Multiple Existence of Entire Solutions for Semilinear Elliptic problems on \mathbb{R}^N

Norimichi Hirano

Department of Mathematics
Faculty of Engineering
Yokohama National University
Tokiwadai, Hodogaya-ku, Yokohama
Japan

1. Introduction. Our purpose in this talk is to show the multiple existence of entire solutions of the problem

(P)
$$-\Delta u + u = g(x, u), \quad u \in H^1(\mathbb{R}^N)$$

where $N \ge 2$ and $g: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a continuous function with superlinear growth and g(x,0) = 0 on \mathbb{R}^N .

We fix p such that p > 1 when N = 2 and $1 when <math>N \ge 3$. It is well known that the problem

(P₀)
$$-\Delta u + u = |u|^{p-1} u, \quad u \in H^{1,2}(\mathbb{R}^N)$$

has a unique positive solution u up to translation. The positive solution u is characterized as **the ground state solution**. That is if we consider a functional I defined by

$$I(u) = \int_{R_N} \frac{1}{2} |\nabla u|^2 dx - \frac{1}{p+1} \int_{R_N} |u|^{p+1} dx \qquad \text{for } u \in H^1(\mathbb{R}^N),$$

then c = I(u) is the minimal positive critical level of I. The existence of positive entire solution of problem

(P_Q)
$$\begin{cases} -\Delta u + u = Q(x) \mid u \mid^{p-1} u, & x \in \mathbb{R}^{N} \\ u \in H^{1}(\mathbb{R}^{N}) \end{cases}$$

has been studied by several authors. Here Q(x) satisfies $Q(x) \to 1$ as $|x| \to \infty$. In case that $Q(x) \ge 1$ in R^N , the existence of a solution of P_Q was established by Lions using the concentrate compactness method. Lions's result was improved by Zhu and Cao. The case that $Q(x) \mid t \mid^{p-1} t$ is replaced by a more general function g(x,t), the existence of positive solutions is proved by the author.

To attack this kind of problem, one can take the advantage of variational structure of problem P_Q . That is the solutions of problem (P_Q) is characterized as critical points of functional I_Q defined by

$$I_Q(u) = \int_{R_N} \frac{1}{2} |\nabla u|^2 dx - \frac{1}{p+1} \int_{R_N} Q(x) |u|^{p+1} dx, \quad u \in H^1(\mathbb{R}^N).$$

As in case that $Q(x) \equiv 1$, we can obtain a positive solution as a ground state solution. In this talk, we consider the case that $g \in C^2(\mathbb{R}^N, \mathbb{R})$ satisfies the following conditions:

(g1) There exists $0 < \theta < 1/2$ such that

$$\theta g(x,t)t \ge G(x,t) = \int_0^t g(x,s)ds > 0$$
 for all $x \in \mathbb{R}^N$ and $t > 0$;

(g2)
$$\lim_{|x|\to\infty} g(x,t)/|t|^{p-1}t = 1$$
 uniformly on closed bounded subsets of $(0,\infty)$

(g3) there exists $\rho > 0$ such that

$$\mid g(x,t)-\mid t\mid^{p-1}t\mid\leq\rho\mid t\mid^{p-1}t\qquad \text{ for all }x\in R^N \text{ and }t\in R;$$

We can now state our main result.

Theorem 1. Assume that (g1) and (g2) hold. Then there exists a positive number ρ_0 such that if (g3) hold with $0 < \rho < \rho_0$, then problem (P) possesses at least two nontrivial solutions.

We next impose the following conditions on g.

(g4)
$$g(x,t) = -g(x,-t)$$
 for all $x \in \mathbb{R}^N$ and $t \in \mathbb{R}$.

(g5) there exist positive numbers a, C such that a < 1 and $g(x,t)/|t|^p t \ge 1 + Ce^{-a|x|} \quad \text{for all } x \in \mathbb{R}^N \text{ and } t \ne 0.$

Theorem 2. Assume that (g1)(g2), (g4) and (g5) hold. Then there exists a positive number ρ_0 such that if (g2) hold with $0 < \rho < \rho_0$, then problem (P) possesses at least two pairs of nontrivial solutions

To get a sign changing solution of (P), we impose the following condition instead of (g5) .

(g5') there exist positive numbers a, C such that a < 1 and $g(x,t)/\mid t\mid^p t \ge 1 + C\mid x\mid^N \quad \text{for all } x \in R^N \text{ and } t \ne 0.$

Theorem 3. Assume that (g1)(g2), (g4) and (g5') hold. Then there exists a positive number ρ_0 such that if (g2) hold with $0 < \rho < \rho_0$, then problem (P) possesses at least two pairs of nontrivial solutions. Moreover (P) possesses at least one pair of sign changing solutions.

2. Preliminaries.

We put
$$H = H^1(R^N)$$
 and $||z||^2 = |\nabla z|_2^2 + |z|_2^2$ for $z \in H$.

For each $a \in R$ and each functional $F: H \to R$, we denote by F_a the set $F_a = \{v : \in X : F(v) \leq a\}$. We call a real number d a critical value of a functional F if there exists a sequence $\{v_n\} \subset H$ such that $\lim_{n \to \infty} F(v_n) = d$ and $\lim_{n \to \infty} \|F'(v_n)\| = 0$.

For $z \in H$, $D \subset H$ and $x \in \mathbb{R}^N$, we denote by z_x and D_x ,

$$z_x(y) = z(y - x)$$
 for $y \in \mathbb{R}^N$ and $D_x = \{z_x : z \in D\}.$

For each $x \in \mathbb{R}^N$, the function u_x is a solution of I with $I(u_x) = c$. It is also known that there exist no critical value of I in $(0,2c)\setminus\{c\}$.

We define a functional J^{∞} on $H^1(\mathbb{R}^N)$ by

$$J^{\infty}(v) = \int_{R_N} \frac{1}{2} (|\nabla v|^2 + |v|^2) dx - \int_{R_N} \int_0^{v(x)} g(x, t) dt dx dx$$

for $v \in H^1(\mathbb{R}^N)$. We put

$$M = \{ v \in H \setminus \{0\} : ||v||^2 = \int_{R^N} |v|^{p+1} \}$$

Noting that

$$c = I(u) = \min\{I(v) : ||v||^2 = \int_{\mathbb{R}^N} |v|^{p+1} dx\},$$
 (2.1)

we have that

$$I(v) \ge c \quad \text{on } M.$$
 (2.2)

It is also easy to see that

$$M \cap \{\lambda v : v \in H \setminus \{0\}, \lambda \ge 0\}$$
 is a unique point, (2.3)

$$I(v) = \max\{I(\lambda v) : \lambda \ge 0\} \qquad \text{for each } v \in M$$
 (2.4)

and each critical point of I is contained in M(cf. [12]).

Let $\epsilon_0 > 0$ with $2\epsilon_0 < c$.

The following results is well known.

Lemma 2.1. For each $\epsilon > 0$ with $\epsilon < c$, there exists $V_{\epsilon} \subset M$ such that

$$I_{c+\epsilon} \cap M = V_{\epsilon} \cup -V_{\epsilon}, \quad V_{\epsilon} \cap -V_{\epsilon} = \phi.$$

Here we put

$$X_{1/2} = \{\mu v \in M, \mu \geq \frac{1}{2}\}$$

Then $M \subset int X_{1/2}$. Let V_0, V_1 be bounded neighborhoods of $V_{\epsilon_0} (\subset M \cap I_{c+\epsilon_0})$ such that

$$V_0 \subset int V_1 \subset X_{1/2}$$
 and $V_1 \subset I^{-1}[\epsilon_0, c + 2\epsilon_0]$

Then we have that

$$\delta_0 = \inf\{ || I(v) || : v \in V_1 \setminus V_0 \} > 0.$$

We next define a functional J. $\alpha(x):H\to [0,1]$ be a continuous function such that

$$\alpha(x) = \begin{cases} 1 & \text{for } x \in V_1^c \\ 0 & \text{for } x \in V_0 \end{cases}$$

and we put

$$J(v) = \alpha(v)I(v) + (1 - \alpha(x))J^{\infty}(v) \qquad \text{for all } v \in H.$$

Then from the definition, $J \equiv J^{\infty}$ on V_0 and $J \equiv I$ on V_1^c .

Here we note that

$$\lim_{\rho \to 0} |I(v) - J^{\infty}(v)| = \lim_{\rho \to 0} ||\nabla I(v) - \nabla J^{\infty}(v)|| = 0 \text{ uniformly on } V_1. \quad (2.5)$$

Then there exists $\rho_0 > 0$ such that if $\rho \leq \rho_0$,

$$\mid I(v) - J(v) \mid < c/2$$
 on V_1

and

$$\|\nabla J^{\infty}(v) - \nabla I(v)\| < \delta_0/2$$
 on V_1 .

Therefore we have that

$$\|\nabla J(v)\| > \delta_0/2$$
 for all $v \in V_1 \setminus V_0$.

This implies that if $\rho \leq \rho_0$,

$$\|\nabla J(v)\| < \delta_0/2 \text{ and } 2c > J(v) > 0 \text{ implies that } v \in V_0$$

and therefore $J(v) = J^{\infty}(v)$. This implies that if we find a critical point v of J with 2c > J(v) > 0, then v is a critical point of J^{∞} in V_0 .

3. Homology groups. Our purpose in this section is to calculate homology groups $H_*(I_{c+\epsilon}, I_{c-\epsilon})$ for $0 < \epsilon < c + 2\epsilon_0$. To calculate the homology groups $H_*(I_{c+\epsilon}, I_{c-\epsilon})$, we will find subsets K and U of V_0 satisfying

(a)
$$K \subset \operatorname{int} U$$
;

$$\pm K_0 = \{ \pm u_x : x \in \mathbb{R}^N \} \subset K$$

for some r > 0, where ∂K denotes the boundary of K in H;

(c) there exists $\epsilon_1 > 0$ such that $I_{c/2}$ is a strong deformation retract of $I_{c+\epsilon} \setminus K$ for $0 < \epsilon < \epsilon_1$.

For U and K satisfying (a), (b) and (c), we have the following lemma.

Lemma 3.1. Suppose that U and K satisfies (a), (b) and (c). Then for each $0 < \epsilon < \epsilon_1$,

$$H_*(I_{c+\epsilon}, I_{c-\epsilon}) = H_*(U \cap I_{c+\epsilon}, (U \setminus K) \cap I_{c+\epsilon})$$

We will define subsets U and K of V_0 satisfying (a), (b) and (c).

Lemma 3.3. For each $0 < \epsilon < c + 2\epsilon_0$,

$$I_{c+\epsilon}^M \cong \{u\} \cup \{-u\}$$

where I^M is the restriction of I on M.

We put $\widetilde{U}=I^M_{c+2\epsilon_0}$ and $\widetilde{K}=I^M_{c+\epsilon_0}$. Then it follows that

We next define U and K. We fix positive numbers r_1^-, r_2^- with $r_1^- > r_2^-$. We assume that r_1^- is so small that

$$c/2 < I(v + \lambda v)$$
 for all $v \in \widetilde{U}$ and $\lambda \in R$ with $|\lambda| \le r_1^-$. (3.1)

By (3.4) and Lemma 3.2, there exists $\tilde{\epsilon} > 0$ such that

$$I(v + \lambda v) < I(v) - \widetilde{\epsilon}.$$
 for $v \in \widetilde{U}$ and $r_2^- \le |\lambda| \le r_1^-$ (3.2)

Then by choosing r_2^+ small enough , we have that $\sup\{I(v):v\in\widetilde{U}\}< c+\widetilde{\epsilon}/2.$ Then by (3.2) that

$$I(v + \lambda v) < c$$
 for all $v \in \widetilde{U}$ and $r_2^- \le |\lambda| \le r_1^-$. (3.3)

It also follows from Lemma 3.2 that

mapping
$$t \to I(v + tv)$$
 is decreasing on $[0, 1]$ for $v \in \widetilde{U}$. (3.4)

Now we set

$$U = \{v + \lambda v : v \in \widetilde{U}, \mid \lambda \mid \leq r_1^-\}, \quad K = \{v + \lambda v : v \in \widetilde{K}, \mid \lambda \mid \leq r_2^-\}.$$

Then it is obvious that U and K satisfies (a) and (b). Moreover we have

Lemma 3.4. There exists $\epsilon_1 > 0$ such that for each $0 < \epsilon < \epsilon_1$, $I_{c/2}$ is a strong deformation retract of $I_{c+\epsilon} \setminus K$

For each $v \in \widetilde{U}$, we put

$$U_v = \{v + \lambda v :, |\lambda| \le r_1^-\}, \quad K_v = \begin{cases} \{v + \lambda v : |\lambda| \le r_2^-\} & \text{if } v \in \widetilde{K} \\ \{\phi\} & \text{if } v \notin \widetilde{K}. \end{cases}$$

Then

Lemma 3.6. Let $0 < \epsilon < \epsilon_0$. Then for each $v \in \widetilde{U}$,

$$(U_v \setminus K_v) \cap I_{c+\epsilon} \cong v + \{-r_1^- v, r_1^- v\} \cong S^0 \cong \{-1, 1\}.$$
 (3.5)

Lemma 3.7. For $0 < \epsilon < \min\{\epsilon_1, \epsilon_0\}$,

$$H_*(U \cap I_{c+\epsilon}, (U \setminus K) \cap I_{c+\epsilon}) = H_*(S^0 \times D^1, S^0 \times S^0) \oplus H_*(S^0 \times D^1, S^0 \times S^0).$$

Proof. Let $0 < \epsilon < \min\{\epsilon_1, \epsilon_0\}$. By Lemma 3.5 and the definition, we have that

$$U \cap I_{c+\epsilon} \cong U \cong \widetilde{U} \times D^1 \cong \{u\} \times D^1 \cup \{-u\} \times D^1$$

On the other hand, by Lemma 3.6, we have that

$$(U \backslash K) \cap I_{c+\epsilon} \cong \widetilde{U} \times S^0 \cong \{u\} \times S^0 \cup \{-u\} \times S^0$$

Then the assertion follows.

By Lemma 2.1 and Lemma 3.7, we have

Proposition 3.8. For each $0 < \epsilon < c$

$$H_n(I_{c+\epsilon}, I_{c-\epsilon}) = \begin{cases} 2 & \text{for } n = 1\\ 0 & \text{otherwise} \end{cases}$$

4. Proofs of Theorem 1. In this section, we calculate the homology groups for J and prove Theorem 1. From (2.1?), we have that there exists $\rho_2 > 0$ such that for $0 < \rho < \rho_1$ sufficiently small, that

$$H_*(I_{c+\epsilon}, I_{c/2}) \cong H_*(J_{c+\epsilon}, J_{c/2})$$
 for $0 < 2\epsilon < c$. (4.1)

We will prove Theorem 1 by contradiction. That is we assume that J possesses no critical point different from 0.

Here we state a direct consequence from Lions's concentrate compactness lemma.

Now assume that $\rho < \rho_0$ and we define a manifold \mathcal{M} by

$$\mathcal{M} = \{ v \in H \setminus \{0\} : ||v||^2 = \int_{R^N} \int_0^{v(x)} g(x, t) dt dx \}$$

It is easy to check that for each $v \in H \setminus \{0\}$, the set $\{\lambda v : \lambda \geq 0\}$ intersect to \mathcal{M} at exactly one point. For each $x \in R$, we define a positive number $\alpha_{+,x}$ and a negative number $\alpha_{-,x}$ by

$$\alpha_{+,x}u_x \in \mathcal{M}$$
 and $\alpha_{-,x}u_x \in \mathcal{M}$.

From condition (g3), we have that

$$\lim_{|x| \to \infty} \alpha_{\pm,x} = \pm 1. \tag{4.2}$$

For r > 0, we put

$$K_{\pm,r} = \{ \alpha_{\pm,x} u_x : x \in \mathbb{R}^N, |x| \ge r \}.$$

Then

$$\lim_{r \to \infty} \sup \{ J(v) : v \in K_{\pm,r} \} = c. \tag{4.3}$$

Lemma 4.2. For each $\epsilon > 0$ with $2\epsilon < c$, there exists $r_{\epsilon} > 0$ and

$$J_{c+\epsilon}^{\mathcal{M}} \cong K_{+,r_{\epsilon}} \cup K_{-,r_{\epsilon}} \cong S^{N-1} \cup S^{N-1}.$$

Now we put $\widetilde{\mathcal{K}} = J_{c+\epsilon}^{\mathcal{M}}$ and $\widetilde{\mathcal{U}} = J_{c+2\epsilon}^{\mathcal{M}}$.

Now we set

$$\mathcal{U} = \{v + \lambda v : v \in \widetilde{\mathcal{U}}, |\lambda| \le r_1^-\}, \quad \mathcal{K} = \{v + w : v \in \widetilde{\mathcal{U}}, w \mid \lambda \mid \le r_2^-\}.$$

Then by a parallel argument as in the proof of Lemma 2.5, we can see that there exists $\bar{\epsilon}_1 > 0$ such that $J_{c/2}$ is a strong deformation retract of $J_{c_0+c+\epsilon} \setminus \mathcal{K}$ for each $0 < \epsilon < \bar{\epsilon}_1$. That is we have

$$H_*(J_{c+\epsilon}, J_{c/2}) = H_*(\mathcal{U} \cap J_{c_0+c+\epsilon}, (\mathcal{U} \setminus \mathcal{K}) \cap J_{c_0+c+\epsilon})$$
(4.4)

for each $0 < \epsilon < \overline{\epsilon}_1$.

We also have

Lemma 4.3. For each $0 < \epsilon < \overline{\epsilon}_0$,

$$\mathcal{U} \cap J_{c_0+c+\epsilon} \cong \mathcal{U} \cong K_0.$$

The proof of Lemma 4.5 is the same as that of Lemma 2.5. Then we omit the proof. As in section 2, we put

$$\mathcal{U}_{v} = \{ v + \lambda v : | \lambda | \leq r_{1}^{-} \}, \quad \mathcal{K}_{v} = \begin{cases} \{ v + \lambda v : | \lambda | \leq r_{2}^{-} \} & \text{if } v \in \widetilde{\mathcal{K}} \\ \{ \phi \} & \text{if } v \notin \widetilde{\mathcal{K}}. \end{cases}$$

for each $v \in \widetilde{U}$. Then by the same argument as in section 2, we have

Lemma 4.4. Let $0 < \epsilon < \overline{\epsilon}_0$. Then for each $v \in \widetilde{\mathcal{U}}$,

$$(\mathcal{U}_v \setminus \mathcal{K}_v) \cap I_{c+\epsilon} \cong v + \{-r_1^- v, r_1^- v\} \cong S^0.$$

$$(4.5)$$

Then by using Lemma 4.5 and Lemma 4.6, we obtain

Lemma 4.7. For each $0 < \epsilon < \min\{\overline{\epsilon}_0, \overline{\epsilon}_1\}$,

$$H_*(\mathcal{U} \cap J_{c+\epsilon}, (\mathcal{U} \setminus \mathcal{K}) \cap J_{c+\epsilon})$$

$$= H_*(S^{N-1} \times D^1, S^{N-1} \times S^0) \oplus H_*(S^{N-1} \times D^1, S^{N-1} \times S^0).$$

Thus we obtain by (4.1) and Lemma 4.7 that

Proposition 4.8.

$$H_n(J_{c+\epsilon}, J_{c/2}) = \begin{cases} 2 & \text{for } n = 1 \text{ or } n = N \\ 0 & \text{otherwise} \end{cases}$$

We can now finish the proof of Theorem.

Proof of Theorem 1. By (4.5) and (4.0), we have that if $\rho \leq \rho_0$, then for each $0 < \epsilon < c$,

$$H_*(J_{c+\epsilon}, J_{c/2}) \cong H_*(I_{c+\epsilon}, I_{c/2}) \cong H_*(I_{c+\epsilon}, I_{c-\epsilon}).$$
 (4.6)

But we can see from Proposition 3.8 and Proposition 4.8 that the equality does not holds. This is a contradiction. Thus we obtain that there exists at least two solutions of (P).