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Four positive solutions for a semilinear elliptic equation
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0. Introduction

This paper is based on the joint work [AT1] with K. Tanaka. In this paper, we study the
existence and multiplicity of positive solutions of the following semilinear elliptic equation:

—-Au+u=a(z)u? + f(z) in RV,

u>0 in RY, (0.1)
ueHl(RN)a
N+2 N ~-1(pN
where 1 < p < (N 23),1<p<oo (N=1,2),a(z) € CRY), f(z) € H(RY)

N -2
and f(z) > 0. We also assume that

(H1) a(z) > 0 for all z € RV,
(H2) a(z) - 1 as |z| = oo,
(H3) there exist § > 0 and C > 0 such that

a(z) —1> —Ce~ =l forallz e RV .

(H4) a(z) € (0,1] for all z € RY, a(z) # 1.
First of all, we consider in the case f(z) = 0:

—Au+u=a(z)u? in RY,
u>0 in RV, (0.2)
u € HY(RN).

Positive solutions of (0.2) are corresponding to certain kinds of standing waves in nonlinear
equations of the Schrodinger or Klein-Gordon type. The existence of positive solutions of
(0.2) depends on the shape of a(z) delicately. For example, in the case a(z) = 1:

~Au+u=uP in RY,

u>0 in RV, | (0.3)
u € H'(RY), ‘



it is known that the equation (0.3) has a unique positive radial solution w(z) = w(|z|) > 0
and any positive solution u(z) of (0.3) can be written as

u(z) = w(x — xo) for some x5 € RY .

(See Kwong [K], c.f. Kabeya-Tanaka [KT)).
In the case a(x) Z 1, the situation is completely different even if the difference between
a(z) and 1 is small. (c.f. Lions [PLL1, PLL2]). For example, if a(z) satisfies

a(z) >1 forallz € RY, (0.4)

then we can see that the minimax value given by the Mountain Pass Theorem — we call
it the MP level in short — is lower than the first level of breaking down of the Palais-
Smale condition. Thus we can obtain a positive solution of (0.2) via the Mountain Pass
Theorem. On the other hand, if a(z) satisfies (H4), then we can see that the MP level is
exactly equal to the first level of breaking down of the Palais-Smale condition and we can
not get a positive solution through the Mountain Pass Theorem.

We remark that Bahri-Li [BaYL] showed that the existence of at least one positive
solution of (0.2) only under (H1)-(H3). See also Bahri-Lions [BaPLL], in which they
showed the éxistence of at least one positive solution under condition N > 2 and

a(z) —1> —Cexp(—d|z|) forallz € RN .

Here we study for the case f(z) > 0, f(z) # 0. Our main question is whether positive
solutions can survive after a perturbation of type (0.1) or not. Such a question was
studied by Zhu [Z], Cao-Zhou [CZ], Jeanjean [J], Hirano [H] and Adachi-Tanaka [AT2].
See also Ambrosetti and Badiale [AB] for a perturbation result via Poincaré-Melnikov type
arguments. Zhu [Z] (c.f. Hirano [H]) were mainly concerned with the case a(z) = 1 and
f(z) > 0, f(z) # 0 and succeeded to find the existence of at least two positive solutions
under the situation

W llz-1 vy < M, o (0.5)

where the constant M > 0 was chosen so that the corresponding functional:
I(u) = l/ IVul? + |ul® dz — L / - uPtldy — fudz

possesses the mountain pass environment. That is, there exist dop > 0, po > 0 and e €
HY(RY) such that |
I(u) > &0  for all ||u||grgr) = Po



and |
llellzr:m~y > po, I(e) < O.

Generalizations of the result of [Z] were done by Cao-Zhou [CZ], Jeanjean [J] and Adachi-
Tanaka [AT2]. They studied more general nonlinearities

~Au+4u=g(z,u)+ f(r) in RV,
u>0 in RY, (0.6)
u € HY(RY),

under suitable conditions. [CZ] and [J] showed the existence of at least two positive
solutions especially under the assumption:

9(z,uw) > g(u) (z lim g(w,u)) for all z € RY and u > 0. (0.7)
|z|—00

The assumption (0.7) is corresponding to (0.4). When f = 0, by the concentration com-
pactness principle, we also see that the Mountain Pass Theorem works under the assump-
tion (0.7). Thus the assumption (0.7) makes it easy to study (0.6) via variational methods.

In this paper, we study the multiplicity of positive solutions of (0.1) under the as-
sumption (H4). The situation is completely different from [CZ], [J] and as far as we know,
such a situation has not been studied. Technical difficulty is also different. For instance,
we use Lusternik-Schnirelman category instead of Mountain Pass Theorem to show the
existence of positive solutions of (0.1) and we show the existence of more positive solutions
under the assumption (H4). Our main results are the following

Theorem 0.1 ([AT1]). Assume (H1)-(H4). Then there exists a §; > 0 such that for
non-negative function f(z) satisfying 0 < ||f||g-1@®n~) < 8o, (0.1) possesses at least four
positive solutions. '

As to an asymptotic behavior of solutions obtained in Theorem 0.1 as || f|| H-1(RN) —
0, we have

Theorem 0.2 ([AT1]). Assume that a sequence of non-negative functions (f; (z))j=1 C
H™Y(RY) satisfies f;(z) # 0 and

|fillz-1mr¥) =0  asj — oo.

Then there exist a subsequence of (fj(x))32; — still denoted by (f; (z))j21 — and four
sequences (ugk) (z))jen (k= 1,2,3,4) of positive solutions of (0.1) with f(z) = f;(z) such



that v
(1) Hu§-”|IH1(RN) — 0 as j — oo.
(ii) There exist sequences (y§2));?‘;1, (y§-3))§°;1 C RY such that

k k k
501 = 00, 11uf(@) — (@~ 4 lmrcam) = 0

asj — oo for k =2,3.
- (iii) There exists a positive solution vo(x) of (0.2) such that

||u§4)(:c) - ’Uo(x)“Hl(RN).—) 0 as j — o0o.

We remark that the solutions u(® (z), u(®)(z) do not converge strongly to solutions of
- (0.1) with f = 0. As an immediate corollary to Theorem 0.2, we have the following result
on symmetry-breaking of positive solutions for (0.1).

Corollary 0.3 ([AT1]). Suppose that a(z) = a(|z|), f(z) = f(|z|) are radially symmetric
in addition to (H1)-(H4). Then there exists a 6, > 0 such that if f(z) > 0, f(z) # 0,
| fllzr-1my < 01, then (0.1) possesses at least one positive solution which is not radially

symmetric.

In next Section, we sketch the proof of Theorem 0.1.
1. Outline of the proof of Theorem 0.1

We use variational methods to find positive solutions of (0.1). We divide outline of the
proof of Theorem 0.1 into several steps.

Step 1 : functional setting
We define for given a(z) and f(z)

1 1
Ls(u) = 5llullin @) = 577 - a(z)uf ™ dz — /RN fudz : H'(R") - R,

Jao,f (v) = I?f‘a([a,f(tv) : X4 = R,

where

ol vy = ( [ vur+ lulz)dm> ,
RN
£={ve BRY); Iollmmm =1}
Sy ={veT; vy £0}.



We will see that critical points of Ioz(u) : HY(RY) —» R or J, ;(v) : ; — R are
corresponding to positive solutions of (0.1). We remark that if || f|| - 1(r) is sufficiently
small, then I, ;(u) has a mountain pass geometry, that is, Ia ,f(u) satisfies

(i) there exists a constant py > 0 such that

Ia,f(u) > 0 forallue HI(RN) with ”u”Hl(RN) = po,

(ii) {ue HI(RN); ”’U,”Hl(RN) > po and I, ¢(u) < 0} # 0,
(iii) I, ¢(u) <0.

Iu”Hl(RN)<PO
Step 2 : critical point near 0
First we find one positive solution u(l)(a, [3) = Uioc min(a, f; ) as a local minimum

of I, s(u) in B,,, where B,, = {u € H*(R"); lull 1 m vy < po}. We see that there exists
a critical point ujoc min(a, f; x) satisfying

Ia,f(uloc min) = inf Ia,f('u,) < 0.

Il g1 (®rN)y<po

We also see that I, f(u10c min) is the lowest functional level among all positive solutions
of (0.1). Moreover it is easily seen that

Ujoe min(aa f,.’I)) =0 in Hl(RN) as ”f”H"l(RN) — 0.

Thus uoc min(a, f; ) is the solution of (0.1) which satisfies the property (i) in Theorem
0.2.

Step 3 : breaking down of the Palais-Smale condition

We study here the breaking down of the Palais-Smale condition for I, ¢(u). The
unique positive radial solution w(z) of the limit equation (0.3) plays an important role to
describe an asymptotic behavior of the Palais-Smale sequence for I, f(u).

Definition. For c € R we say that (u;)%2; C H'(RY) is a (PS).-sequence for I, #(u), if
and only if (u;)32, satisfies

Ia’)f(uj) - C,

I, f(u;) = 0 in HT'(RY),

as j — oo. We also say I, f(u) satisfies (PS).-condition if any (PS).-sequence possesses a |
strongly convergent subsequence in H!(RY).

Proposition 1.1. Assume that (H1)-(H4) and suppose that (u;)52, c H'(RY) is a
(PS).-sequence for I, ¢(u). Then there exist a subsequence — still we denote by (uj)321



—, a critical point ug(z) of I, ¢(u), an integer £ € N U{0}, and ¢ sequences of points
()51, - LWHR, C RY such that
1° IyJ| —~ooasj—ooforallk=1,2,...,¢
2° Iy;-“~y;-“'|-—>ooasj—->oofork;ék’,
— 0 as j — oo,

u;(x) — (uo(x) + Zw z— y‘7 )
H'(RN)

4° Ia,f(uj) — Ia,f(uo) +e11,o(w) as j — oo.

o

3

This is rather standard result. See [PLL1, PLL2] for analogous arguments. From Propo-
sition 1.1, we see that (PS).-condition breaks down only for

¢ = I,,s(wo) + £ 0(w),

where ug € HY(RY) is a critical point of I, ¢(u) and £ € N. In particular, (PS).-condition
holds for the level
cE (—oo,Ia,f(uh,c min) + Il,o(w)). (1.1)

We remark that (PS).-sequence of J, ¢(v) also satisfies similar asymptotic behavior as that
of I, s(u) and (PS).-condition of J, ¢(v) also holds for the level (1.1).

Step 4 : '+ Lusternik-Schnirelman category
In this Step, we find two positive solutions different from Uzoc min under the level -
I, #(Uioc min) + I1,0(w). We use notation:

[o,r < €] = {u € Xy 5 Jo,f(u) < ¢}
for ¢ € R. We will observe that for sufficiently small ¢ > 0
[Ja,5 < Ia,#(tioc min(a, f37)) + I1,0(w) — €]
is not empty and
cat([Ja,; < I, f(Uioe min(a, ;7)) + I10(w) — €]) > 2 (1.2)

provided f(x) > 0, f(z) # 0 and ||f||z-1(gw) is sufficiently small. Here cat(-) stands
for the Lusternik-Schnirelman category. As a consequence of (1.1) and (1.2), we find two
positive solutions u(®(a, f;z) and u®(a, f;x) satisfying

I, s(u®(a, f; 2)) < Io,f(Uoc min(a, f : 7)) + 10(w) for k=2,3. (1.3)



We remark that for f = 0, we see that
Uloe min(a,0;2) =0

and
[Ja,,O < Ia,,O('U'loc min(aa 0,.’1)) +'Il,0(w)] = @ (14)
and (1.2) is the key of our proof. To get (1.2), we use the following interaction phenomenon.

Proposition 1.2. Assume that (H1)-(H4) and suppose that f > 0, f # 0. Then there
exists Rg > 0 such that

Lo, 5 (oc min + tw(r —y)) < Ig f(Uioc min) + I1,0(w) (1.5)

for all |y| > Rp and t > 0.

This idea is originally used by Bahri-Li [BaYL]. See also Bahri-Lions [BaPLL], Bahri-
Coron [BaC], Taubes [T]. We remark that (1.5) does not hold for f = 0. In fact, if f = 0,
then uioc min(a,0;z) = 0 and

I 0(t10c mZ-An(a,O; z) +w(z —y)) = Lo(w(z —y)) > I o(w).

Step 5 : a positive solution related to Bahri-Li’s solution
To find the fourth positive solution, we adapt the minimax method of Bahri-Li [BaYL)]
to our functional Jg,¢(v). More precisely, we define

bayf = inf Sup Jaa.f(’y(y))’

where

w o —
F={yeCR",24);v(y) = Wy for large |y|}.
”w”Hl(R”)

Then by Proposition 1.1, we will find a positive solution u®(a, f; ) corresponding to the

minimax value b, ¢ which satisfies

ba,f = Iar,f('u’(4) (G,, f; x)) 2 Ia.,_f(uloc min(aa f; x))‘l’ Il,o(W) (16)

for sufficiently small || f||z-1(g~). To show Theorem 0.2, we also use (1.3) and (1.6) in an
essential way. ‘ |
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