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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
SINGULARLY PERTURBED ODE OF SINE-GORDON TYPE

JRERE AR SHEMOKER  (Tetsutaro Shibata)

1. Introduction and result. This paper is concerned with the perturbed elliptic

Sine-Gordon equation on an interval
—u(t) + Asinu(t) = pf(u(t), tel:=(-T1,T),
u(t) >0, tel, | | (1.1)
u(£T) =0,
where A, > 0 are parameters and 7" > 0 is a constant. The following assumptions
(A.1)-(A.4) are imposed on f:
(A.1) f is locally Lipschitz continuous, odd in u. Furthermore, f(u) > 0 for u > 0.

(A.2) There exist constants C; > 0 and p > 1 such that for u € R
|f(u)] < Cr(L+ [ul?). (1.2)

(A.3) f(u) = o(u) for 0 <u <« 1.

(A.4) There exists a constant 1 < m < p+ 1 such that for u € R
fwu = mPw), (13)

where F(u) = [.' f(s)ds. The equation (1.1) is motivated by the perturbed Sine-Gordon

equation

Ugt = Ugy — sinu + f(u), o<z <m, (1.4)

which was recently studied by Bobenko and Kuksin [B-K]. They studied small amplitude

solutions of nonlinear Klein-Gordon equation which was regarded as a perturbation of

(1.4).
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Invthis paper, regarding A > 0 as a given parameter, and using a variational method,
we study the asymptotic behavior of the solutions uy of (1.1) with prescribed energy as
- A — co. More precisely, we determine the location of interior transition layers of uy as
A — co. We note that‘the solutions w) considered here are not small amplitude solutions.
We explain the variational framework. In order to,obtain solution trios (A, u,u) €
R?% x C?(I) of (1.1), we apply the variational pfoblem (M) subject to the constraint
depending on A:
(M) Minimize
Lw) := %/Im'(t)ﬁdt“/l(i— cos (1)) dt

under the constraint

ue M, = {u € HYI) : K (u) - /1 F(u(z))dz = 2TF(a)} ,

where « > 0 is a fized constant, HJ(I) is the usual real Sobolev space. Then by the
Lagrange multiplier theorem, we obtain solution trios (A, u(A),us) € R3 x M, of (1.1)
(and consefluently uy € C?(I) by a standard regularity theorem) corresponding to the
' problém (M). |

Now we state our theorem.

Theorem. Assume (A.1)-(A.4). Suppose that 2F(a) < F(27). Then:

(1) Jlurlloo < 27 for X > 1.

(2) ux — 27 uniformly on any compact interval in (—ta,lq) a5 A — 0o, where to =

F(a)
F(2r) "

(3) ux — 0 uniformly on any compact interval in I\ [~tq,ts] as X — co.

(4) p(A) =0 as A — co.

2. Proof of Theorem. We know that a solution u of (1.1) satisfies the following

properties:
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(2.1) w is symmetric with respect to the origin, that is, u(t) = u(—t) for ¢ € [0, T].
(2.2) u'(t) <0forte (0,T].
(2.3) ¥/(0) =0, u(0)=|ulc-

Lemma 2.1. Assume that (), u,‘u) ceRy xR x C?(I) satisfies (1.1). Then:

(1) Fortel,
S0/ (07 4+ I (u(2)) 4+ Acosu(t) = 30 (T2 + X = P (fullee) + Acos [ullo. (24)

(2) p>0.

Proof. (1) Multiply the equation in (1.1) by (). Then for ¢ € I, we obtain

{w"(t) + puf (u(t)) — Asinu(t)}u'(t) = 0.

This implies that for t € I,

% {—;—u'(t)2 + pF(u(t)) + /\cosu(t)} =0. (2.5)
Hence, for t € I,
1
§u’ () + wF (u(t)) + A cosu(t) = constant. (2.6)
By putting t = 0,7 in (2.6), we obtain (2.4) by (2.3).
(2) By (2.4), we obtain

PF(Juloe) = g (T)2 + A(1 = cos [ullo) > 0. 2.7)

Since F(||ulleo) > 0 by (A.1), p > 0 follows from (2.7). O

Lét B(\) := inf,ecar, L(u) > 0. By a standard argument of Lagrange multiplier theo-

rem, we can prove the following lemma.

Lemma 2.2. For a fired X > 0, there exists (u(A),ux) € Ry x (M, (N C?(I)) which
satisfies (1.1) and L(uy) = B(N).
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" Lemma 2.8. For A > 1,
| L(uy) < OAZowr (2.8)

Proof. We put

_/\1/21“ +)\1/(2(m+1))’ 0< lt‘ < )\——m/(Z(m—i—l))’

wy(t) = { 0. A—m/@mAD) g < T

For a fixed A > 0, there exists ¢y > 0 such that V\ := cywy € M,. Then by direct
calculation, we easily see that ¢y < C for A > 1. Furthermore,

A~/ (2(m+1)) :
2 m—+2
Adt = QCAAQ(m'H) R

1= 26 |
/\;Vn/(Z(7n+1))

A/(1 —cos Vi (t))dt < 2/\/ 2dt < 4N
I 0

By this, we obtain
B(N) = Luy) < L(Vy) < CAZmiD
This implies (2.8). [
Lemma 2.4. p(\) = o(A) for A > 1.

Proof. By Lemma 2.3, we have

HUI)\H% < C/\(m+2)/(2(m+1))’ (2.10)

/ (1 — cosup (£))dt < CA=m/@m+D). (2.11)
I

Multiply the equation in (1.1) by uy and integrate it over I. Then by (1.3), we obtain

2mTF(a)u(N) = (M) / (s (£))dt < () / (i () yua (£t

T I (2.12)

= |Ju} |2 +)\/u)\(t) sin uy (t)dt.
i ‘

We estimate [} uy (t) sinuy (t)dt. By (2.9), we have

N ool m 1 \
/Iu)\(t) dt < 62- {ﬁF(uA(t))dt+263T} =Cy" = o (2T F(a) +2C3T).
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By this and Hélder’s inequality, we obtain

/qu e (t)dtl = (/I |sin (t)lth> N ( /, U (t)mdt> B

0 (2.13)
= (4 (/I Ismu,\(t)lth) ,
where 1/¢g+1/m = 1. Let 0 < € € 1 be fixed. Then
T o pre/2 ‘
2TF (o) = 2/ F(uy(t))dt > 2] Fluy(t))dt > eF(ux(e/2)).  (2.14)
0 0

By (2.9) and (2.14), we see that ux(¢/2) < C¢ for A > 1. We choose k. € N such that

C. < 2kcm. For 0 < 6 <1 and k € N, we put
Iaks i ={t € 1:2(k—1)m+ 6 <ux(t) <2km — 6}
Then by (2.11), we obtain that as A — oo,

1
< -
.,]J)"k’ﬁl — 1—cosé

(1‘ —cosuy (t))dt — 0. (2.>15)'

I k.6

We choose § > 0 so small that |sinwuy(t)| < ¢e/2 for ¢t € (¢/2,T) \ (Z:‘:l Jxk,6). Then for
A > 1, by (2.15), we obtain |

‘ T €/2
/|sinu,\(t)|th_<_2/ [sinu)\(t)|dt=2/ | iy (£) [t
I 4] 0

+ 2/ | sin uy (¢)]dt
(e/2, T\ 5eq Ja,k,6)

+2/ | sin uy (t)|dt
(e/2,T) (S5 Iak,s)
ke
<e+Te+] ZJ>\7].@,5| < Ce.
k;l
This along with (2.13) implies that

/1 i (£) sim (t)dt1 0 (2.16)

as A — co. By (2.10), (2.12), and (2.16), we obtain our conclusion. [

For 0 < r < |lualleo, let ta, € [0,T] satisfy uy(tr,) = 7, which exists uniquely by
(2.2). Since uy € M, we see that uy(0) = ”UA”oo > o Therefore, there exists a unique

tre €10,T) for 0 < e < 1.
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Lemma 2.5. [u}(T)| — 0 as A — co.

Proof. We assume that there exists §; > 0 and a subsequence of {\} such that

|u\(T')] > 61 and derive a contradiction. We know that if 0 < ¢ < 1, then
(1-€u<sinu for 0<u<e (2.17)

For t € [ta,,T] and A > 1, by (A.3) and Lemma 2.4, we obtain

flua(®) _ 1=eA
TG ITeY (219
Then for ¢ € [ty ,T] and A > 1, by (1.1), (2.17) and (2.18), we obtain
—uy (8) = nN)f(ur () = Asinux ()
< pN)f(ua(t)) = (1 = ) Aua(?) | (2.19)
— f®)
=u ) (s 2D - - 1) <o

We show that ty . — T as A — co. To do this, we assume that there exists a subsequence
of {A} and C5 > 0 such that T'— ¢ . > Cs. By (2.19), we see that |u} ()| > [u} (T)| > 6
for t € [ta,, T]. Then we obtain that for t € [I'— Cs,T' — Cy/2] C [ta,,T) and A > 1,

- : T '
eZuA(t)z/t(—u&(s))dsZél(T—t)Zel = ——>0.

Therefore, [T' — C5,T — C5/2] C Jx,, for A > 1. This contradicts (2.15). Hence
txe = T as A — co. This implies that uy(t) > e for t € I, = [0,7 — 5] C [0,T)

(0 < n < T arbitrary), and so
Ly =Jx1, U{T € I s ux(t) > 27 — €}.
Since F'(u) is increasing for u > 0 by (A.1), this along with (2.15) yields that for A > 1,

2TF(a) = /F(uk(t))dt > 2/ F(ua(t))dt > 2F (21 — e)(T'— 1 — | Ia1.])
I I \Jx 1,
> 2F (21 — ¢)(T — 27).
Since €, 7 > 0 are arbitrary, this contradicts the assumption of Theorem. Thus the proof

is complete. [J
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Lemma 2.6. Let 0 < € < 1 be fized. Furthermore, let 6x, 1= T —txe. Then there

exists \e > 1 and a constant Cg > 0 such that for X > A

dh (T)? < Cre™20reV/ (1=2%, (2.20)

Proof.. By (1.1) and (2.17), for Iy := [tx,e, ], we obtain
W (1) + N Fun () = Asinua(®) = (1 — hua(t)  for 1€ Dne. (2.21)
Since u) (t) <0 in [O,T], we obtain
{u (&) + pAN) furn () — (1 —)dun(®)}up(t) <0 for L€ I
That is,

(1 — €)Auy (2)?

dsy(t) _ d {%u/)\(t)Z + (N F(ua(t)) - 5 } <0 for t € Iy,

T dt

This implies that Sy () is non-increasing on Iy .. Hence,

1—Auy(t)? _ 1 :
( )9 A (1) > Suy (1) for €l

4

%u& (6)* + sV F(ua(®)) =

Then for ¢ € I,

—uh (8) > \/u; (T)2 + (1 — €)hux(t)? — 2u(\)F (ux (£)). (2.22)

Since the inequality

eduy (8)* = 2u(N) F (ua (1)) (2.23)

is équivalent to
F(U)\(t)) < €A
ux(t)? 7 2u(N)’

by (A.3) and Lemma 2.4, we see that (2.23) and (2.24) are valid for t € I and A > 1.

(2.24)

Then by (2.22) and (2.23), we obtain

—d () > \/u'A (T2 +(1— 20 us(t)2  for t € Iy (2.25)
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Therefore, by (2.25)

| —} (t)
One=T—1re= / 1dt < A
Lue  Jnoe V/UA(T)? + (1 —2€)huy (t)?

€ ds .

N /0 VUh (1) + (1 — 26) As? (2.26)
1 ‘6 + /€2 + Xfl .

V(- ze)AIOg X ’

where X? := %QT—E)% Since X — 0 as A — oo by Lemma 2.5, (2.26) implies that
XyereV =290 <3¢ for A > 1. By this, we obtain

UI)\(T)Q < 962(1 . 26)/\6—2%\,5\/ (1—2e)A < 06A6—2§>\,6\/Z1——§)v)\'

This implies (2.20). O

Lemma 2.7. Assume that there erists a subsequence {\;} of {A\} (A\; = co asj — c0)

such that
s loo = 2. | (2.27)
Let 0 < e <1 be fizred. Then
tx;2m—e =t 2n = V1 — 2€by, . — o(1) for Aj > 1. (2.28)

Proof. By (2.27), tx;,2n € [0, 7] exists. Let J;j ¢ := (€, 2x,1x;,2n—¢)- By the inequality
1 —cost < 62/2 for § > 0 and noting that cos(2m — ux, (¢)) = cosuy,(t), we obtain by
(2.4) that for t € J;., |

S0k, ()7 = g, (1) 4 X (1 — cosun, (1)) — ) Pl (1)
< %u;j (T)? + %Aj(zw s, ()2

This implies

—uh, (1) < \/u’)\j (T)2 +A; (2 —uy, (8))2  for t€ J;c. (2.29)
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* By (2.29), we obtain
—uj, (?) 1
t)\j,27r—e —tx 27T 2 / ‘ 2 dt = /
’ Jjse \/E;j (T)2 + A (27 — uy, (1))? 0 \/u;j (T)2 + A;s2

€+ /B3 + ¢

ds

- lo
- \/E g Bg ’
| (2.30)
‘where B? = u, (I')?/A;. By this and (2.20), we obtain
t by om > ] 2
Aj2r—e — U2 Z T og
VA [, DI/ /A
= \/1:\. {log(Ze) —log |uj (1) +3 log)\ }
J
\/_ {1og(2e) — - log(CeAj) + 6x;,61/ (1 26)/\ + - log)\ }

\/(1——26 5)\ e—0

Thus the proof is complete. [l

Proof of Theorem. Flrst we shall prove (1). To do this, we assume (2.27) and derive
a contradiction. We fix 0 < € < 1. Since [ty 2r—e — tr;,e]l = |Jr;,1,¢] — 0 as j — oo by

(2.15), we obtain

T t)\j,Z’lr—E
ATF(a) = 2 / F(ux, ())dt > 2 / F(uy, (£))dt
0 0
= 2F(27T - ‘E)(’T - 6)\j,e + t)\j,er—e - t)\j,e) ) (231)

=20 (21 — €)(T — 6x,,¢) +o(1).
This implies |

F(e)
6)\3‘76 Z (1 - m) T + 0(1) (232)

On the other hand, by Lemma 2.7, we obtain

T 2 t>\j,2ﬂ"—€ - t)\j,QTF + 6}\3',6 Z V (1 - 26)6)\j,€ - O(l) + 6)\]',6'

This implies that for 7 > 1

T

e < Tt 1 + o(1). : (2.33)

‘5.)\1'
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Therefore, for j > 1, by (2.32) and (2.33), we obtain

F(a) +o(1) > V1—2¢ .

F(2m —¢) vV1—-2e+1
By letting j — co and € — 0, we obtain F(a)/F(2r) > 1/2. This contradicts the
assumption of Theorem. Consequently, we find that the assumption (2.27) is false. Thus

the proof of Theorem (1) is complete.
Since Theorem (2) and (3) are easily derived from Theorem (1), we omit the proofs.
Finally, we prove the assertion (4). Let J := [t1,15] C (0,%,) be fixed (t; < t5). We |
choose an érbitrary 0 < e < 1. Note that sinuy(t) < 0 for ¢ € J. Therefore, by the

equation in (1.1) and Lemma 2.1 (2), we see that

~uX () = p(A) f (ua(t)) — Asinux(t) > 0.

Hence —u)\ (¢) is increasing on J. Then

Ce > Jur(tr) — un(ts)] = | f )dt' (ta — t)luh (t1)]

Now, by this and the equation (1.1), for A > 1, we obtain
_ .
Ce/(ta = 1) = (1) = ~uh(t) = [ —(s)ds
- Jo
A 11 t1

= u(A) flux(t))dt — /\/ sin uy (t)dt
0 0

S .

Thus the proof of (4) is complete. [
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