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1. Introduction. Our purpose in this talk is to show the multiple existence
of entire solutions of the problem

(P) | —Au+u = g(z,u), uwe HY(RN)

where N > 2 and g : RN x R — R is a continuous function with superlinear
growth and g(z,0) = 0 on RY.

We fix p such that p > 1 when N =2 and 1 < p < (N +2)/(N — 2) when
N > 3. It is well known that the problem

(P‘g) ~Au+u=|ulPru, ue HY?(RY)

has a unique positive solution u up to translation. The positive solution
u is characterized as the ground state soluiton. That is if we consider a
functional I defined by
1 1
I(u):/ = | Vu |? de — —— | u P! dz for u € H*(RY),
Ry 2 pP+1JRy

then ¢ = I(u) is the minimal positive critical level of I. The existence of
positive entire solution of problem

{ - AMutu=Qz)|ulPu, zeRY

(Po) u e HY(RV)
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has been studied by several authors. Here (J(x) satisfies Q(z) — 1 as |
z |— oo. In case that Q(z) > 1 in RV, the existence of a solution of Pg
was established by Lions using the concentrate compactness method. Lions’s
result was improved by Zhu and Cao. The case that Q(z) | ¢ |P~! ¢ is replaced
by a more general function g(x,t), the existence of positive solutions is proved
by the author .

To attack this kind of probblem, one can take the advantage of varia-
tional structure of problem Pq . That is the solutions of problem (Pgq) is
characterized as critical points of functional Ig defined by

1

IQ(U)_—./R —|Vu|2das—p+1
N

Qz) | u Pt dx, uwe H'Y(RYM).

As in case that Q(z) = 1, we can obtain a positive solution as a ground state
solution. In this talk , we consider the case that g € C?(RY, R) satisfies the
following conditions:

(g1) There exists 0 < § < 1/2 such that

¢
Og(x,t)t > G(z,t) = / g(xz,s)ds >0 for all z € RY and ¢ > 0;
0

(2) lim g(z, )/ | ¢ [~ ¢t =1
el 00"
uniformly on closed bounded subsets of (0, c0)

(g3) there exists p > 0 such that

| gla, )= |t P t|<p|t Pt for all z € RN and t € R;

We can now state our main result.

Theorem 1. Assume that (gl) and (g2) hold. Then there exists a positive
number pg such that if (g3) hold with 0 < p < pg, then problem (P) possesses
at least two nontrivial solutions.
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We next impose the following conditions on g.
(g4) 9(z,t) = —g(z, —1) for all z € RN and t € R.

(g5) there exist positive numbers a, C such that a < 1 and

g(z,t)/ | t|Pt > 1+ Ce o=l for all z € RN and t # 0.

Theorem 2 . Assume that (g1)(g2), (94)and(g5) hold. Then there exists a
positive number pg such that if (g2) hold with 0 < p < pg, then problem (P)
possesses at least two pairs of nontrivial solutions

To get a sign changing solution of (P), we impose the following condition
instead of (gb) .

(g5") there exist positive numbers a, C' such that ¢ < 1 and

glz,t)/ |t Pt>1+C |z |V for all z € RN and t # 0.

Theorem 3. Assume that (g1)(g2), (94) and (g5’) hold. Then there exists a
positive number pg such that if (g2) hold with 0 < p < pg, then problem (P)
possesses at least two pairs of nontrivial solutions. Moreover (P) possesses
at least one pair of sign changing solutions.

2. Preliminaries .

We put H = H'(R"Y) and
|z |I?=| V2 |3+ | 2|3 for z € H.

For each a € R and each functional F' : H — R, we denote by I, the set
F, ={v:e X : F(v) < a}. We call a real number d a critical value of a
functional F if there exists a sequence {v,} C H such that lim, . F(v,) = d
and limp 00 || £”(vn) [|= 0.

For 2 € H, D C H and z € RN, we denote by z, and Dy,

zz(y) = z(y — @) for y € RY and D, = {2 : z € D}.
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For each z € RY, the function u, is a solution of I with I(uy) = c. It is also

known that there exist no critical value of I in (0, 2c)\{c}.

We define a functional J*° on H'(RY) by

v(x)
T (v) = /R %u Vo 2+ | v |?)ds — /R /O o(@, ) dtdzda

for v e HY(RN). We put

M={em{bvlt= [ vt
Noting that

v Pz,

c=I(u) =min{I(v) :|| v ||*= /

R

we have that
I(v) >c on M.

It is also easy to see that

Mn{\w:ve H\{0},A >0} is a unique point,
I(v) = max{I(A\v) : A > 0} for each v e M

and each critical point of I is contained in M (cf. [12]).

Let ¢g > 0 with 2¢p < c.
The following results is well known.

(2.1)

(2.2)

Lemma 2.1. For each € > 0 with € < ¢, there exists V. C M such that

Ic—l—emM:‘/eU_x/Ga ‘/em_vveng-

Here we put

1
Xyjp={mwweMp> ‘2‘}
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Then M C intX;/;. Let Vo, V1 be bounded neighborhoods of V, (C M N
Iote,) such that |

Vo CintVy C Xy1/o and Vi C I eo, ¢+ 2€0]
Then we have that
§o = inf{|| I(v) ||: v e Vi\Vo} > 0.

We next define a functional J. a(z) : H — [0, 1] be a continuous function

such that
o(z) = 1 forzeVf
T 10 forzeV

and we put
J(v) = a()I(v) + (1 — a(z))J*(v) for all v € H.
Then from the definition, J = J* on Vp and J = I on Vf.
Here we note that

lir% | I(v) — J*(v) |= lir% | VI(v) — VJ®(v) ||= 0 uniformly on V3. (2.5)
p— p—

Then there exists pg > 0 such that if p < po,
| I(v) —J(v) |<¢/2 onVy

and
| VJ°(v) = VI(v) ||< 60/2 on Vi.

Therefore we have that
| VJ(v) ||> 60/2 for all v € V1\Vp.
This implies that if p < pg,
| VJ() ||< 80/2 and 2¢ > J(v) > 0 implies that v € Vo

and therefore J(v) = J%°(v) . This implies that if we find a critical point v
of J with 2¢ > J(v) > 0, then v is a critical point of J* in V.
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3. Homology groups . Our purpose in this section is to calculate ho-
mology groups Hy(Icye, l.—c) for 0 < e < ¢+ 2¢y. To calculate the homology
groups Hy(Ioye, Io—c), we will find subsets K and U of Vj satisfying

(a) K C intU;

(b) +Ko={du, :z e RN} c K
for some r > 0, where 0K denotes the boundary of K in H;

(c) there exists €; > 0 such that I./, is a strong deformation retract of
Ic+€\K for 0 <e< €1.

For U and K satisfying (a), (b) and (c) , we have the following lemma.

Lemma 3.1. Suppose that U and K satisfies (a), (b) and (c). Then for
each 0 < € < €4,

Hy(Iete; Lome) = Hi(U N Ieqe, UNK) N Leye)

We will define subsets U and K of Vj satisfying (a), (b) and (c).

Lemma 3.3. For each 0 < € < ¢+ 2¢p,

e = {up U{~u}

where IM is the restriction of I on M.

We put U = IM,. and K = IM_ . Then it follows that

We next define U and K. We fix positive numbers r7, 75 with 7] > 5.
We assume that ] is so small that

c/2 < I(v+ Av) forallve U and A € R with |\ |<r]. (3.1)
By (3.4) and Lemma 3.2, there exists € > 0 such that

I(v+ ) < I(v) — €. forve U and ry <|A|<r] (3.2)



74

Then by choosing r3” small enough , we have that sup{I(v) : v € U} < c+€/2.
Then by (3.2) that |

Ilv+ M) <c forallv e U and 75 <| A |[< 7] (3.3)
It also follows from Lemma 3.2 that
mapping t — I(v + tv) is decreasing on [0, 1] for v € U. (3.4)
Now we set ,
U={v+ w:velU, A<}, K={v+ :vecK,|\<r;}

Then it is obvious that U and K satisfies (a) and (b). Moreover we have

Lemma 3.4. There exists €; > 0 such that for each 0 < € < €1, I/ Is a
strong deformation retract of I.4 \K

For each v € U. we put
v+ A|<ry} fvekK

U, ={v+I:,| A<} Kv:{{¢} ifved K.

Then

Lemma 3.6. Let 0 < € < ¢g. Then for each v € (7,
(U\Ky) N Tope v+ {—rjv,rTo} =2 8% 2 {—1,1}. (3.5)

Lemma 3.7. For 0 < ¢ < min{ey, €p},
Ho(UN Lye, UNK) NI ye) = Ho(S° x D, 8% x S @ H,(S° x D', 5% x S9).
Proof. Let 0 < € < min{ey, ¢ }. By Lemma 3.5 and the definition , we have

that _
UNIpe 2U2U x D= {u} x D'U{-u} x D'

On the other hand, by Lemma 3.6, we have that
(UNE) N Iope 2 U x 8% = {u} x SOU{~u} x S°

Then the assertion follows. |

By Lemma 2.1 and Lemma 3.7, we have
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Proposition 3.8. Foreach0<e<c

2 forn=1

Hy(Ietes Ie—e) = {0 otherwise .-

4. Proofs of Theorem 1. In this section, we calculate the homology
groups for J and prove Theorem 1. From (2.17), . we have that there exists
p2 > 0 such that for 0 < p < p; sufficiently small, that

Ho(Iope, Ioj2) = Hu(Jore, Jop)  for 0 < 2e < c. (4.1)

We will prove Theorem 1 by contradiction. That is we assume that J pos-
sesses no critical point different from O.

Here we state a direct consequence from Lions’s concentrate compact-
ness lemma.

Now assume that p < pg and we define a manifold M by

v(z)
M = {v e H\{0} || v 2= /R ) /0 o(z, t)dtdz)

It is easy to check that for each v € H\{0} , the set {\v : A > 0} intersect to
M at exactly one point. For each z € R, we define a positive number o ,
and a negative number a_ , by

ay glUgy € M and a_ gu, € M.
From condition (g3) , we have that

Hm o 5 = %1. (4.2)

|z|—o0
For r > 0, we put
Ky ={otgus :z€RY, |z |>r}.

Then ,
lim sup{J(v):ve Ky .} =c. (4.3)

700
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Lemma 4.2. For each € > 0 with 2¢ < ¢, there exists r. > 0 and

Jc+6 K‘i’;"'e U K"‘a""e = SN_l U SN—I'

Now we put lAC/:JC/\;_‘€ andﬁ:Jg\_fZG.
Now we set
U={v+ :vel | <} K={v+w:vel,w|X|<r;}.

Then by a parallel argument as in the proof of Lemma 2.5, we can see that
there exists € > 0 such that J. /s is a strong deformation retract of Jeotete \K
for each 0 < € < €;. That is we have

H*(Jc+e> Jc/2) = H*(Ll N Jegtetes (L[\]C) N J60+c+6) (4-4)
for each 0 < € < €.

We also have

Lemma 4.3. For each 0 < € < €,
UN Jegqetre EUE K.
The proof of Lemma 4.5 is the same as that of Lemma 2.5. Then we

omit the proof. As in section 2, we put

I A<y} ifvek

U, ={v+ v A< ) KU:{{¢} ok

for each v € U. Then by the same argument as in section 2, we have

Lemma 4.4. Let 0 < € < €3. Then for each v € ﬁ,

(UNC) N e v+ {—rTv,r{ v} = SO, (4.5)

Then by using Lemma 4.5 and Lemma 4.6, we obtain
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Lemma 4.7. For each 0 < € < min{€p, € },

H,(UN Jepe, UNK) N Tote)
= H, (SN ! x D, SN=1 x §% @ H,(SN-1 x D!, §N-1 x §9).

Thus we obtain by (4.1) and Lemma 4.7 that

Proposition 4.8.

2 form=1lorn=N
Hn Jc €5 Jc = { .
(Jet / 2) 0 otherwise .

We can now finish the proof of Theorem.

Proof of Theorem 1. By (4.5) and (4.0) , we have that if p < pg, then
for each 0 < e < ¢,

H*<Jc+ea Jc/z) = H*<Ic+ea Ic/2> = H*(IC+E7 Ic-—e)- (46)
But we can see from Proposition 3.8 and Proposition 4.8 that the equality

does not holds. This is a contradiction. Thus we obtain that there exists at
least two solutions of (P). |



