goooboooobgon
11140 19990 67-73 67

Approximation of global optimal values of nonconvex
programs using Successive Convex Relaxation Method
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1 Introduction

The computation of the global optima of nonconvex programs is a challenging issue
both from the theoretical and practical aspects. Since 1998. Kojima and Tuncel have
been proposing a new concept called Successive Convex Relaxation Method (SCRMI)
which allows to conceptually determine the global optima of Quadratic Optimization
Problems (QOP) [5, 6]. Recently, Kojima, Matsumoto and Shida [4] observed that using

~ an arithmetic transformation, the SCRM can also be applied to nonconvex programs.
Let us consider an optimization problem of the form:

max clz (1)
st. zeF={xecR":g(z)<0}

where g : IR" — IR™. The following condition is required for this problem.
Condition 1.1

(a).g € C* (or more weakly, g is peri-convez [{]);

(b) F is bounded. |

We observe that (1) includes a large class of smooth nonlinear nonconvex programs.
as well as problems with integer constraints (imposing restriction like z(r —=1) =0or
sin(mzx) = 0).

This short note gives preliminary computational results of the SCRM which provides
the global optimum value of (1), or at least an upper bound of this value. We chose some
test problems from the literature [3, 1, 2] with small instances as a first experiment. With
this study, the authors hope to gain some insights to develop more suitable algorithms
for larger instances of nonlinear programs.

2 Successive Convex Relaxation Method

2.1 Transforming Nonlinear Programs into Quadratic Optimiza-
~ tion Problems

Consider problem (1), and let us apply the transformation proposed in [4]. We will
use the following notation. I = {1,2,---,m}, C; = {i € I : g;(-) is convex in F}, and
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N; = I\C;. For each i € Ny, let o; > 0 be such that g;(-) + oil| - ||* becomes convex
at least in F. This o; always exists under Condition 1.1 (a). In practical matters, it is
not easy to obtain o; for general nonconvex functions g;’s. Also, the magnitude of o;,
in some sense, gives the nonconvexity of the function since it is the upper bound of the
Euclidean norm of the Hessian matrix V2g;(-) in the prescribed feasible region.

Adding an artificial variable zq in (1), we can rewrite it as:

max clx
st.  gi(z) <0, i€ Cf (2)
gi(x) + oi(||z]|* —xo) <0, i€ Ny

—||z|> + zo < 0.

It is not difficult to see that the optimal value of (2) is always smaller then the
optimal value of (1). In fact, it can be shown that solving (2), we obtain the global
optimal solution of (1) (Theorem 2.1 [4]). If we call now C; C IR x IR" the set defined
bv the restrictions involving g;’s, i.e.,

CL:{(zo,m)eRxﬂz“: 5i(@) <0, i€ }

gi(x) + oi(|le||* — o) <0, i€ N

(2) becomes a QOP, once C; is convex. Therefore, we are actually in the original frame-
work of the SCRM. In order to keep the notation, we redefine the variable (zy, ) € R""’
as x, and (0,¢) € R™" as ¢, and we suppose ||c|| = 1 without loss of generality. We
want to solve now the QOP '

max c’z
st. x'Qx+2q"x+~v <0, (3)
T c C1
T
where Q = ( 8 EI >, g’ =(4,07), and v = 0.

This problem is nonconvex since @ is negative semi-definite. However, we can rewrite
the quadratic function as 27 Qx + 2¢"x + 7 = Q ¢ X + 2¢"x + v, with X = zz’,
where e is the inner-product in the space of (n + 1) x (n + 1)-symmetric matrices (A o
B = S aiby;). If we disregard the equality X = @2 and just suppose that X is
symmetric, we have a linear relaxation of (3). The SCRM with linear relaxation version
is based on this fact, and it can be shown that theoretical, a successive relaxation of this
kind leads to the global optimal value of (3).

2.2 Successive Convex Relaxation Method

Since the theoretical details of the SCRM can be found in [5, 6], and its implementation
issues in [7], we just attempt to consider the minimum necessary definitions and concepts
to understand the algorithm here. Following the original notation in [6], we define two
vector sets in R™*!. Given 0 € (0,7/2], let

DO = {iel,ﬁ:ez, cee ,:}:en+1} and D1(9) = {bi(()),f)i(e),c, 1 < 1 <n-+ ]}, (4)
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ccosf + e;sinf -
where {e;}f] is the canonical basis in R"™, b;(0) = : , and b;(0) =
ledis , 0:(0) llccos @ + e; sin 0| ()

ccosf — e; sind

llccosf — e;sinf||

Theoretically speaking, we need in fact that D; being a d-net of a neighborhood
D(c,k) ={v e R™':|lc—v|| <k, |jv||=1}0ofce€ R""" forsome x > 0[6]. Or more
precisely, Dy is a d-net of D(c, x) if for all v’ € Dy, ||v'|| = 1, and if for all v € D(c, )
there exists v' € D such that ||v — v'|| < é. In this case, D; will have necessary an
exponential number of vectors, which will be impractical to be implemented. Since the
above defined D, () (4) is not the desired §-net, we cannot expect a theoretical global
convergence of the algorithm as mentioned in Theorem 2.2 below. On the other hand,
we tried to compensate the lack of vectors in the neighborhood of vector ¢ reconstructing
D, (9) several times for different values of #’s along the algorithm. In the following lines,
we start to describe our algorithm. Let C a compact convex set, u,v € Dy U Dy, and

consider ”
ey = max{v'z:zeC}

.,..QS'f(a;;C, u, ’U) = —( T — Of(C‘u))(’UT:E — (Y(C‘fv))a

and define the following set of quadratic functions

PA(C, Do) = {r2sf(:;C,u,v):u,v€ Dy, u#wv}
P*(C, Dy, D) = {r2sf(;C,u,v):u € Dy, ve D}
PP = {27Qx +2¢"x + v given in (3)}.

In addition, let

sttt : space of (n+ 1) x (n + 1)-symmetric matrices;

E; : matrix with all zeros except the (7,7) diagonal element with 1;
qf(+Q,q,7) : quadratic functions in the form 27 Qzx + 2q¢"x + v;

C* : the optimal value of problem (3).

We implemented the following version of the SCRM.

Algorithm 2.1

Step 0: Let Do and D+(8) defined in (4); 6 € (0.7/2], 0 < Omin < 0, 0 < ¢y << €
and p,n € (0,1);

Step 1: Compute Qe ) = {vTz:x € Cy}, forve DyU D(0), and let k = 1 and
(o = 400 (notice that {, = {c"x : & € C1} was already computed since ¢ € D, () );

Step 2: If (-~<~]1_—<—— < e) or (0 < Opin), stop;
max{|(x, €0}
Step 3: If —M < p, reconstruct Dy(6) with 6 := nb;
maX{Kk‘a 1}

Step 4: Compute o, ) = {viz:x € Cry} forve DyU D (0)

where
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Pk = P%(Cy, Do) U P*(Cx, Dy, D1) and

EIX e 8" such that
Cosi=4z€C: QoX+2¢"x+~<0, Ygf(5Q,q,7) € PFUP

Step 5: Letk=k+1, and go to Step 2;

Note that we have to solve a convex programs to compute each « (Crorn )"

Algorithm 2.1 is the actuallv implemented algorithm. There are some slight modifi-
cations compared with the theoretical version [6] to improve the convergence. See also
[7]. As mentioned previously, once D1 (6) was taken as a suitable d-net of D(e, x) (which
implies that Step 3 is unnecessary), we can talk about global convergence.

Theorem 2.2 [6] Suppose that Condition 1.1 holds. Let k.€ >0, and Dy given. Then,
there exists a & > 0 such that if we take a 6-net Dy of D(c, k), then Algorithm 2.1
constructs sequences {Crp}:i25 and {(e}25 such that:

(a) C={ceC :2"Qz+q"x+7<0, q¢f(:Q,q.7)€P"}C - CChys CCy. and
< < G Sy k=12,

(b) There exists an k such that (* < ( < (* + €.

3 Computational Experiments

This section will provide preliminary computational experiments over some benchmark
problems [3. 1. 2]. The program code was written in C++ with AMPL (version 19981109) -
interface in order to utilize the nonlinear program solver CONOPT (version 2.070B) for
AMPL. The experiments were conducted at DEC Alpha (599 MHz. 1GB memory) under
Digital UNIX.

Table 1 gives the parameters for Algorithm 2.1. We started to construct D;(0) for

0= %77 since we noticed that it is not always true that the algorithm converges for small

g’s.

Table 1: Parameter for Algorithm 2.1
stopping criterion (relative error) | e 0.0001
initial angle for D{(6) 7 =T
rate for lack of improvement 0 0.001

n
0

decreasing rate of 0. 3
minimal admissible angle
computational zero €0

min

180
.0e-9

;_a._.

Table 2 gives the results of our experiments. The column “prob.” gives the source
and the problem number or subsection where the problem is described; the problem type
is one of the follows:
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quad : involving only quadratic or linear (objective or constraint) functions;
cub : involving cubic functions;

pow p : involving polynomials of degree at most p;

trig :involving trigonometric functions;

In : involving logarithms;

minlp : mixed integer nonlinear program.

The columns “var.”, “con.” and “noncon.” give the number of variables, the number
or convex and nonconvex restrictions, respectively, when formulated as (1) (without
COllsfderillg the box constraints). We have added an extra variable for problems with
nonlinear objective functions (the number with 1); some equalities were transformed in
two inequalities (each added constraint with 1); a convex and a nonconvex restrictions
were introduced to represent a variable z € {0,1} (z(z — 1) <0 and —z(z —1) < 0 —
entries with *). Problems with “m” had their original formulation changed. For instance,
constraints like In(z? + 1) where changed into In(y) and y = 2% + 1, which contributed
greatly in the convergence (added variable or constraint with ¢). The relative errors were
computed as in Step 2 of Algorithm 2.1. Finally, “subprob.” are the number of convex
programs we solved and “reconst.” is the number of times we reconstructed D), (0) (at
most 4 times — see iteration numbers with x).

Table 2: Preliminary numerical experiments for nonlinear programs

prob. type | var. | con. noncon. | iter. | CPU (s) | rel. error | subprob. | reconst.
[3] 5 m trig | 37 |0 1t 12 11.1 |  0.00006 181 1
13] 6 quad | 3T |2 |1 1 0.0 | 0.00000 1 0
(3] 7 m In | 4% | 2¢ 2¢ 4 491 0.00004 77 0
[3] 13 cub | 3t | 1f 1 68 10.8 | 0.09147 1021 1
(3] 18 quad | 3T | 1t 2 17 10.9 | 0.00006 256 2
(3] 23 quad | 3t | 2f 4 4 2.1 | 0.00000 61 0
[3] 30 quad | 41 | 1f 1 1 0.0 | 0.00000 1 0
3] 31 quad | 4t | 1f 1 7 11.3 | 0.00003 134 1
[3] 42 quad | 47 | 2t 1 1 0.0 | 0.00000 1 0
[3] 61 quad | 47 | 3t 2 1 0.0 | 0.00000 1 0
1134 | quad |3 |2 1 86x | 80.1] 0.25397 1463 4
[1]46 |powd |2 |0 2 54% | 26.0 | 0.16088 703 4
[1]4.7 | pow4 | 3T |2t 1 1 0.0 | 0.00000 1 0
2] 12.1 | minlp | 5 | 43 FF [ 3EF T o7k 149.1 | 0.11564 676 4
2] 12.2 | minlp | 4F | 4t 2+ 2 1.5 | -0.00184 39 0

Notice that the SCRM obtained the global optimum value solving exactly one convex
problem for some benchmark problems. However. we encountered 4 problem which the
method did not converge to the global optima.

Figure 1 gives a typical behavior of the upper bound values along the major iterations
of Algorithm 2.1. In particular, it shows the upper bounds of the global optimal value
of [3] 18 (optimal value -5) and [2] 12.1 (optimal value -7.67).

As we observe, the convergence slows downs in the latter iterations. Therefore, it
seems reasonable to stop the algorithm after the first 10 iterations if we want a rough
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Figure 1: Upper bound of the optimal values for [3] 18 and [2] 12.1
[3] 18 —=—
2] 12.1 % |

Upper bound of the global optimal values

'767 i i 1 1 1
1 5 10 15 20 25 30
Iterations

approximation of the global optimal value, for instance, embedded in a branch-and-bound
framework. Although it is still not clear, one of the reasons of non-convergence for some
problems may be due to numerical errors.

4 Conclusion

This paper gives the first implementation of the SCRM using linear relaxation for non-
convex programs based on the work of Kojima and Tuncel, and Kojima, Matsumoto and
Shida. This method is quite powerful since it gives the upper bounds of global opti-
mal values of smooth nonlinear programs, and in some cases, the global optimal values
themselves. At a first glance, the method seems promising. Though the numerical ex-
periments shows that we still need further work to deal with larger instances of difficult
nonlinear programs.
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