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ABSTRACT. A uniformly John domain is a domain intermediate between a John
domain and a uniform domaih. We determine the Martin boundary of a uniformly
John domain $D$ as an application of a boundary Harnack principle. Define the
internal metric between two points in $D$ by the infimum of the diameter of arcs in
$D$ connecting the points. The Martin boundary of $D$ is the boundary with respect
to the internal metric. We assume no exterior condition for $D$ .

1. INTRODUCTION

Balogh and Volberg $[5, 6]$ introduced a uniformly John domain in connection
with conformal dynamics. The main aim of this paper is to determine the Martin
boundary of a uniformly John domain. Let $D$ be a domain in $\mathbb{R}^{n},$ $n\geq 2$ . We define
the internal metric $\rho_{D}(x,y)$ by

$\rho_{D}(x, y)=\inf${ $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\gamma)$ : $\gamma$ is an arc joining $x$ and $y$ in $D$}

for $x,$ $y\in D$ . Here diam(7) denotes the diameter of $\gamma$ . Obviously $|x-y|\leq\rho_{D}(x, y)$ .
We say that $D$ is a uniformly John domain if there exist positive constants $A_{1}$ and
$A_{2}$ such that each pair of points $x,y\in D$ can be joined by an arc $\gamma\subset D$ for which

(1.1) diam$(\gamma)\leq A_{1}\rho_{D}(X, y)$ ,

(1.2) $\min\{|x-z|, |z-y|\}\leq \mathrm{A}_{2}\delta_{D}(z)$ for all $z\in\gamma$ .

A uniformly John domain is a domain intermediate between a John domain and a
uniform domain. By definition

uniform $\neq \mathrm{c}_{\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}_{0}}\mathrm{r}\mathrm{m}\mathrm{l}\mathrm{y}$ John $\neq\subset_{\mathrm{J}\mathrm{o}\mathrm{h}\mathrm{n}}$ .
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In the previous paper [1], the first author showed that the Martin compacti-

fication of a bounded uniform domain is homeomorphic to the Euclidean closure.
A Lipschitz domain and more generally an NTA domain are uniform domain, so
that [1] is a generalization of Hunt and Wheeden [11] and Jerison and Kenig [12].

The Martin compactification of a uniformly John domain is more complicated. We

shall show that it is homeomorphic to the completion $D^{*}$ with respect to the in-
ternal metric. That is, $D^{*}$ is the equivalence class of all $\rho_{D}$-Cauchy sequences with
equivalence relation $”\sim$”, where we say $\{x_{j}\}\sim\{y_{j}\}$ if $\{x_{j}\}\cup\{y_{j}\}$ is a $P_{D}$-Cauchy
sequence. Let $\partial^{*}D=D^{*}\backslash D$ , the boundary with respect to $\rho_{D}$ . Take $\xi^{*}\in D^{*}$ .
Suppose $\xi^{*}$ is represented by a $\rho_{D}$-Cauchy sequence $\{x_{j}\}$ . Since $\{x_{j}\}$ is also a usual
Cauchy sequence, it follows that $x_{j}$ converges to some point $\xi\in\overline{D}$ . The point $\xi$

is independent of the representative $\{x_{j}\}$ and uniquely determined by $\xi^{*}$ . We say
that $\xi^{*}$ lies over $\xi\in\overline{D}$ . If $\xi\in D$ , then $\xi$ and $\xi^{*}$ coincide. Define the projection
$\pi$ : $D^{*}arrow\overline{D}$ by $\pi(\xi^{*})=\xi$ . It is easy to see that $\pi$ is a continuous contraction
mapping, i.e. $|\pi(\xi_{1}*)-\pi(\xi_{2}^{*})|\leq\rho_{D}(\xi_{1}^{*}, \xi_{2}^{*})$ . The main result of this paper is the
following theorem.

Theorem 1. Let $D$ be a bounded uniformly John domain. Then the Martin com-
pactification of $D$ is homeomorphic to $D^{*}$ and each boundary point $\xi^{*}\in\partial^{*}D$ is

minimal. Moreover, for every boundary point $\xi\in\partial D$ , the number of Martin bound-
ary points over $\xi$ is bounded by a constant depending only on $D$ .

The above theorem will be proved as a corollary to the boundary Harnack prin-
ciple for a uniformly John domain. Balogh and Volberg [6] proved the boundary

Harnack principle for a planar uniformly John domain with uniformly perfect bound-
ary, an additional assumption. They also demonstrated that the harmonic measure
satisfies the doubling condition with respect to the internal metric [6, Theorem 3.1].

The significant difference between [6] and the present paper is that we have no
assumption on the boundary or the complement of the domain. In the present
setting, the harmonic measure needs not satisfy the doubling condition, because of
the lack of exterior condition. The argument of [6] is not applicable. Moreover,

our domain may admit an irregular boundary point. Hence, we always consider a
generalized Dirichlet problem, i.e. boundary values have meaning outside a polar
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set. For simplicity, we shall say that a property holds $\mathrm{q}.\mathrm{e}$ . (quasi everywhere) if it
holds outside a polar set.

We note that there are very precise results on the Martin boundary of Denjoy
type domains and some specific domains. See Ancona $[3, 4]$ , Benedicks [8], Chevallier
[9], Segawa [14] and references therein. Our Theorem 1 is not so precise but it is
applicable to various domains. Conditions (1.1) and (1.2) are simple.

The plan of the paper is as follows: in the next section we shall give several
geometrical notions and properties of a uniformly John domain. In Section 3 we
shall state the boundary Harnack principle and prove it along a line similar to [1].
Our proof is inspired by the probabilistic work of Bass and Burdzy [7]. Section 4
will be devoted to the proof of Theorem 1, and some further properties, such as the
H\"older continuity of the kernel function.

We shall use the following notation. By the symbol $A$ we denote an absolute
positive constant whose value is unimportant and may change from line to line.
If necessary, we use $A_{0},$ $A_{1},$

$\ldots$ , to specify them. We shall say that two positive
functions $f_{1}$ and $f_{2}$ are comparable, written $f_{1}\approx f_{2}$ , if and only if there exists a
constant $A\geq 1$ such that $\mathrm{A}^{-1}f_{1}\leq f_{2}\leq Af_{1}$ . The constant $A$ will be called the
constant of comparison. By $B(x, r),$ $C(x, \gamma)$ and $S(x, r)$ we denote the open ball,
the closed ball and the sphere with center at $x$ and radius $r$ , respectively.

2. GEOMETRIC PROPERTIES OF A UNIFORMLY JOHN DOMAIN

Balogh and Volberg [5] proved a very deep property of a planar uniformly John
domain; a geometric localization. In the course of the proof of Theorem 1 we shall
not use their result. Instead, we shall need some elementary properties of a uniformly
John domain. The purpose of this section is to show these properties with purely
geometrical proofs. No potential theory will be involved in this section.

Hereafter we let $D$ be a bounded uniformly John domain. In view of the equiv-
alence between the distance, the diameter and the length cigar conditions ([13,
Lemma 2.7] and [15, Theorem 2.18] $)$ , we observe that (1.1) and (1.2) can be re-
placed by the following stronger condition: there exist positive constants $A_{3}$ and $A_{4}$
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such that

(2.1) $\ell(\gamma)\leq A_{3}\rho_{D}(_{X}, y)$ ,

(2.2) $\min\{P(\gamma(x, Z)), \ell(\gamma(z, y))\}\leq A_{4}\delta_{D}(z)$ for all $z\in\gamma$ ,

where $\ell(\gamma)$ and $\gamma(x, z)$ denote the length of $\gamma$ and the subarc $\gamma(x, z)$ of $\gamma$ connecting
$x$ and $z$ , respectively.

Let us first show that the completion $D^{*}$ is a compact space.

Proposition 1. Let $D$ be a bounded uniformly John domain. Then $D^{*}$ is a compact
space and each boundary point $\xi^{*}\in\partial^{*}D$ is $acce\mathit{8}\mathit{8}ible$ from $D,$ $i.e.$ , there is an arc
$\mathit{7}\subset D$ converging to $\xi^{*}$ . Moreover, for every boundary point $\xi\in\partial D$ , the number of
points in $\partial^{*}D$ over $\xi$ is bounded by a constant depending only on $D$ .

Proof. Take a sequence $\{x_{m}^{*}\}$ in $D^{*}$ . We need to show that there exists a subsequence
of $\{x_{m}^{*}\}$ converging to some point in $D^{*}$ with respect to $\rho_{D}$ . Suppose that each $x_{m}^{*}$ is
represented by a $\rho_{D}$-Cauchy sequence $\{x_{m}^{j}\}\subset D$ . Since $\{x_{m}^{j}\}$ is also a usual Cauchy
sequence, it must converge to $x_{m}=\pi(x_{m}^{*})\in\overline{D}$ with respect to the usual metric.
Taking a subsequence, if necessary, we may assume that $\{x_{m}\}$ is a Cauchy sequence
converging to some $\xi\in\overline{D}$ with respect to the usual metric. If $\xi\in D$ , then it is easy
to show that $x_{m}^{*}$ converges to $\xi$ with respect to $\rho_{D}$ . So, we may assume that $\xi\in\partial D$ .

Let $r>0$ . Then $D\cap B(\xi, r)$ consists of countably many open connected com-
ponents $B_{i}(r)$ . Obviously

(2.3) $\rho_{D}(x, y)\leq 2r$ for $x,$ $y\in B_{i}(r)$ .

Let us count the number $\nu(r)$ of components $B_{i}(r)$ having a point $x_{m}$ with $|x_{m}-\xi|<$

$r/2$ . We claim that

(2.4) lノ $(r)\leq N$ ,

where $N$ is independent of $r$ and $\xi$ . Since $D$ is connected, two distinct components

are connected by a curve in $D$ . This curve must get out $B(\xi, r)$ . Hence each
component $B_{i}(r)$ has a limit point on $S(\xi, r)$ . On the other hand, our $B_{i}(r)$ has
a point $x_{m}$ with $|x_{m}-\xi|<r/2$ , and hence diam$(B_{i}(r))\geq r/2$ . It follows from
the definition of a uniformly John domain that the Lebesgue measure of $B_{i}(r)$ is
comparable to $r^{n}$ . Therefore, (2.4) holds.
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Now let $r_{k}=2^{-k}\downarrow 0$ . Then we infer from (2.4) that there exists a decreasing
sequence of components $B_{i_{k}}(r_{k})$ each of which contains infinitely many $x_{m}$ . We find
$\xi^{*}\in\partial^{*}D$ such that

$B_{i_{1}}(r_{1})\supset B_{i_{2}}(r_{2})\supset\cdotsarrow\xi^{*}\in\partial^{*}D$,

and a subsequence of $\{x_{m}^{*}\}$ converges along $\{B_{i_{k}}(r_{k})\}$ to $\xi^{*}$ with respect to $\rho_{D}$ by
(2.3). Obviously $\pi(\xi^{*})=\xi$ . This shows $D^{*}$ is compact and $\xi^{*}$ is accessible from
$D$ . Moreover, since every $\xi^{*}\in\partial^{*}D$ has a $p_{D}$-Cauchy sequence converging to $\xi^{*}$ , the
second assertion follows.

Finally let $\xi\in\partial D$ and suppose $k$ points $\xi_{1}^{*},$ $\ldots\xi_{k}^{*}\in\partial^{*}D$ lie over $\xi$ . Then there
is $\epsilon>0$ such that $\rho_{D}(\xi i^{*}’\xi^{*}j)>2\epsilon$ for $i\neq j$ . By $V_{i}$ we denote the component
of $D\cap B(\xi, \epsilon)$ from which $\xi_{i}^{*}$ is accessible. Then $V_{1},$

$\ldots$ , $V_{k}$ are disjoint. In fact,
if $V_{i}\cap V_{j}\neq\emptyset$ for $i\neq j$ , then $V_{i}$ and $V_{j}$ would coincide and $\xi_{i}^{*}$ and $\xi_{j}^{*}$ would be
accessible from the same component. That is, there would be an arc $\gamma$ in $V_{i}=V_{j}$

connecting $\xi_{i}^{*}$ and $\xi_{j}^{*}$ . By definition, $\rho_{D}(\xi_{i}*, \xi_{j}*)\leq$ diam(7) $\leq 2\epsilon$ ; a contradiction
would arise. Thus $V_{1},$

$\ldots,$
$V_{k}$ are disjoint. We may assume that $x_{0}\in D\backslash B(\xi, \epsilon)$ .

Then each $\xi_{i}^{*}$ can be connected to $x_{0}$ by a curve, say $\gamma_{i}$ , in $D$ with (1.1) and (1.2).
Let $x_{i}\in\gamma_{i}\cap V_{i}\cap S(\xi, \epsilon/2)$ . Then $B(x_{i}, A_{2}\epsilon/2)\subset V_{i}$ by (1.2), so that the Lebesgue-
measure of $V_{i}$ is comparable to $\epsilon^{n}$ . Since $V_{1},$

$\ldots$ , $V_{k}$ are disjoint subsets of $B(\xi, \epsilon)$ , it
follows that the number $k$ is bounded by a constant depending only on $A_{2}$ and the
dimension. The proof is complete. $\square$

Remark 1. In general, a minimal boundary point of the Martin boundary is acces-
sible from the domain (e.g. [10, Satz 13.3]). Hence, if we have shown Theorem
1, the above proposition follows automatically. The above argument proves the
accessibility without potential theoretic consideration.

We shall define ‘balls’ with respect to the internal metric. For this purpose it is
convenient to modify the internal metric slightly. For $x\in D$ and $\gamma\subset D$ we let

$r^{*}(x, \gamma)=\sup_{\in z\gamma}|z-x|$

be the the infimum of radii $r$ for which $\gamma\subset B(x, r)$ . Observe that $r^{*}(x, \gamma)\leq$

$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\gamma)\leq 2r^{*}(x, \gamma)$ for $x\in\gamma$ . Let

$\rho_{D}^{*}(x, y)=\inf${ $r^{*}(X,$ $\gamma)$ : 7 is an arc joining $x$ and $y$ in $D$}
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for $x,$ $y\in D$ . The quantity $\rho_{D}^{*}$ is not symmetric. It is related to the internal metric
$\rho_{D}$ as follows:

$P_{D}^{*}(x, y)\leq\rho_{D}(x, y)\leq 2\rho_{D}^{*}(x, y)$ .

Therefore the convergence with respect to $\rho_{D}$ is equivalent to the convergence with
respect to $\rho_{D}^{*}$ . We can also show the following inequalities

$\rho_{D}^{*}(X, z)\leq p_{D}^{*}(X, y)+p^{*}D(y, Z)$ ,

$p_{D}^{*}(x, z)\leq p_{D}^{*}(x, y)+2\rho_{D}^{*}(z, y)$

for $x,$ $y,$ $z\in D$ . We extend $\rho_{D}(x, y)$ and $\rho_{D}^{*}(x, y)$ for $x,$ $y\in D^{*}$ by $\rho_{D}(x, y)=$

$\lim\rho_{D}(x_{j}, y_{j})$ and $\rho_{D}^{*}(x, y)=\lim\rho_{D}^{*}(x_{j,yj})$ if $x$ and $y$ are represented by $P_{D}$-Cauchy
sequences $\{x_{j}\}$ and $\{y_{j}\}$ in $D$ . It is easy to see that the quantities $\rho_{D}(x, y)$ and
$\rho_{D}^{*}(x, y)$ are independent of the choice of the $\rho_{D}$-Cauchy sequences $\{x_{j}\}$ and $\{y_{j}\}$ .

Let $\xi^{*}\in\partial^{*}D$ and put

$B_{\rho}(\xi^{*}, r)=\{x\in D : \rho_{D}^{*}(\xi^{*}, X)<r\}$ .

Moreover, let $S_{\rho}(\xi^{*}, r)=D\cap\partial B_{\rho}(\xi^{*}, r)$ and $C_{\rho}(\xi^{*}, r)=D\cap\overline{B_{\rho}(\xi^{*},r)}$. Here, $‘\partial$
’

and ‘–, mean the boundary and the closure in the Euclidean space, respectively.
These sets correspond to $D\cap B(x, r),$ $D\cap C(x, r)$ and $D\cap S(x, \gamma)$ . The following
observation enables us to use many arguments in [1].

Lemma 1. The set $B_{\rho}(\xi^{*}, r)$ is the open connected component of $D\cap B(\pi(\xi^{*}), r)$

which can be connected to $\xi^{*}$ in itself, $i.e$ . there is an arc $\gamma\subset B_{\rho}(\xi^{*}, r)$ converging
to $\xi^{*}$ .

Proof. It is sufficient to show the following $(\mathrm{i})-(\mathrm{i}\mathrm{V})$ .

(i) $B_{\rho}(\xi^{*}, r)\subset D\cap B(\pi(\xi^{*}), r)$ .
(ii) $B_{\rho}(\xi^{*}, r)$ is open.
(iii) Every point $x\in B_{\rho}(\xi^{*}, r)$ is connected to $\xi^{*}$ by an arc in itself.
(iv) $B_{\rho}(\xi^{*}, r)$ is the maximal set with the above properties $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ .

Let $\xi^{*}$ be represented by a $p_{D}$-Cauchy sequence $\{x_{j}\}$ . First, we prove (i), (ii) and
(iii). Suppose $x\in B_{\rho}(\xi^{*}, r)$ . Then $\epsilon=r-\rho_{D}^{*}(\xi^{*}, X)>0$ . Since $\rho_{D}^{*}(\xi^{*}, x)=$

$\lim_{jD}arrow\infty^{\rho^{*}(X)}xj,<r-\epsilon$ , there exists a positive integer $j_{0}$ such that $\rho_{D}^{*}(x_{j}, X)<$

$r-\epsilon/2$ for $j\geq j_{0}$ . By the definition of $\rho_{D}^{*}$ we find an arc $\overline{x_{j}x}.\subset D$ joining $x_{j}$ and $x$
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with

(2.5) $|x_{j}-x|\leq r^{*}(X_{j,j}\overline{Xx})<r-\epsilon/2$

for $j\geq j_{0}$ . Hence

$| \pi(\xi^{*})-X|=\lim_{jarrow\infty}|x_{j}-x|\leq r-\epsilon/2<r$.

Therefore, $x\in D\cap B(\pi(\xi^{*}), r)$ and (i) follows. Now $x$ lies in the open set $D\cap$

$B(\pi(\xi^{*}), r)$ , whence we find $r_{0},0<r_{0}<\epsilon/2$ , such that $B(x, r_{0})\subseteq D\cap B(\pi(\xi^{*}), r)$ .
For (ii) it suffices to show that $B(x, r_{0})\subset B_{\rho}(\xi^{*}, r)$ . In fact, every $y\in B(x, r_{0})$

can be connected to $x_{j}$ by $\overline{x_{j}x}\cup\overline{xy}$ for $j\geq j_{0},$ where $\overline{xy}$ denotes the line segment
between $x$ and $y$ . Hence, (2.5) yields

$p_{D(\xi,y)}^{*}*= \lim_{jarrow\infty}\beta^{*}D(xj, y)\leq\lim_{jarrow}\sup_{\infty}r(*Xxj, \overline{Xj}\cup\overline{xy})\leq r-\frac{\epsilon}{2}+r_{0}<r$ ,

so that $B(x, r_{0})\subset B_{\rho}(\xi^{*}, r)$ and (ii) follows. In order to prove (iii) we may assume
that

(2.6) $\rho_{D}(x_{j}, x_{j}+1)<2^{-j}\epsilon$ ,

by taking a subsequence of $\{x_{j}\}$ . Then each pair of points $x_{j}$ and $x_{j+1}$ can be
connected by an arc $\overline{x_{j}x_{j+1}}\subset D$ with diam $(\overline{x_{j}X_{j}+1})<2^{-j}\epsilon$ . Let

$\gamma=\overline{xx_{j_{0}}}\cup(\bigcup_{j=j0}^{\infty}\overline{xj^{X_{j})}+}1\cdot$

Then, by (2.5) and (2.6), $\gamma$ is an arc in $D$ connecting $x$ and $\xi^{*}$ such that

$r^{*}( \xi^{*}, \gamma)\leq r^{*}(X_{j}\overline{x}0’ X_{j0})+j=\sum^{\infty}j\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\overline{X_{j^{X}j}+1})<r-\frac{\epsilon}{2}+\sum_{j=j\mathrm{o}}^{\infty}2^{-j}\epsilon$.

Without loss of generality, we may assume that $j_{0}\geq 2$ , so that $r^{*}(\xi^{*}, \gamma)<r$ .
Hence $\gamma\subset B_{\rho}(\xi^{*}, r)$ and (iii) follows. We remark that (iii) implies that $B_{\rho}(\xi^{*}, r)$ is
connected.

Finally we prove (iv). Suppose that $D_{1}$ is a subset of $D\cap B(\pi(\xi^{*}), r)$ such
that every $x\in D_{1}$ is connected to $\xi^{*}$ by an arc in itself. We have to show that
$\rho_{D}^{*}(\xi^{*}, x)<r$ for $x\in D_{1}$ . Suppose $x\in D_{1}$ . Then there is an arc $\gamma\subset D_{1}$ connecting
$\xi^{*}$ and $x$ . By the compactness of 7 we see that $\gamma\subset B(\pi(\xi^{*}), r-\eta)$ for some $\eta>0$ .
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By definition

$\rho_{D(\xi^{*},X)}^{*}=$

$\lim_{*,yarrow\xi}y\in\gamma\rho_{D}^{*}(y, X)\leq\lim_{yarrow,y\in}\sup_{\xi^{n},\gamma}r(*y, \gamma)\leq\lim_{yarrow,y\in\xi^{*}}\sup_{\gamma}|y-\pi(\xi^{*})|+r-\eta=r-\eta<r$

.

Hence (iv) follows. $\square$

As a corollary to Lemma 1 we have the following.

Lemma 2. Let $V$ be a connected open subset of $D\cap B(\pi(\xi^{*}), r).$ If $V\cap B_{\rho}(\xi^{*}, r)\neq\emptyset$ ,

then $V\subset B_{\rho}(\xi^{*}, r)$ . In particular, if $\xi_{1}^{*}\in\partial^{*}D$ is accessible from $B_{\rho}(\xi^{*}, r)$ and
$r_{1}+|\pi(\xi*)-\pi(\xi_{1}^{*})|<r$ , then $B_{\rho}(\xi^{*}1’ r1)\subset B_{\rho}(\xi^{*}, r)$ .

For a moment let $D$ be a general proper subdomain of $\mathbb{R}^{n}$ . We define the quasi-

hyperbolic metric $k_{D}(x, y)$ by

$k_{D}(x, y)= \inf_{\gamma}\int_{\gamma}\frac{ds(z)}{\delta_{D}(z)}$ ,

where the infimum is taken over all rectifiable arcs $\gamma$ joining $x$ to $y$ in $D$ . Observe
that $k_{D}(x, y)$ is monotone decreasing with respect to $D$ , i.e., if $x,$ $y\in D_{1}\subset D$ , then
$k_{D_{1}}(x, y)\geq k_{D}(x, y)$ . The converse estimate will be needed in the sequel. Observe
that if $z\in D$ , then

(2.7) $k_{D}(x, y)\leq k_{D\backslash \{z\}}(x, y)\leq k_{D}(x, y)+A$ for $x,$ $y\in D\backslash B(z, 2^{-1}\delta D(z))$ .

This observation will be useful to estimate the Green function with pole at $z$ .

Now let $D$ be a bounded uniformly John domain. Then the following uniform

quasihyperbolic boundary condition holds.

Lemma 3. Let $D$ be a bounded uniformly John domain. Then

$k_{D}(x, y) \leq A\log\frac{\rho_{D}(x,y)}{\min\{\delta_{D}(X),\delta D(y)\}}+A’$ ,

where A and $A’$ depend only on $D$ .

Proof. If $y\in B(X, \delta_{D}(X)/2)$ or $x\in B(y, \delta_{D}(y)/2)$ , then the lemma is obvious. Hence,

suppose $|x-y| \geq\frac{1}{2}\max\{\delta_{D}(x), \delta D(y)\}$ . Let $\gamma$ be a curve joining $x$ to $y$ with (2.1)

and (2.2). Then

$\int_{\gamma}\frac{ds(z)}{\delta_{D}(z)}\leq\int_{0}^{\delta_{D}(x})/2\frac{ds}{\delta_{D}(x)/2}+\int_{\delta(x)/}^{f}D2+\frac{\mathrm{A}_{4}ds}{s}\int_{f}^{\ell(}(\gamma)/2\gamma)-\delta_{D}(y)/2\frac{\mathrm{A}_{4}ds}{s}+(\gamma)/2\int 0\delta D\delta_{D(}y)/2(y)/2dS$

$\leq 2+2A_{4}\log\frac{A_{3}p_{D}(_{X},y)}{\min\{\delta_{D}(x),\delta D(y)\}}$ .
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Thus the lemma follows. $\square$

Let $x_{0}\in D$ be fixed. Then every point $x\in D$ can be connected to $x_{0}$ by $\gamma$

along which the distance to the boundary increases as in (1.2). Hence, there is $A_{5}$ ,
$0<A_{5}<1$ such that

$A_{5}R \leq\sup_{x\in^{s_{\rho}}(\xi^{*}R)},\delta_{D}(x)\leq R$

for sufficiently small $R$ , say $0<R<\delta_{D}(x_{0})/2$ . Let us take $\xi_{R}\in S_{\rho}(\xi*, 4R)$ with
$4A_{5}R\leq\delta_{D}(\xi_{R})\leq 4R$ . Then, we have the following.

Lemma 4. Let $D$ be a bounded uniformly John domain. Then there exists a con-
stant $A_{6}>9$ depending only on $D$ such that

(2.8) $k_{B_{\rho}(\xi A_{6}}*,R)(x, y) \leq \mathrm{A}\log\frac{\rho_{D}(x,y)}{\min\{\delta_{D}(x),\delta_{D}(y)\}}$ for $x,$ $y\in B_{\rho}(\xi^{*}, 9R)$ .

where $\xi^{*}\in\partial^{*}D,$ $R>0$ is sufficiently small and $A$ depends only on D. In $particular_{f}$

(2.9) $k_{B_{\rho}(\xi A_{6}R}*,)(X, \xi_{R})\leq A\log\frac{18R}{\delta_{D}(x)}$ for $x\in B_{\rho}(\xi*, 9R))$

where $A$ is independent of the choice of $\xi_{R}$ . In the sequel, estimates will be indepen-
dent of the choice of $\xi_{R}$ .

Proof. Let $x,$ $y\in B_{\rho}(\xi^{*}, 9R)$ . Suppose $\gamma$ is a curve $\mathrm{j}\mathrm{o}.\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}_{X}$ to $y$ with (2.1) and
(2.2). Then

$p_{D(\xi,z)}^{*}*\leq\rho_{D}^{*}(\xi^{*}, x)+\rho_{D}^{*}(X, Z)<9R+\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\gamma)\leq AR$ for $z\in\gamma$ .

Let $\mathrm{A}_{6}$ be the twice of the above $A$ . Then $\gamma\subset B_{\rho}(\xi^{*}, \frac{1}{2}A6R)$ and $\delta_{B_{\rho}(\xi^{*}},A_{6}R$ ) $(z)=$

$\delta_{D}(z)$ for $z\in\gamma$ . Hence the proof of the preceding lemma yields (2.8). Since
$p_{D}(X, \xi_{R})<18R$ and $\delta_{D}(\xi_{R})\geq 4A_{5}R$ , we have (2.9) from (2.8). $\square$

3. BOUNDARY HARNACK PRINCIPLE

The main aim of this section is to show the following boundary Harnack principle.

Theorem 2. Let $D$ be a bounded uniformly John domain. Then there exists a
constant $A_{7}>1$ depending only on $D$ with the following property: Let $\xi^{*}\in\partial^{*}D$
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and let $R>0$ be sufficiently small. $s_{upp}o\mathit{8}eu$ and $v$ are positive bounded harmonic

functions on $B_{\rho}(\xi^{*}, A_{7}R)$ vanishing $q.e$ . on $\partial D\mathrm{n}\overline{B_{\rho}(\xi^{*},A7R)}$ . Then

$\frac{u(x)}{v(x)}\approx\frac{u(x’)}{v(x’)}$ uniformly $f\cdot orx,$ $x’\in B_{\rho}(\xi^{*}, R)$ ,

where the constant of comparison depends on $D$ .

Theorem 2 can be proved in a way similar to that of [1, Theorem 1] with the aid

of Lemma 1. However, we must be careful about the fact that $D^{*}$ is the completion of
$D$ with respect to the internal metric. It is, in general, different from the Euclidean

closure.
We say that $x,$ $y\in D$ is connected by a Harnack chain $\{B(x_{j}, \frac{1}{2}\delta_{D}(Xj))\}_{j=}^{k}1$ if

$x \in B(X_{1}, \frac{1}{2}\delta D(x_{1})),$ $y \in B(y_{k}, \frac{1}{2}\delta_{D}(y_{k}))$ , and $B(x_{j}, \frac{1}{2}\delta_{D}(X_{j}))\cap B(X_{j1}+, \frac{1}{2}\delta_{D}(x_{j1}+))\neq$

$\emptyset$ for $j=1,$ $\ldots$ , $k-1$ . The number $k$ is called the length of the Harnack chain.

We observe that the shortest length of the Harnack chain connecting $x$ and $y$ is

comparable to $k_{D}(x, y)$ . Therefore, the Harnack inequality yields that there is a
positive constant $A$ depending only on $n$ such that

$\exp(-Ak_{D}(X, y))\leq\frac{h(x)}{h(y)}\leq\exp(Ak_{D}(X, y))$

for every positive harmonic function $h$ on $D$ .
Our proof of Theorem 2 will be based on a certain estimate of harmonic measure.

By $\omega(x, E, U)$ we denote the harmonic measure of $E$ for an open set $U$ evaluated
at $x$ . For $r>0$ let $U(r)=\{x\in D : \delta_{D}(x)<r\}$ . Since every point $x\in U(r)$

can be connected to $x_{0}$ by an arc $\gamma$ along which the distance to the boundary

increases as in (1.2), it follows that if $r>0$ is sufficiently small, then there is a point
$z\in D\cap S(x, A_{8}r)$ with $\delta_{D}(z)>2r$ , where $A_{8}>1$ is a constant depending only on
$D$ . Hence there is a ball $B(z, r)\subseteq B(x, A_{8}r)\backslash U(r)$ . This implies that

$\omega(x, \overline{c^{\gamma}(r)}\cap S(x, A_{8}r), U(r)\cap B(x, A_{8}r))\leq 1-\epsilon_{0}$ for $x\in U(r)$

with $0<\epsilon_{0}<1$ depending only on $A_{8}$ and the dimension. Let $R\geq r$ and repeat

this argument with the maximum principle. Then there exist positive constants $A_{9}$

and $A_{10}$ such that

(3.1) $\omega(x, \overline{U(r)}\cap S(x, R), U(r)\cap B(x, R))\leq\exp(A_{9}-A_{10}R/r)$ .

See [1, Lemma 1] for details.
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Let us compare the Green function and the harmonic measure. For simplicity
we let $D_{R}=B_{\rho}(\xi^{*}, (A_{6}+7)R)$ and $D_{R}’=B_{\rho}(\xi^{*}, A_{6}R)$ with $A_{6}$ as in Lemma 4. By
$G_{R}$ and $G_{R}’$ we denote the Green functions for $D_{R}$ and $D_{R}’$ , respectively.

Lemma 5. If $R>0$ is sufficiently small, then

$\omega(\cdot, S_{\rho}(\xi^{*}, 2R), B_{\rho}(\xi*, 2R))\leq AR^{n-2}c’R(\cdot, \xi R)\leq AR^{n-2}cR(\cdot, \xi_{R})$ on $B_{\rho}(\xi^{*}, R)$ ,

where $A$ depends only on $D$ .

Proof. It is sufficient to show the first inequality. We follow the idea of [7] and
[1]. We find $A_{11}>0$ depending only on $D$ such that $A_{11}R^{n-2}c’(R^{\cdot}’\xi_{R})<1/e$ on
$B_{\rho}(\xi^{*}, 2R)$ . Then

(3.2)
$B_{\rho}( \xi^{*}, 2R)=j\geq\bigcup_{0}D_{j}\cap B_{\rho}(\xi^{*}, 2R)$

,

where

$D_{j}=\{_{X}\in D:\exp(-2^{j+1})\leq A_{11}R^{n-}2c_{R}/(x, \xi R)<\exp(-2j)\}$ .

Let $U_{j}=( \bigcup_{k\geq j}Dk)\cap B_{\rho}(\xi*, 2R)=\{x\in B_{\rho}(\xi^{*}, 2R) : A_{11}R^{n-2}G’(R\xi_{R}x,)<\exp(-2^{j})\}$ .
First we observe

(3.3) $U_{j}\subset\{x\in D:\delta_{D}(X)<AR\exp(-2j/\lambda)\}$

with some $\lambda>0$ depending only on $D$ . For a moment fix $z \in S(\xi_{R}, \frac{1}{2}\delta_{D}(\xi_{R}))$ . Then
$G_{R}’(z, \xi R)\approx R2-n$ and

$k_{D_{R}’\backslash \{\xi_{R}}(_{XZ} \},)\leq k_{D_{R}’}(_{X}, \xi R)+A\leq A1o\mathrm{g}\frac{18R}{\delta_{D}(x)}$

for $x \in B_{\rho}(\xi^{*}, 9R)\backslash B(\xi_{R}, \frac{1}{2}\delta_{D}(\xi_{R}))$ by (2.7) and (2.9). We see from the Harnack
inequality that there is $\lambda>0$ such that

$\exp(-2^{j})>A_{11}R^{n}-2G_{R}/(x, \xi R)\geq AR^{n-2}c_{R}’(z, \xi_{R})\exp(-Ak_{D_{R}’\backslash }\{\xi R\}(_{X,Z}))$

$\geq A\exp(-\lambda\log\frac{18R}{\delta_{D}(x)})=A(\frac{\delta_{D}(x)}{18R})^{\lambda}$

for $x\in U_{j}$ . Thus (3.3) follows.
Let $r_{j}=AR\exp(-2j/\lambda)$ with A $\mathrm{i}\mathrm{r}\dot{\mathrm{l}}(3.3)$ . We take a slowly decreasing sequence

$\{R_{j}\}$ Converging. to $R$ such that

(3.4) $\sum_{j=1}^{\infty}\exp(2^{j+1}-\frac{A_{10}(R_{j-}1-Rj)}{r_{j}})<\infty$ ,
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where the value of the summation is independent of $R$ . In fact, if we let $R_{0}=2R$

and $R_{j}=(2- \frac{6}{\pi^{2}}\sum_{k\leq j^{\frac{1}{k^{2}}}})R$ for $j\geq 1$ , then (3.4) holds. For simplicity we let
$\omega_{0}=\omega(\cdot, S_{\rho}(\xi^{*}, 2R), B_{\rho}(\xi*, 2R))$ and

$d_{j}=$
In view of (3.2) it is sufficient to show that

(3.5) $\sup_{j\geq 0}d_{j}\leq A<\infty$
,

where $A$ is independent of $R$ .
Let $j>0$ . Let us apply the maximum principle over $U_{j}\mathrm{n}B_{\rho}(\xi^{*}, Rj-1)$ . Observe

that $D\cap\partial(U_{j}\cap B_{\rho}(\xi^{*}, R_{j-1}))$ is included in the union of $\overline{U_{j}}\cap S_{\rho}(\xi^{*}, R_{j-}1)$ and
$\{x\in B_{p}(\xi^{*}, Rj-1) : A_{11}R^{n-}2G’(RX, \xi R)=\exp(-2^{j})\}$ . By definition the last set is
included in $D_{j-1}\cap B_{\rho}(\xi^{*}, R_{j-1})$ , on which $\omega_{0}\leq d_{j-1}Rn-2G_{R}/(\cdot, \xi_{R})$ holds. Hence the
maximum principle yields that

(3.6) $\omega_{0}(X)\leq\omega(x, \overline{U_{j}}\cap S_{\rho}(\xi^{*}, R_{j1}-), U_{j}\cap B_{\rho}(\xi^{*}, R_{j-1}))+d_{j-1}R^{n-}2G_{R}/(x, \xi R)$.

for $x\in U_{j}\cap B_{\rho}(\xi^{*}, R_{j-1})$ .

Now let $x\in U_{j}\cap B_{\rho}(\xi*, Rj)$ . We apply the maximum principle over the connected
component $V_{x}$ of $U_{j}\cap B(x, R_{j-}1^{-}Rj)$ containing $x$ . In view of Lemma 1 we have
$|x-\pi(\xi^{*})|<R_{j}$ , so that $V_{x}\subset B(\pi(\xi^{*}), R_{j-1})$ . Hence Lemma 2 yields that $V_{x}\subset$

$B_{\rho}(\xi^{*}, R_{j-1})$ . Moreover, we have

(3.7) $D\cap\partial V_{x}\subset(D\cap\overline{V_{x}}\cap S(x, R_{jj}-1^{-}R))\cup(B_{\rho}(\xi^{*}, R_{j-1})\cap\partial U_{j})$ .

In fact, suppose $y\in D\cap\partial V_{x}$ and $|y-x|<R_{j-1}-R_{j}$ . Then there is $\epsilon>0$

such that $B(y, \epsilon)\subset D\cap B(\pi(\xi^{*}), R_{j-1})$ . By definition $V_{x}\cap B(y, \epsilon)\neq\emptyset$ , and hence
$y\in B(y, \epsilon)\subset B_{\beta}(\xi^{*}, R_{j}-1)$ by Lemma 2. It is easy to see that $y\in\partial U_{j}$ , so that (3.7)

follows.
Since $\omega(\cdot,\overline{U_{j}}\cap s(\rho\xi^{*}, Rj-1), U_{j\beta}\cap B(\xi^{*}, Rj-1))$ vanishes $\mathrm{q}.\mathrm{e}$ . on $\partial D\cup(B_{\beta}(\xi^{*}, Rj-1)\cap$

$\partial U_{j})$ , it is less than or equal to

$\omega(x,\overline{V_{x}}\cap S(x, R_{j1^{-}}-R_{j}), V_{x})\leq\omega(x, \overline{U_{j}}\cap S(x, R_{j}-1-Rj), U_{j}\cap B(x, R_{jj}-1^{-}R))$
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by the maximum principle and (3.7). The last harmonic measure is less than or
equal to $\exp(A_{9^{-}}A_{10(R_{j-1}R)}-j/r_{j})$ by (3.1) and (3.3). Since $A_{11}R^{n-2}c_{R}’(X, \xi_{R})\geq$

$\exp(-2^{j}+1)$ for $x\in D_{j}$ by definition, (3.6) now becomes

$\omega_{0}(x)\leq\{A_{11}\exp(2^{j+1}+A_{9}-\frac{A_{10}(Rj-1-Rj)}{r_{j}})+d_{j-1}\}R^{n-2}G’R(x, \xi_{R})$

for $x\in D_{j}\cap B_{\rho}(\xi^{*}, R_{j})$ . Dividing both sides by $R^{n-2}G_{R}/(x, \xi R)$ and taking the
supremum over $x\in D_{j}\cap B_{\rho}(\xi^{*}, R_{j})$ , we obtain

$d_{j} \leq A_{11}\exp(2^{j+1}+A_{9}-\frac{A_{10}(Rj-1-Rj)}{r_{j}})+d_{j-1}$ .

Hence (3.5) follows from (3.4). $\square$

Lemma 6. If $R>0$ is sufficiently $small_{f}$ then

$\frac{G_{R}(x,y)}{G_{R}(x,y)},\approx\frac{G_{R}(x,y’)}{G_{R}(x’,y)/}$ for $x,$ $x’\in B_{\rho}(\xi^{*}, R)$ and $y,$ $y’\in S_{\rho}(\xi*, 6R)$

with constant comparison depending only on $D$ .

Proof. Let us take $x_{R}\in S_{\rho}(\xi^{*}, R)$ and $y_{R}\in S_{\rho}(\xi*, 6R)$ such that $A_{5}R\leq\delta_{D}(x_{R})\leq R$

and $6A_{5}R\leq\delta_{D}(y_{R})\leq 6R$ . It is sufficient to show

(3.8) $G_{R}(x, y) \approx\frac{G_{R}(x_{R},y)}{c_{R(X_{R,y_{R})}}}G_{R}(x, y_{R})$

for $x\in B_{\rho}(\xi^{*}, R)$ and $y\in S_{p}(\xi*, 6R)$ . For simplicity we fix $y\in S_{\rho}(\xi^{*}, 6R)$ and let
$u(x)$ (resp. $v(x)$ ) be the left (resp. right) hand side of (3.8).

First we show that $u\geq Av$ on $B_{\rho}(\xi^{*}, R)$ with $A$ independent of $y$ . Observe that
(i) $u$ is a positive harmonic function on $D_{R}\backslash \{y\}$ with vanishing $\mathrm{q}.\mathrm{e}$ . on $\partial D_{R;}$

(ii) $v$ is a positive harmonic function on $D_{R}\backslash \{y_{R}\}$ with vanishing $\mathrm{q}.\mathrm{e}$ . on $\partial D_{R}$ .

Since $u$ is superharmonic on $D_{R}$ and $B_{\rho}(\xi^{*}, R)\subset D_{R}\backslash B(y_{R}, A_{5}R)$ , it is sufficient to
show that $u\geq Av$ on $S(y_{R}, A_{5}R)$ by the maximum principle. Take $z\in S(y_{R}, A_{5}R)$ .
Then $k_{D_{R}\backslash \{y_{R}}$ } $(Z, x_{R})\leq A$ by (2.7), and hence

(3.9) $v(z) \approx\frac{G_{R}(_{X_{R,y}})}{c_{R(x_{Ry_{R})}}},cR(_{X}R, yR\mathrm{I}=GR(_{X_{R,y}})\leq AR^{2-n}$ .

If $y\in B(y_{R}, 2A_{5}R)$ , then $u(z)=G_{R}(z, y)\geq AR^{2-n}$ , so that $u(z)\geq Av(z)*$ . If
$y\in D\backslash B(y_{R}, 2A_{5}R)$ , then (2.7) and Lemma 4 yield

$k_{D_{R}\backslash \{y}\}(Z, X_{R})\leq k_{D_{R}}(z, x_{R})+A\leq A$ ,
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whence $v(z)\approx G_{R}(x_{R}, y)\approx G_{R}(_{\mathcal{L}}’, y)=u(z)$ by (3.9). Hence we have $u\geq Av$ on
$S(y_{R}, A_{5}R)$ in any case.

In order to show that $u(x)\leq Av(x)$ , we make use of Lemma 5. It is clear that
$G_{R}(x, Z)\leq \mathrm{A}R^{2-n}\approx G_{R}(x_{R}, y_{R})$ for $x\in C_{\rho}(\xi^{*}, 2R)$ and $z\in B_{p}(\xi^{*}, 9R)\backslash B(\xi, 3R)$ ,

where $\xi=\pi(\xi^{*})$ . Since $S_{p}(\xi*, 2R)\subset C_{\rho}(\xi^{*}, 2R)$ , it follows from the maximum
principle that

$G_{R}(\cdot, z)\leq AG_{R}(X_{R,yR})\omega(\cdot, s_{\rho}(\xi^{*}, 2R), B_{\rho}(\xi^{*}, 2R))$ on $B_{\rho}(\xi^{*}, 2R)$ .

Since $G_{R}(x_{R,y_{R})}\approx R^{2-n}$ and $G_{R}(X, \xi_{R})\approx G_{R}(x, y_{R})$ , it follows from Lemma 5 and

the Harnack inequality that

(3.10) $G_{R}(x, Z)\leq AG_{R}(x_{R}, yR)Rn-2G_{R}(x, \xi_{R})\leq AG_{R}(x, yR)$

for $x\in B_{p}(\xi^{*}, R)$ and $z\in B_{\rho}(\xi^{*}, 9R)\backslash B(\xi, 3R)$ .

Now fix $x\in B_{\rho}(\xi^{*}, R)$ and $y\in S_{\rho}(\xi*, 6R)$ . If $\delta_{D}(y)\geq 2^{-1}A_{5}R$ , then $k_{D_{R}}(y, y_{R})\leq$

$A$ by Lemma 4, so that $G_{R}(x, y)\approx G_{R}(x, yR)$ and $G_{R}(x_{R,y})\approx G_{R}(x_{R}, y_{R})$ by the

Harnack inequality. Hence (3.8) follows. Therefore, we may assume that $\delta_{D}(y)<$

$2^{-1}A_{5}R$ . Then there is $\xi_{1}\in\partial D$ such that $|y-\xi_{1}|=\delta_{D}(y)<2^{-1}A_{5}R$. In view

of Lemma 1, we find $\xi_{1}^{*}\in\partial^{*}D$ such that $\pi(\xi_{1}^{*})=\xi_{1}$ and $y\in B_{\rho}(\xi_{1}^{*}, 2^{-}1A_{5}R)$ since
$B(y, \delta_{D}(y))\subset D$ . Since $5R<6R-2^{-1}A_{5}R\leq|\xi-\xi_{1}|\leq 6R+2^{-1}A_{5}R<7R$ , it

follows from Lemmas 1 and 2 that $B_{\rho}(\xi_{1}^{*}, 2R)\subset B_{\rho}(\xi^{*}, 9R)\backslash B(\xi, 3R)$, and hence

from (3.10) that $G_{R}(x, Z)\leq AG_{R}(x, yR)$ for $z\in B_{p}(\xi_{1}^{*}, 2R)$ . Hence the maximum

principle yields that

(3.11) $G_{R}(x, y)\leq AG_{R}(x, y_{R}\mathrm{I}\omega(y)(S_{p}\xi_{1}*, 2R),$ $B(\rho\xi^{*}1’ 2R))$ .

Using Lemma 5 with replacing $\xi^{*}$ by $\xi_{1}^{*}$ , we obtain

$\omega(y, S_{\rho}(\xi_{\perp}^{*}, 2R), B(\rho\xi^{*}1’ 2R))\leq AR^{n-2}c_{B}\xi 1*\rho(,A6R)(y, \xi’R)$

with $\xi_{R}’\in S_{\rho}(\xi_{1}^{*}, 4R)$ such that $4A_{5}R\leq\delta_{D}(\xi_{R}’)\leq 4R$ . Since $|\xi-\xi_{1}|<7R$ , it follows

from Lemma 2 that $B_{p}(\xi_{1}^{*}, A_{6}R)\subset B_{\rho}(\xi^{*}, (A_{6}+7)R)=D_{R}$ , so that

$\omega(y, S_{\rho}(\xi^{*}1’ 2R),$ $B(\rho\xi^{*}1’ 2R))\leq AR^{n-2}GR(y, \xi’R)=AR^{n-2}c_{R}(\xi’R, y)$ .

Hence (3.11) becomes

$G_{R}(x, y)\leq Ac_{R(x,y_{R})}R^{n-}2GR(\xi’R, y)\leq AG_{R}(x, yR)R^{n}-2cR(x_{R}, y)$
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by the Harnack inequality. Since $G_{R}(X_{R}, y_{R})\approx R^{2-n}$ , we have $u(x)\leq Av(x).\cdot$ Thus
(3.8) is proved. The proof is complete. $\square$

Proof of Theorem 2. We prove the theorem with $A_{7}=A_{6}+7$ . Since $u$ is a pos-
itive harmonic function on $D_{R}$ , we can consider the regularized reduced function
$\hat{R}_{u^{\rho}}^{s}(\xi^{*},6R)$ of $u$ to $S_{\rho}(\xi*, 6R)$ with respect to $D_{R}$ . This regularized reduced function
is a superharmonic function on $D_{R}$ such that $\hat{R}_{u^{\rho}}^{s}(\xi^{*},6R)=u\mathrm{q}.\mathrm{e}$. on $S_{\rho}(\xi*, 6R)$ and
harmonic on $D_{R}\backslash S_{\rho}(\xi*, 6R)$ . Moreover, $\hat{R}_{u^{\rho}}^{s(}\xi^{*},6R$)

$=0\mathrm{q}.\mathrm{e}$ . on $\partial D_{R}$ by assumption.
Since $u$ is bounded on $D_{R}$ , it follows from the maximum principle that $u=\hat{R}_{u^{\rho}}^{s}(\xi^{*},6R)$

on $B_{\rho}(\xi^{*}, 6R)$ . It is easy to see that $\hat{R}_{u^{\rho}}^{s(\xi^{*})}6R$
) is a Green potential of a measure $\mu$

supported on $S_{\rho}(\xi*, 6R)$ , i.e.

$u(x)= \int_{s_{\rho}}(\xi^{*},6R)(GRX, y)d\mu(y)$ for $\in B_{\rho}(\xi^{*}, 6R)$ .

Let $x,$ $x’\in B_{p}(\xi^{*}, R)$ and $y,$ $y’\in S_{\rho}(\xi*, 6R)$ . Then

$C_{R}(x, y) \approx\frac{G_{R}(x,y’)}{G_{R}(x,y)/},GR(_{X’}, y)$

by Lemma 6. Hence

$u(x) \approx\frac{G_{R}(x,y’)}{G_{R}(xy)/},,\int_{s_{\rho(\xi^{*}}},6R))G_{R}(_{X’}, yd\mu(y)=\frac{G_{R}(x,y)/}{G_{R}(x’,y’)}u(x)/$ .

Therefore,

$\frac{u(x)}{u(x)},\approx\frac{G_{R}(x,y’)}{G_{R}(x,y)/}$, uniformly for $y’\in S_{p}(\xi*, 6R)$ .

Similarly,

$\frac{v(x)}{v(x’)}\approx\frac{G_{R}(x,y)/}{G_{R}(x’,y)/}$ .

Hence the theorem follows. $\square$

Remark 2. In view of the above proof, the assertion of Theorem 2 holds for an
unbounded uniformly John domain if $\xi^{*}$ lies over a finite boundary point $\xi$ of $D$ .

4. PROOF OF THEOREM 1

Let $\mathscr{K}_{\xi}*\mathrm{b}\mathrm{e}$ the family of all positive harmonic functions $h$ on $D$ vanishing $\mathrm{q}.\mathrm{e}$ .
on $\partial D$ , bounded on $D\backslash B_{\rho}(\xi^{*}, r)$ for each $r>0$ and taking value $h(x_{0})=1$ . A
function $h$ in $\mathscr{S}t_{\xi^{*}}$ is called a kernel function at $\xi$ normalized at $x_{0}$ .
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Lemma 7. There is a constant $A\geq 1$ depending only on $D$ such that

$A^{-1} \leq\frac{u}{v}\leq A$ for $u,$ $v\in \mathscr{S}e_{\xi}*$ .

Proof. Let $u,$ $v\in \mathscr{H}_{\xi^{\mathrm{c}}}$ and let $r>0$ . Then $u$ and $v$ be bounded on $B_{\rho}(\xi_{1}^{*}, 2-1)r$ for
$\xi_{1}^{*}\in\partial D\cap\overline{S_{\rho}(\xi^{*},r)}$ . Hence Theorem 2 yields

$\frac{u(x)}{v(x)}\approx\frac{u(x’)}{v(x)}$, for $x,$ $x’\in B_{\rho}(\xi_{1}^{*}, 2^{-}1r/\mathrm{A}_{7})$ ,

where $A_{7}$ is as in Theorem 2. This, together with the Harnack inequality, shows

that

$\frac{u(x)}{v(x)}\approx\frac{u(x’)}{v(x)}$, for $x,$ $x’\in S_{\rho}(\xi^{*}, r)$ ,

where the constant of comparison is independent of $r$ . Then the same comparison

holds for $x,$ $x’\in D\backslash B_{\rho}(\xi^{*}, r)$ by the maximum principle. Since $u(x_{0})=v(x_{0})=1$ ,

it follows that

$\frac{u(x)}{v(x)}\approx 1$ for $x\in D\backslash B_{\rho}(\xi^{*}, r)$ .

Since $r>0$ is arbitrary small and the constant of comparison is independent of $r$ ,

the lemma follows. $\square$

Proof of Theorem 1. Lemma 7 actually shows that $\mathscr{K}_{\xi^{*}}$ is a singleton and that the

function $u\in \mathscr{S}\mathscr{S}_{\xi^{*}}$ is minimal. This is proved by Ancona [2, Lemma 6.2]. For the

reader’s convenience we give a short proof below. Let

$c= \sup_{\in xD}\frac{u(x)}{v(x)}u,v\in\ovalbox{\tt\small REJECT}_{\xi}*\cdot$

Then $1\leq c<\infty$ by Lemma 7. It is sufficient to show that $c=1$ . Suppose to the

contrary $c>1$ . Take arbitrary $u,$ $v\in \mathscr{S}t_{\xi}*$ . Then $v_{1}=(cv-u)/(c-1)\in \mathscr{K}_{\xi^{*}}$ , so

that $u\leq cv_{1}=c(cv-u)/(c-1)$ , whence $(2c-1)u\leq c^{2}v$ on $D$ . This would imply

$c= \sup_{x\in D^{\xi}}\frac{u(x)}{v(x)}u,v\in\ovalbox{\tt\small REJECT}*\leq\frac{c^{2}}{2c-1}<C$
,

a contradiction. Thus $c=1$ and $\mathscr{H}_{\xi^{*}}$ is a singleton. Moreover, the function $u\in$

$\mathscr{K}_{\xi^{*}}$ is minimal. For if $h$ is a positive harmonic function not greater than $u$ , then

$h/h(x_{0})\in \mathscr{H}_{\xi^{*}}$ , so that $h=h(x_{0})u$ . Let $G(x, y)$ be the Green function for $D$ . Put

$K(x, y)=c(x, y)/G(x_{0,y)}$ for $x\in D$ and $y\in D\backslash \{x_{0}\}$ . The Martin kernel is given
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as the limit of $K(x, y)$ when $y$ tends to a ideal boundary point. If $yarrow\xi^{*}\in\partial^{*}D$,
then some subsequence of $\{K(\cdot, y)\}$ converges to a positive harmonic function in
$\mathscr{H}_{\xi}*$ . However, since $\mathscr{H}_{\xi^{*}}$ is a singleton, it follows that all sequences $\{K(\cdot, y)\}$ must
converge to the same positive harmonic function, the Martin kernel $K(\cdot, \xi^{*})$ at $\xi^{*}$ .
Therefore $K(x, \cdot)$ extends continuously to $\overline{D}\backslash \{x_{0}\}$ . The kernel function $K(\cdot, \xi^{*})$

should be minimal. It is easy to see that distinct ideal boundary points on $\partial^{*}D$ have
different kernel functions. Hence the Martin compactification of $D$ is homeomorphic
to $D^{*}$ . The last assertion now follows from Proposition 1. The theorem is proved. $\square$

Using Theorem 2, we can show the following theorems in the same way as in [1,
Section 4]. We omit the details.

Theorem 3. Let $D$ be a uniformly John domain and let $V$ be an open. set and $K$

a compact subset of $V$ intersecting $\partial D$ . Then there are $A>0$ and $\epsilon>0$ depending
on $D,$ $V$ and $K$ such that

$| \frac{u(x)/v(_{X)}}{u(y)/v(y)}-1|\leq Ap_{D}(x, y)^{\epsilon}$ for $x,$ $y\in D\mathrm{n}K$ ,

whenever $u$ and $v$ are positive harmonic functions on $D$ , bounded on $D\cap V$ and
vanishing $q.e$ . on $\partial D\cap V$ . $M_{or}eoverJ$ the ratio $u/v$ extends to $D^{*}\cap\pi^{-1}(K)$ as a
H\"older continuous function with respect to $\rho_{D}$ .

This theorem is deduced from the following local version.

Theorem 4. Let $D$ be a uniformly John domain. Then there exist positive constants
$A$ and $\epsilon$ depending only on $D$ with the following property: Let $\xi^{*}\in\partial^{*}D$ and $R>0$

be sufficiently small. Suppose $u$ and $v$ are positive bounded harmonic functions on
$B_{\rho}(\xi^{*}, A_{7}R)vani\mathit{8}hingq.e$ . on $\partial D\cap\overline{B_{\rho}(\xi^{*},\mathrm{A}_{7}R)}$ . Then

$B_{\rho}( \xi^{*}r)\mathrm{O}\mathrm{S}\mathrm{c},\frac{u}{v}\leq A’(\frac{r}{R})_{B_{\rho}}^{\epsilon}\mathrm{o}\mathrm{s}\mathrm{c}\frac{u}{v}(\xi*,R)$ for $0<r\leq R$ .

Similarly, the Martin kernel $K(x, \xi^{*})$ for $D$ is H\"older continuous function with
respect to $\rho_{D}$ .

Theorem 5. Let $D$ be a bounded uniformly John domain. If $\xi_{1}^{*},$ $\xi_{2}^{*}\in\partial^{*}D$ and
$R\geq 4\rho_{D}(\xi_{1}^{*}, \xi_{2}*)$ , then

$D \backslash ^{\mathrm{o}\mathrm{s}\mathrm{c}\frac{K(\cdot,\xi_{1}^{*})}{K(\cdot,\xi_{2}^{*})}}B_{\rho}\xi^{*},R)\leq A(\frac{\rho_{D}(\xi_{1}^{*},\xi_{2}^{*})}{R})^{\mathcal{E}}$
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Moreover, if $x\in D\backslash B_{\rho}(\xi_{1}^{*}, R)f$ then

$| \frac{K(x,\xi_{1}^{*})}{K(x,\xi_{2}^{*})}-1|\leq A(\frac{\rho_{D}(\xi_{1}^{*},\xi_{2}^{*})}{R})^{\epsilon}$
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