ¢y given by (4) is not important.

Theorem 3 (Uniqueness).  Assume that 1y is a bounded uniformly continuous
function such that {1)g > 0} = Ky and that y — vo(z,y) is nonincreasing. Let ¢ be
the solution of (3a), (3b). Then

u(t,z) =sup{y € R; ¥(t,z,y) >0}, te(0,T), z € R"
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agrees with the L-solution of (1a), (1b).

The key observation for the proof is that the set {¢p > 0}(= {(t, z,y); ¥, z,y) =
0} depends only on Kj and is independent of the choice of 1p. This is a typical
uniqueness property of a level set equation. It is based on invariance of solution
under the change of the dependent variable as stated below (which is slighﬂy more
general than stated in references [ESou], [ES], [CGG1], [G], [IS] since ¢ need not be

continuous).

Lemma 4 (Invariance).  Assume that ¢ is a subsolution (resp. supersolution)
of (3a). Assume that 0 is upper (resp. lower) semicontinuous and nondecreasing.
Assume that 8 % —oco (resp. 0 # +00). Then the composite function 8 o ¢ is also a

subsolution (resp. supersolution of (3a)).

If {4/ > 0} were a bounded set, a comparison principle for (3a), (3b) and Lemma
4 would yield the uniqueness of {¢ > 0} as in [ES], [CGG1], [G]. However, since
{4 > 0} is unbounded, we actually argue as in [IS] to get the uniqueness of {1 > 0}.

3. Consistency
We shall compare other notion of solutions.

Theorem 5. Let T be the L-solution of (1a), (1b) with ug € USC (R"™). Then u

be a viscosity solution of (1a) provided that T does not take +00.

Sketch of the proof. Let ¢ be the solution of (3a), (3b) with v in (4). By
Lemma 4 the function I~ o4 is a subsolution of (3a), where I~ (o) = 0 for o > 0 and
I~ (¢) = —o0 for o < 0. From this it is easy to see that T is a viscoéity subsolution..

To prove that % is a viscosity supersolution we need to use the fact that y —

1(z,y) is nonincreasing. This implies that the lower semicontinuous envelope (@), of
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u equals
u(t,z) =inf{y € R; (¢,z,y) € { <0}} t€(0,7), z € R™.

Since It o (¢ + 1/m) is a supersolution of (3a) by Lemma 4, we see, by stability as

m — 00, that
oo  for (t,z,y) € int{yp > 0},

Y(t,x,y) = S —
R PR gl
is a subsolution of (3a), where I*(0) = 0 for ¢ <0 and I*(c) = co for ¢ > 0. Thus

u is a supersolution.

Theorem 6. Assume that ug is bounded, uniformly continuous. Then the

bounded, uniformly continuous viscosity solution u of (1a), (1b) is an L-solution.
This follows from Theorem 3 by choosing 1 = ((y—u(t,z))AM)V M for M = sup |ul.

Theorem 7.  Assume that p — H(z,p) is concave. Let T be the L-solution of (3a),
(3b) with uo € USC (R™) and supug < co. Then U is a bilateral viscosity solution

with initial data ug.

For the proof we use the property that the bilateral solution is given as a mono-
tone limit of continuous viscosity solution [BJ]. Thus the proof is reduced to the next

lemma.

Lemma 8. Assume that ug. | ug € USC (R™) with ug. which is Lipschitz in R™.
Assume that uge > uoer + € — €’ for € > €' > 0. Let u. be the solution of (1a), (1b)
with up = uge. Then lim. .o u. is an L-solution of (1a), (1b) (so that it agrees with

T).

The sequence ugc is easily constructed by setting ug. = u§ + ¢ with sup-convolution

ug of Ug.

4. Right accessibility
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It is not clear in what sense the initial value is attained for L-solutions (unless
initial data is continuous.) Since the viscosity solution of (3a), (3b) with ¢ in (4) is
continuous up to ¢ = 0, the set {1/ > 0} is closed in [0,7) x R™ X R so that

> lim u(t, y). 8
uo@) > Tim u(t, ) ®)
Yy—T

However, in general it is not clear whether there is a sequence t, — 0, Yy, — & such
that

uo(z) = Hm U(lm,Ym)- &)

m—00

We call this last property the right accessibility as in [CGG2]. Since @ is upper
semicontinuous in [0, T") x R, the property (9) is equivalent to uo(z) = (@0, 1)xR" )+
(0, z).

We give a simple criterion for right accessibility without mentioning its proof.

Lemma 9. Assume that F € C(RY) is positively homogeneous of degree one.
Let A be a closed convex set in RN. Let w be the L-solution of

wy + F(w,) =0, z€RY, >0, wls=o = wo.

with wo(2) =0, z € A and sup{wg(z); dist (2, A) > é} < 0 for 6 > 0. Then

0 z € A+tW,
< (0 otherwise.

w(t, z) = {

Here

Wo = {z € RY; 115;‘1_1)103 -p— a(p)) <0}, a(p) = —F(-p).
The set W, is often called the Wulff shape with respect to a if a is positive. The
set W, may be empty. For example if F(p) = |p|, then W, = @. Thus if we consider
(1a), (1b)with H(p) = |p| and ug(z) = 0, £ = 0; ug(x) = —oo,  # 0, then the
L-solution u(t,z) = —oo for all t > 0. Thus (9) is not fulfilled.

Theorem 10. If H is homogeneous degree of one, and independent of z, then an
L-solution is right accessible for any ug € USC (R") if and only if W,, # 0.
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Remark 11.  Our results up to §3 can be generalized for more general equation
up + H(z,u,uy) =0,

when H fulfills
(i) He C(R®* x R x R™) and H,, exists;

(ii) There exists a modulus m, that satisfies

lqH (z,y — p/q) — qH(z',y', —p/q)| < ma((jz — | + |y — /) (Ip| + lg| + 1);

(iii) For each C; > 0 there exists a modulus my such that

lgH(z,y —p/q) — ¢ H(z,y, -1 /¢')| < ma(lp— §| + lg — ¢'))

forall z € R", y € R, p,p’ € R", q,¢' < 0 satisfying [p], |p'], lal, || < Cy;
(iv) y = H(z,y,p) is nondecreasing.

A typical example of H satisfying these assumptions is a(z)+/b+ [p| and a is
Lipschitzand 0 < 3 <1, b > 0.

References.

(BD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions
of Hamiltonian-Jacobi-Bellman quiation, Systems & Control: Foundations &
Applications, Birkhauser, Boston, (1997)

[B] G. ‘Barles, Solutions de Viscosité des Equations de Hamilton-Jacobi,
Mathématiques & Applications, vol.17, Springer-Verlag, Paris, (1994)

[BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions of Hamilton-
Jacobi equations with convex Hamiltonians, Commun. in Partial Differential
Equations, 15(1990), 1713-1742

[CGG1] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions

of generalized mean curvature flow equation, J. Differential Geometry, 33(1991),

749-786. (Announcement: Proc. Japan Acad., Ser. A., 65(1989), 207-210)



(CGG2]

[CL]

(CL]

[G]

[GGIS]

(M

[1S]

[L

124

Y.-G. Chen, Y. Giga and S. Goto, Remarks on viscosity solutions for evolution
equations, Proc. Japan Acad., Ser.A., 67(1991), 323-328

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equa-
tions, Trans. Amer. Math. Soc., 277(1983), 1-42

M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of
second order partial differential equations, Bull. Amer. Math. Soc., 27(1992),
1-67 :

L. C. Evans, Partial Differential Equations, Graduate Studies in Math., vol.19,
Amer. Math. Soc., Providence, (1998)

L. C. Evans and P. E. Souganidis, Differential games and representation formulas
for solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33(1984),
T73-797

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I. J. Differ-
ntial Geometry, 33(1991), 635-681

Y. Giga, A level set method for surface evolution equations, Sugaku Expositions,
10(1997), 217-241 (translated from Stgaku 47 (1995), 321-340)

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity
preserving properties for singular degenerate parabolic equations on unbounded
domains, Indiana Univ. Math. J., 40(1991), 443-470

H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J., 55
(1987), 369-384

H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces
with velocity hdving arbitrary growth on the curvature tensor, Téhoku Math.
J., 47(1995), 227-250

P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes
in Math. 69, Pitman, Boston-London-Melbourne, (1982)



