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Abstract. We study the blowup mechanism for a simplified system of chemotaxis. First,
Moser’s iteration scheme is applied and the blowup point of the solution is characterized
by the behavior of the local Zygmund norm. Then, Gagliardo-Nirenberg’s inequality gives
g0 > 0 satisfying limsupyp,, 1wl 1 (Brizo)ne) = €o for any blowup point zo €
and R > 0. On the other hand, from the study of the Green’s function it appears that
t [l L1 (Br(zo)nn) has @ bounded variation. Those facts imply the finiteness of
blowup points, and then, the chemotactic collapse at each blowup point and an estimate
of the number of blowup points follow.

1 Introduction

The present paper is devoted to a parabolic - elliptic system describing the
chemotactic feature of some organisms (cellular slime molds) sensitive to the
gradient of a chemical substance secreted by themselves. Precisely, it is given

as
w = V- (Vu—xuVv) in Qx(0,7T)
0=Av—+qv+au in Qx(0,7) (1)
Ul = Yo on {,

where

1. Q C R? is a bounded domain with smooth boundary 6§
2. X, 7, and a are positive constants

" 3. v denotes the outer unit normal vector
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4. ug = ug(z) is a smooth nonnegative function not identically 0 on Q.

It is proposed by Nagai [17] as a simplified model for the Keller-Segel system
[14], where u = u(z,t) > 0 and v = v(z,t) > 0 stand for the density of the
organisms and the concentration of the chemical substance, respectively.

The first equation shows that 7 = —Vu+xuVv is the flux of u so that the
effect of diffusion —V - Vu and that of chemotaxis xV - (uVv) are competing
for u to vary. Sometimes the term 7v; is added to the left-hand side of the
second equation. In this case it sets up the system of Nanjundiah [20], called
the full system in the present paper. (Still it simplifies the original system
[14], where x and a are functions of v and v.) Then it describes that v
diffuses, is produced proportionary to u, and is destroyed by a certain rate.
Usually the positive constant 7 is very small, and neglecting the term 7v;
gives (1). ‘

There is another approximation introduced by Jager and Luckhaus [13]
describing the limiting case of 7 | 0 with x,a ~ 1 and v ~ 7. There, the
second equation is replaced by

i
0 = Av+ a(u — 1) with ﬁo:ﬁlzu'

Jager and Luckhaus [13] showed the following; if ||lug|l; <« 1 then T =
+oo follows, while if ||ug|l; > 1 then T < 400 can happen. Here and
henceforth, T},,x denotes the maximal time for the existence of the solution,
and || - ||, the standard L? norm for 1 < p < oo.

The case Thax < +00 is referred to as the blowup in a finite time of
the solution, which has attracted both mathematical and biological inter-
ests. Nagai [17] showed precise results to the radially symmetric case of (1);
lluoll; = 8m/(ax) is the threshold for the blowup. Namely, ||uo||, < 87/(ax)
implies Tipax = +00, While Tia < +00 occurs if ||ug|| > 87/(ax), which
correspond exactly to what Childress [6] and Childress and Percus |7] con-
jectured to the full system.

Another conjecture made by [20] concerns the behavior of blowup solu-
tions; u(z,t)dr will form a delta function sigularity as t T Tpax, Which is
referred to as the chemotactic collapse. A remarkable study was made by
Herrero and Veldzquez [11]; there are solutions to the Jager-Luckhaus model
satisfying _

w' — tTl;glﬂ u(z,t)dr = mébyy(dx) + f(z)dz (2)
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in M(Q), the space of measures on (2, where 2 = {z € R? | |z| < 1}, u(z,1t) =
u(fo],2), 70 = 0, m = 8n/(ax), and f(z) = f (lz]) € C (R\{0}) N L'()
is a nonnegative function. Actually much sharper descriptions are presented
there concerning the asymptotic behavior of the solution. Those results,
the existence of threshold and that of chemotactic collapse, were later ex-
tended to the full system by Nagai, Senba, and Yoshida [19] and Herrero and
Veldzquez [12], respectively. _

The nonradial case is somewhat different and [19] gave only |lug|; <
4w/ (ax) as a sufficient condition for Tax = +00. Biler [3] and Gajewski and
Zacharias [8] obtained the same result independently. The proof is devoted
to the full system but valid even for (1). The discrepancy between radial
and nonradial cases suggests that the concentration toward the boundary
occurs to nonradial blowup solutions. On the other hand conjecture [6], [7]
concerning the threshold value was based on a heuristic observation to the
structure of radially symmetric stationary solutions. Motivated by them,
we studied isolated blowup points (Nagai, Senba, and Suzuki [18]) and the
strucure of nonradial stationary solutions (Senba and Suzuki [21]) in details.
Consequently, we were led to the following conjectures.

1. It happens that 4m/(ax) < ||ul|; < 87/(ax) and Tpax < +oo. In this
case, the mass u(z,t)dz concentrates to a point on the boundary as
t T Tmax, and in particular, radially symmetric solutions are unstable
on Q= {z e R?||z| < 1}.

2. At each blowup point zy € Q the chemotactic collapse (2) occurs with
m = 8m/(ax) and m = 4w/(ax) according to zo € £ and o € 01,
respectively. Here and henceforth, by definition the Dirac measure
840 (dz) € M(QQ) acts as

<77($)1 6:1:0 (d:I:)) - 77(1:0) (l'o c ﬁ)
for 5 € C(0).

The present paper shows a partial answer and the second conjecture is
proven with m = 8w/(ax) and m = 4x/(ax) replaced by m > 8n/(ax)
and m > 4 /(a)), respectively. As a consequence we have the finiteness of
blowup points. More precisely, it holds that

2 x f (inteﬁor blowup points) + {(boundary blowup points)
< ax||uoll, /4. 3



Therefore, if 4n/(ax) < ||lull; < 87/(ax) and Tmax < +0o occurs then
u(z,t)dz concentrates to a point on the boundary as ¢ T Tpax. Inequality
(3) is also regarded as a natural refinement of the results of [17] and [19],
[3], [8] concerning the continuation of the solution globally in time; in the
radially symmetric case ||ug||; < 87/(xa) implies Tipax = +00 and generally,
flu1ll; < 4m/(ax) does. We expect that (3) is sharp. An interesting question
is whether one can prescribe the numbers of interior and boundary blowup
points independently.

So far, most results proven for (1) have been verified to hold in the full
system; as is described, ||ug||; < 47/(a)) implies Tyuax < +00, and there are
chmotactic collapses (2) for radially symmetric cases. OQur method does not
apply directly, but the results obtained in the present paper are expected
to hold in the full system. Actually, our results hold in the Jager-Luckhaus
model with minor changes of the proof.

2 Summary

Henceforth, we put
X=7=a= 1

for simplicity. We also suppose
- uy € C*HQ), uo(z) > 0, and  wp(z) #0.

Let —L be the differential operator —A with (0/0v)-|5q = 0. It generates a
holomophic semigroup on L?(2) denoted by

{e"w |t > 0}

for 1 < p < 0o (see Tanabe [23], e.g.). System (1) is reduced to the abstract
equation

t
u(t) = e Hug + / e (t-9Ly. (’u(s)V (c+1)7" u(s)) ds 4)
0
and the method of Yagi [24] or Biler [3] applies. Exiétence, uniqueness,

regularity, and positivity hold for the time local solution.
The first theorem justifies the terminology blowup.

67



68

Theorem 1 If Thax < +00, then

Ain JJu(®)llo, = +o0 » (5)

holds.

Regarding this, we define the blowup set B of v usually as

B= {:Bo € Q| there exist & T Tmax and Tx — T

such that wu(zg,tx) — +oo as k— oo}

and call each g € B a blowup point. Condition Tiax < +oco implies B # 0,
but more importantly, the finiteness of blowup points follows.

Theorem 2 We have
28BN+ 1 (BN < [luoll, /(4m) (6)
if Tpax < +00.
Also chemotactic collapse occurs at each blowup point.

Theorem 3 If Thax < 400, there is a mapping m : B — [Amw, +o00) with
m|grq = 8T and a nonnegative function f = f(x) in

feCc@\B)nLY(N) (7)
satisfying
wt — tTl%‘ﬂx u(z,t)dr = ZB m(zg)bx, (dz) + f(z)dz (8)

Theorems 2 and 3 are proven in the following way. First, we show the
finiteness of blowup points. This implies that any blowup point z; is isolated
and by the method of [18], the estimates [19], [3], [8] can be localized around
zy. Consequently, chemotactic collapse (8) is proven, and then, the estimate
~ of the number of blowup points, inequality (6), follows because L' norm of
u is preserved: .

lu@ll, = lluoll;,  (0<t<Tma) (9)



In such arguments, the crucial part is showing §8 < +o0o0. Fortunately,
system (1) admits for local L' norms of u to have bounded variations as
t T Timax- Combining this fact with the Gagliardo-Nirenberg type inequalities
implies the finiteness of blowup points.

The present paper is divided into eight sections. Taking preliminaries in
§3, we characterize the blowup point in terms of the localized Zygmund norm
in §4. Then, Theorem 1 is proven in §5. Section 6 is a remark on the Green’s
function. The finiteness of blowup points is proven in §7 and the proof of
Theorem 3 is completed in §8. '

3 Preliminaries

A form of the Gagliardo-Nirenberg inequality in two space dimension is in-
dicated as

lwll; < K> 1Vl + lwl})  wew" (@), (10)

where K > 0 is a constant determined by 2 (see Adams [1]). In this section
we shall show some inequalities derived from (10) for later uses. Henceforth
we set Br(zp) = {z € R? | |z — z0| < R}.
First, we introduce the cut-off function ¢ satisfying
Dy

0<p<1 in R? 5, =0 on o0 (11)

Actually, it is taken in the following way:.
Given zp € 2, we have 0 < R’ < R with Bag(zp) C Q. Then we take ¢
satisfying

1 (z € Br/(z0))
¢(z) = { 0 (z € R?\ B(x)).

Next we .prepa.re ¢ € C°(R?) satisfying ¢ = ((|y]), 0 < ¢ <1 in R?, and

(12)

1 (y € B12(0))

)= { 0 (y€R2\Bi(0)).

Given zy € 912, we take a smooth conformal mapping X : Byg(zo) N0 — R2
satisfying z¢ — 0 and

X (BzR(SL”()) ﬂQ) C {(271,1‘2) I Ty > O}
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X (BgR(.'B()) ﬂBQ) C {(171,$2) I Ty = 0}
X (BRI (.’L‘())' N Q) C B]/z(())
X (2\ Br(zo)) C R?\ B1(0)

for 0 < R’ < R < 1. Then we set ¢(z) = { (X(z)). It holds that

0 0X
Py oX—E-(VCoX):0 on 0N

because (0.X)/(0v) is proportional to (0, —1) on 02, and such ¢ satisfies (11)
and (12).
Above p is sometimes written as @z, rr r. Then, ¥ = (@ r.r)° satisfies

[ 1 (z€Bu))
¢(x)._ { 0 (z€ RI;\ ER(Z'O))
0<¥ <1 in R? g%:o on ON

[Vy| < Ay5/6 ) 2
Ay < Bys |0 RS

where A > 0 and B > 0 are constants determined by 0 < R' < R < 1.

Lemrha 4 The following inequalities hold for any s > 1, where C > 0
s ‘a constant:
A2

2 2K2/ / -1 2 K22 2
| [ v a1V Y+ K2 (S 1)l (13)

2K*
2 < -1 / -1 2
Lu < logsL(UIogu—Fe ) U |Vu|

IA

+2K2 |Ju))? + 352 |9 (14)
T2K?
3 < / I -1). / :
Lu Y =< log s JBgr(zo)n (u ogute ) leul v
+C "””?,I(B(zo,zz)m) +10]Q|s° : (15)

Proof: Putting w = uy'/2, we have

(vl < 2{f v va{ o)
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2 AZ
< o [ 1vulv?} + S ul

A2
< 9 / Ak .
S AL L A |Vul|”y + 5 IIUII;

Hence (13) follows from (10) and ||w||; < ||u]|;-
We turn to (14). Take w = (u — s) with a; = max {a,0}. We have

1
2 _ _ 2>/ (_2__ 2)
”w”2 A‘u s}(u S) - {u>s} 2U s
1 3
- —_ 2 2>_/ 2__29'
/2 fu<s}2 /93*2 R ~ 2% 1

On the other hand we have ||w||? < |ju||? and

2

vl < { [ a} < [ e [t
{u>s} {u>s}: {u>s}
1 ' -1 -1 2
< @L(ulogUnLe )Lu |Vu|

because slogs > —e™! for any s > 0. This implies (14).
Finally, take w = (u — 5)¥%y1/2_ We have

1
—sY¥ > (_3___ 3)
/{u>s} (w=s)i92 {u>s) 4” )Y
1 )
> = 30— 23101
> 7 [y -5

I

2
||w||2

Because 3 !
[Vw| < 5(u — 5) V2| Va2 + —2-A(u — 5)32y1/3

we have

9 2
||Vw||§ < 2 {/{Ds}(u - 5)1/2|Vu|¢1/2}

‘é—z {/{ }(u -~ 3)3/21111/3}2 .

_+_



Here, it holds that

2 ) 2
{/ <u—s)"2|VuI«/f‘/2} 5{/ "m'v““"m}
u>s} {u>s}

< w [ [Vuly
Br(xo)N{u>s} {u>s}
1 / (ulogu+e“1) / |Vul?y
log s JBgr(xe)n2 Q

: , \
 \3/2,,1/3 1/3,1/2
{./{u>s}(u 8) _ v } = {-Au>s} W }

2/3 ' _
SRR S e——

-and

1/3\72

3 3

< elzu P+ 5 (-2-8) |Q| ”””LI(BR(mo)ﬂQ) ’
4 £—2. we have

where € > 0. Writing C, =

9
1 -1 / Vuf?
21ogs Lg(zo)nﬂ (u ogute IVuly

e [0+ GO el
Since /2 < /3, it follows from (16) that

2 3
lwll} < e [ w -+ Celf Iullzaapgeornny-

1 A?
(o500 o
=z

IVwlly

9K2 -1 2
o L o (ulogu+e7?)- f (Vul?

A2
LK2C. 19 ( 4 1) sy + 2571

by (10). Taking & > 0 as

we obtain (15).

72
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4 Characterization of Blowup Points

Henceforth, we always assume Tinax < 400 and B denotes the blowup set
of u. Generic positive constants are denoted as Cy,Cs,- - -, successively. In
the case that their dependences on the parameters, say a, 3, - - -, have to be
indicated precicely, we write them as Cq,,Co g, - - -, and so forth.

The first equation of (1), provided with the boundary conditions, gives

d/u—()
dt Jo

or (9) by u > 0. Then the L! estimate (see [4]) to the second equation of (1)
gives

sup  {[[v(®) e + V@), } < +oo (17)

0<t<Tmax

for ¢ € [1,2) and p € [1,00). Here and henceforth, W™9(Q2) denotes the
usual Sobolev space; the set of g-integrable functions up to m-th order of
differentiation. (Sometimes m becomes fractional. See Henry [10].)

We prove the following lemma.

Lemma 5 o € Q is a blowup point of u if and only if

limsu / ulogu)(-,1) = +o0
m sup BR(IO)HQ( gu)(-1)

for R > 0 sufficiently small.

Proof: The only if part is obvious, because xy ¢ B implies

ogfgql‘)m () ”L""(BR(zo)nQ) < 400

for 0 < R < 1 by the definition. To prove the if part, we take 0 < R < 1
and suppose

sup / (ulogw)(-,t) < +oo. (18)
Br(zo)NQ

0<t<Timax

Localizing the estimates of [19], [3], [8], we shall show that then z, ¢ B
follows.
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‘Step 1: Let 0 < R < Rand ¢ = (Pso,.r)°- We multiply uy to the
first equation of (1) to get the identity

1d
2dt Ja

u2¢+L|Vu]21/)+/QuVu V¢

:Lu(Vv-Vu)QIJnLL?ﬁV'U-Vw. | (19)
The first term of the right-hand side of (19) is treated by the second equation

of (1) as
LU(VU-VU)¢ =

Therefore, we have

2dt

%L(Vu2~Vv)z/)
—1/(2Av)¢ ;/ w2V - Vi
2/ ubyp — 2/ump /uzw-vz/;

— 3 — — 2 -

z/nuz/) 2LuV’u Vv
—1-/u3¢+l/vVu2-V¢+1/u2vAw.
2Ja 2 Ja 2 Ja

/ 1/J+/|Vu| 1/J+/uVu Vi

'SEAU¢+§L'11VU-V1/)+§LU2UA¢. (20)

Here, Young’s inequality is applied to each term as

Mquu-Vz,b

% vazﬂ-w’

<

<

IA

1/3 1/2
A A w3 - V|

Alﬂll/ﬁ {/ u3¢}1/3 {/ |Vu|2z/)}1/2

e fores 255

A
< - . 1/3, 1/2
2 /v U |Vu|y

IA

IA

gl { [} { [ 10ur v}

A% 1]l
3 f2 nTie
4fIVI¢+/¢+ o,



and

17 , B B 2/3
- Al < B 223 < 2 {/ 3}
2|L‘“’ w[ < 5 [o-w? < Sl { [ uy
1 B2 ||v|;
< = 3 S
= 34'“’“ 6

We recall (17), and deduce from (20) that

d _
afguszrLIVufngqu%—Cl. (21)

Now combine (15) with (21), (18), and (9). Making s > 1, we have

— - < C,.
@ v+ g f v v <
This implies

sup w?(-, 1)y < +oo. (22)
0<t<Tmax J

Step 2: Multiplying 4?3y to the first equation of (1) gives

1d [ 4 , \
T = Qu¢+2Luqu| ¢+/Qu Vu - V)

:zLuz(Vv-Vu)er/Quva-w.

3/2 this means that

s v+ g [ 1w Pk fuve Ve
=% [w (Vo Vu)y + [wvy.vy.

For w=u

Here, in use of the second equation of (1) we have
[w(Vv- o)y =2 /(Vv V) g
§—~/uw1,b———/'w2V'v 2
(/ 3¢) Y0 4 = /va VYt /w vAY

1
2
1 3 1 2 4 2 2 _8_8_@1
2/w¢+2L'vV'w _v¢+2£zwm¢+2 (g) -

IA

IN
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We obtain

3dt/’uf"i/ﬂrgfIVw| Y+ < /wVw Vi
8)8.IQI

2
-— 3 — 2. _— —_— -— —_—
_3‘/Qw¢+3£lva V¢+3vaA¢+3 (9 9"

which obeys a similar form of (20).
Inequality (22) implies

sup w?3(-, 1)y < +oo.
0<t<Timax /<

In particular, we have

sup / (wlogw) (-, 1) < +oo0.
Bprr(zo)N2

0<t<Trmax

and

8;1113 lw(-, t)”Ll(BR,(xo)r‘tﬂ) < +oo.

Therefore, taking R” E (0, R'), we can apply the arguments of step 1 with u,
R,and ¢ = (‘P:z:o,R’,R) , replacing by w, R/, and ¥1 = (@xo,r", r)°, respectively.
Similarly to (22) it follows that

2/3
sup ||w(t)||L/2(B,(m)nQ) T o< fgql? ||”(t)”L3(Br(mo)ﬂﬂ)»< +oo

<t<Tmax

for any r € (0, R), because R’ € (0, R) and R” € (0, R') are arbitrary.
From the second equation of (1) this implies

sup  [[v(&)lwza(s,, 2oy < 00

<rna:x

for v’ € (0,r). Therefore,

sup  |[v()llcr (s, @oyngy < 00 (23)

0<t<Tmax
holds for any r € (0, R).

Repeating the arguments once more, we have

o< sup  |[u(®)|| 4B, (zo)ng) < +o0- (24)

<nmx
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Step 3: Take v’ € (0,r) and put ), = ((,o,,.o,,a,,)sl. For p > 1 we multiply
uPyY?t! by the first equation of (1) and get

Here we have

L (pu”_lv,b{’“Vu + u”V'«ﬁPH) -Vu

I =

v %

v

We obtain

11

4p
(p + 1)"’

/ lv p+1

(p+1 /l p+1

= —I4+1I

¢p+1 + / v¢p+l VuP !

20 P

PP+ + 1f¢12 Vo't w2

{(p+1)2 p+1}/| u's
p+1/|v( v

p+1/s‘z

ay!
p+1Ja

1
p+1Ja

2

2

p+1
2 .

p+1 _

T2 Q“”“uﬂf o

B Az(p+ 1) / (u 1,01)”+(2/3) /3

+
P b=

Vi,

V (U'(ﬁ]) 2

pi1 |2

\Y/ (Ulpl) 2 |

L2 2
v (qu])‘%— A (p+ 1)

1/3
lluoll 3,

{ [ (uwl)“‘””’} -

On the other hand, estimate (23) means that

L= sup ||Vv| e, (zo)ng) < +00.

0<t<Tnax

< L L [V (ury)|

=V ()" + Yy,
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IA

{2 [ ) [t o]
52% [ )™ |V )
+LA(@p + 1) /Q (uahy)PHB/0) ,1/6

a4 1) [

pt+1
2

IA

IA

1 pil
I B\ v/ =
p+1 /Q | (ui)

5/6
FLAG+ ) uoll gy { [ wpn) 7}
It holds that

d pi1 2
;’ﬁlzu’l’-’-l < _leulz +C3(p+ 1)2Lu{’+1

2/3 5/6
L Cylp + 1) ( { L u}+(3/2”’} N { L u}+(6/5”’} ) (25)

where u; = uip,. Here, C3 > 0 is independent of p > 1 and we can apply an
iteration scheme of Moser’s type (see Alikakos [2]). To this end we make use
of Gagliardo-Nirenberg’s inequality in the form of

1-(1/q)
2 2 1
Wl < K (IV0ll20) + lwliag) > el (26)

where K > 0 is independent of ¢ € [1, qo] for given go > 1.

First, we apply (26) for w = v®*V/? and g = 2£2 ¢ 2,3). We have

p+1
2/3
Cs(P+ 1)2 {L ui+(3/2)1’}
0 pi1 |2 1 %1;:15 p+1Y2/3
<Cs(p+1) {L'Vulz +Lu{’+} -{Lulz} )

Because 2241 < 2, the right-hand side is dominated from above by

3p+3
2 2/3 +1y2/3
+u’1’+1)+1} {/ urz_}
Q

il

C'3(p+ 1)2 {_/Q (‘Vulz
2 ) pt1 12
+u’1’+)+1}+16(3’§(p+1)6{£2u12 +1} .

1 ptl
6 | Ja
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Second, we apply (26) for w = u#*V/? and q = 12210 ¢ (2 12) Wy, have

5p+5 10°5
5/6
Cap + 1) { A u}+(6/5)p}
i1 2
< Cs(p+1)° {A Vu,? | +
4 9 pt1 |2
< Cs(p+1) {/ (Vul

Tp15

Apto
12p+12 +145/6
) )
Q Q
7/12
p+1) + 1} . {/ U?}S/ﬁ
Q
+1}+ ('_7)7 C2P(p 1 1) 24/5{/ }
2 Q

1 +1
1 p+1 7 12/5 6 Bt 2
_6{ (lvu1 b )+1}+(§) 2B (p 4 1) {Lul +1}.
(p+1)/2

Finally, we apply (26) for w = uj and g = 2. We have
Cap + 1 [ u
Q

Sca(P+1)2 {L (,Vuf_;_l 2+ p+1)}1/2 {Lufzﬂ}
< 6{ <qu1 ”+1)+1}+3C32(p+ 1)4{Lu1; +1}2.

Thus, inequality (25) gives that

1 Bl 2
P+1 - 2
dt/ 2/IVU1
+1 2
2/ P+‘+c4(p+1)6{/gu?+1} .

However, again (26) for ¢ = 2 implies

IA

A

2 ' 9 9 1/2
lwlize@) < K2 (IVellzag) + wllfag) " ol
1 2 2 2
< 1 (||Vw”z,2(n) + ”w”L2(Q)) + K4-”w”L1(Q)
and hence
112 1 n2 4K4 1|2
u, 2 - IVu + — ||u,? .
L2(S) 3 L2() 3 L)
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We obtain

d pt1, 1 pi1 2
AR YA
+1 2 +1 3 2
S_C4(p+1)6{/ u? +,1} +—2-K2{/ ufﬂ_}
Q 3 Q
and therefore,

d p+1 p+1 6 el 2
d < Cs(p+1 / 2 1} .
dtlzul +Au1 ~ 5(p+){ﬂu1 +
This gives that
sup {/ uﬁ’“—kl}
0<t<Tinax \JE2

. pil 2 :
< Gomax{(p+1° sup { [ 4% + 1} ol 0141},

. 0<t<Trax
Therefore,
k
P, = sup u +1
0<t<Tpmax /§2
satisfies

‘ ok+1
Pry1 < Crmax {26(’““)‘1’2, (121 +1) (”“0”1,00(9) + 1) }
ok+1
< G5 max {«pz, (loll oy + 1) } (27)

fork=1,2,---.
Let d = ||uo| poo(qy + 1 Then, (27) is reduced to

. — k - —
Bipn < GEM1 2T M oy (g2 24

for k= 2,3,---. We have

1
' 1
k+1) 2k+I T
sup { / uj } < QR
0<t<Tmax (/O

gk—1_4

< GF X max {9}, d},



and letting k£ — +o0,

1/4
4
sup ”ul('rt)”L“’(Q) < 05 max {( Sup ”ul('7 t)"L“(Q) + 1) ’ d}
0<t<Tmax 0<t<Tmax

follows. In use of (24), we obtain
sup  |[u1(, &) || ooy = oI IIU(’,t)wllle(g) < +o0,
0<t<Tmax <t<
or
lim sup ”u(t)”Lw(B,,(zq)nQ) < +00.

max

This means zo € B and the proof is complete.

5 Proof of Theorem 1

The global version of Lemma 5 is expressed as follows:

limsup [ ulogu < +o0 (28)
1T Q
implies
limsup ||u(t)]| , < +oo. - (29)
1T

In fact, this is proven just by replacing the cut-off function ¢ by the constant
function 1. If (29) follows, then equation (4) assures for the solution u to be
continued after t =T

We shall show that (28) follows from

liminf [ ulogu < +oo0. (30)
T Q
Then, Thax < +00 holds only if
liminf/ ulogu = +o00,
tTTmax JQ

and in particular relation (5) follows.
To this end, we multiply logu by the first equation of (1). In use of the
second equation of (1) we have

;it/ulogzﬂ—/ 1 Vuf? +/u'u~/ _(31)
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The right-hand side is dominated by (14); It follows that

d 2K? | -1 -1 2
a—il]ulogu + (l—logSA(ulogUJre )) -Lu |Vul
< C |luoll} +35*|92]-

Taking
s = s(t) = exp (2[(2/ (ulogu + e_l)) > 1,
Q
we have iJ
2 2
— < Clluoll; + 3|02 exp (4K37), (32)
where

J:L(ulogu-{—e"l).

liminf J(t) < 400
1T

Inequality (32) and

imply
limsup J(t) < +o00
1T
by the comparison theorem for ordinary differential equations. In particular,
(30) implies (28). The proof of complete.

6 Estimate on the Green’s Function

Given 79 € 0, we take 0 < R’ < R <« 1 and set ¥ = (@zor )’ Let
G = G(z,y) be the Green’s function of the operator £ + 1, so that it solves

(-84 +1)G=éb@y—2z) (e

with 5

for z € Q. From the elliptic regularity, it is extended to a smooth function
on Q x 0\ {(x, z) |z € Q} Also the symmetry G(z,y) = G(y, z) follows.
In this section we show the following.
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Lemma 6 The function
p(z,y) = Vi(z) - V.G (z,y) + VY (y) - V,G(z,y)
belongs to L™ (2 x Q).
Proof:

Case 1: 2, € Q
Let Ko(r) be the modified Bessel function of the second kind:

Ko(r) = {r + log — }Io(r) + Z s (zk: 1) (g)zk |

where

To(r )—Z(,:,) (5)

k=0

denotes the modified Bessel function of the first kind. Then the classical
theory guarantees that e(r) = ;= Ko(r) provides a fundamental solution for
—A + 1, so that

(A +1) ey (|z]) = 6(0)

holds in R?. Furthermore, the above expression of Kj gives that
2
|z

1 2,0 :
eo (|z]) = (1 + -—4—) log Tl + (C’ functlon) (33)

with 6 € (0,1).
Given z € (2, let G(z,y) = ep (|z — y|) + Ko(z,y). Then it holds that

(A, +1)Kp=0 (ye )

with 5 5
Z 2 _ o).
au,,K" ayyeo(lx -yl) (e Q)‘

Therefore, the elliptic regularity givés Ky € Cf,;ﬁ (Q X (_2) Combining this
with (33), we obtain

.
G(z,y) = 5 108 + K(z,y)

1
|z —y]
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with K € C? (Q X ﬁ). Because G(z,y) is symmetric, we also have K €
cL? (ﬁ X Q) ‘Therefore,

p(z,y) = — (& —y) - (Vo(z) — VY(y)) / (27 |z — yI)
+Vi(z) - Vo K(z,y) + VY (y) - VK (z,y)
belongs to L™ (2 x Q) by supp 9 C S

Case 2: Ty € 0N

We take the conformal mapping X : Byp(zo) N2 — R? of section 3. The
function ¢ = |X’|> o X~ has a bounded smooth extension on R%, where
R2 = {(z1,22) | 72 > 0}. Let ¢ = c(§) € CY1(R?) be its even extension. A
fundamental solution e(£,n) of —A + ¢ exsits so that

(—Ay +é(n)) e(€,m) = 6(n — &)
holds for 7, £ € R2. |

On the other hand, in the same way as in Case 1 we can take a = a(§) €
Co(R?) and K = K(¢,7) € Cpi (R? x R?) with

EeRE > K(&) € Gl (R?)

locally #-continuous and

&(6,m) = 5 (1+ a6) € ") log = + K (&, m)

1
1€ —ml
satisfying
(—Aq+ &) &, m) = 8(n — ).
In particular, we have
(—2y + &) (&€, m) — e(§,m) = (&(n) — &(§)) &, ),

of which right-hand side belongs to Cf,. (R x R?). The elliptic regularity
gives the local #-continuity of

EER? &) —el¢,) € Cre (R)
and we obtain ]
o

log ! — + Ky(&,7) (34)

el = € — nl



85

with L -
EeRT — Ki(§) ey (RE)
locally #-continuous. In particular, V, K; € C{’w (ﬁ—f: X R_i) follows.
Let
E(&,n) = e(§, ) +e(€,n°)

with * = (m, —1r) for 5 = (1, 72). Then, for ¢ € RZ it holds that -

(—By+cm) E¢n) =6m—¢&  (neR})

and
0

a BEm =0  (neor}).

Because X is conformal, this implies for z € Bygr(zp) NN that

(—Ay+ 1) E(X(z),X(y)) =6y —z)  (y € Bar(zo) N Q)

;,;;E (X(2), X(¥) =0  (y € Ber(z0) N3Q).

The Green’s functin G(z,y) satisfies the same relation, and the elliptic reg-
ularity assures the f-continuity of

£ € Br(zg) NQ — G(z,-) — E(X(z),X(-) € C** (BR(:zrg) N Q) i
We have by (34) that

1
X(@) — X@)]

G(z,y) = log log + K»(z,y)

1
X(@) — X @)
with

VK, € C” (Br(zo) N2 x Br(zo) N Q).
Because G(z,y) is symmetric, so is Ky(z,y). We have

K; € C'* (Br(zo) N x Br(zo) N Q).
Here, the term Gi(z,y) = % log m is treated as before; writing

1

U =1oX1 and er(é,n) = —log € —n|’
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we have

Vi (z) - VoGi(z,y) + VY(y) - VyGi(z,y)
= c(§)VY¥(§) - Veer(§,m) + c(n) V¥ (n) - Vyer(§,m)
__E=m) - ((OVI(E) — c(m)V¥(m))
om ¢ — n?
€ L™ ((Br(zo) N Q) x (Br(zo) NN)).

Concerning the term involving Ga(x,y) = §l1—r log |7(E)——17(§)_*T’ we make use of

K
ov

= 0.
| ;o)
This gives that
ov

hudlall =0
06,

&=0

and hence

Vi(z) - VoGa(z,y) + Vi(y) - VyGa(z,y)
= c(§)VE(E) - Veer(§,n") + c(m)VE(n) - Vyer (£, 1)
= {c(&) ¥, (&) — c(m) ¥y (M)} (2 —m)/ 27| — ")
+{c(§) %6, (8) + (¥ (M)} (&1 +m)/ @ |€ — ')
€ L™ ((Br(zo) N Q) x (Br(zo) NN)).
We obtain '
p € L= ((Br(zo) N Q) x (Br(zo) N))
and the conclusion p € L*(Q x ) follows because supp ¥ C Br(zo) N and
G(z,y) is smooth on 2 x O\ {(a:, )|z € ﬁ} The proof is complete.

7 Finiteness of Blowup Points

In this section we show the finiteness of blowup points. We first show the
following.

Lemma 7 It holds that

EiL(ulogu)@/hL ZL‘u“IVuW < 2Lftzi/HL(Jﬁ- (35)
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Proof: The first equation of ( 1) gives

d
a—;[}(ulogu)?,b:l]ut(logu+ 1)y

—_——/QVU-V((logu—l— 1)¢)+LUVU-V((108U+ 1) ¥)
— _I+II

Here, the second equation of (1) applies as
II:[)'gva-Vu—l—Lu(logu%— 1) Vo - Vo
= —/QuV- (¢Vv)+[1u(logu+ 1) Vv - Vo
:/m,b(u_——'u)Jr/ulogqu-Vz,b.
Q Q
We also note that
I= LU_I|VUI21/J +/Q (logu + 1) Vu - V.
Then we obtain the localized version of (31);
d -1 2
= /Q(ulogu)w—k Lu |Vul” ¢ + Lump
— 2. . .
—Lu P /Q(logqu 1) Vu V«/)Jrlz(ulogu)v'v Vy  (36)

Recall the elementary inequality: Let @ > 0 and 0 < 8 < 2. Then, it
holds that
(Nogu| + N*w? <4+ Chp  (u>0).

The second term of the right-hand side of (36) is dominated as
/Q.(logu +1)Vu- V’tﬁ'
< A/ (Jlogu| + 1) w2413 . V2| i/
Q
1/3 1/2
< A { [ (rogal + 1 a2y} { [ wVuly}
Q Q
2 1/3 , Y12
<Al { [ vy +ugalol} { [ v 1vul )
Q

44510 C: Q
SE/U‘IIVulzv,bJrl/uzqu | |+ 3,3/2 | I.
4 Ja 3 Ja _

3 3
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The third term of the right-hand side of (36) is equal to
— LUV - (u logluV¢) = — L’u(logu + 1)Vu -V — L (vulogu) Ay. (37)
Each term of the right-hand side of equality (37) is dominated as follows:
| Unv(logu +1)Vu- Vy
< A/(;"U -ul? ([log u| 4 1) /2 - u= V2| Vuly'/?

< Al { [ w7 (ogol + 19w} { [ wwary}”

1 1 448 ||| Caa |9
< -1 2 _/ 2 6 3/
_4/ﬂu |Vu|¢+30u1/1+ 3 + 3

2/3
I‘/Q(vulogu)A'gbI < ALv|ulogu|¢

2/3
< Allly{ [ lutogul** v}

1 4A3 ”’0”3 Cs/2,3/2 |
< 2 2 3 /2,3/2 ]
= 3L”¢+ 3 T 3

Inequality (35) follows from (17) and the proof is complete.

We are ready to prove the following.
Lemma 8 The blowup set B of u is finite.

Proof: There is 5 > 0 such that any 2o € B and 0 < R <« 1 admit the
estimate

lim sup / u 2> £p. (38)
t1Tmax 7 Br(zo)NQ

In fact, take R’ € (0, R) and set ¥ = (@g m r)®. Combining (35) and (13),

we have

d 1 2 -1 2
et - _ . < .
o L(ulogu)wwL 1 (1 16 K [BR(xo)nsz u) Lu |Vul*y < Cf

Therefore, if

lim su / U< Ey = ——,
tTTmp Br(zo)NQ2 0= 16K?



then

limsup/ ulogu < limsup[(u logu)y < +o0.
tTTmax - BRl(mo)ﬂﬂ t1Tnax Q

This implies ¢ &€ B by Lemma 5, a contradiction.
Next we show that

d
A
In fact, the first equation of (1) gives

d r
az/ﬂugb—lzutgb_LuA@qu[quv-ng.
Here, it is obvious that
[
Q

In use of the notations of the previous section we have
fuvo-vp = [ [ u@)Vee) - V.G, y)uly, dyds

T ettt

1 2
< B ||udll, +.‘2‘ “P”Lw(nxn) lloll; -

< Blluol|; -

Because

p(z,y) € L= (2 x Q)

we have
I L A p(z, y)u(z, hu(y, t)da:dyl < N1l oo sy ol

and inequality (39) has been proven.
This implies that the value

s o= fsw s [ (3 Lot o)

exists. Because 0 < R < 1 is arbitrary, inequality (38) is improved as

lim inf u(z,t)dz > lim u(z, )Y (z)dz

t1Tmax Br(zo)N2 ( ’ ) T 1 Tmax JOQ ( ’ )w( )
> limsup / u(z,t)dr > &.
t1Tmax ¥ Brr (z0)NK2

(39)

89
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Therefore, in use of (9) we conclude
B < |luol; /€0 < +00.

The proof is complete.

8 Proof of Theorem 3

Once the finiteness of blowup points is proven, chemotactic collapse (8) fol-
lows from localizing the estimates of [19], [3], [8]. Then, inequality (6) is a
consequence of (9). The final section shows (8), simplifying the arguments
of our previous work [18].

Given 0 < € K 1, we set

BE = U Bg(l‘()).

ro€cB

We have
su U(t) || ;o < 400
03t<£m Il )"L (2\B:)

and the relation
sup “vv(t)”Lm(Q\Bz ) < Foo

0<t<Timax

follows from the second equation of (1). Then the first and the second equa-
tions of (1) assure

l1ull catorvoraa B xio, Ty < +© (40)

and

”'U”Cere 1+9/2(Q\B4€x[0 Trnax)) < 400 (41)

in turn with 6 € (0,1) (see Ladyzhenskaya, Solonnikov, and Uralt’seva [15]
and Gilbarg and Trudinger [9]). In particular,

t _—
ogfgp A )"C(Q\B ) < +oo
holds and

@) = w0+ [ w0
= tTl’_%‘{.nm u(z,t) >0 (42)
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exists for any z € O\ B. Convergence (42) is locally uniform on € \ B and
relation (7) follows from (9).
The family
{u(z,t)dz | 0 <t < Thax} C M(Q)

is bounded so that is sequentially weak star pre-compact as ¢t T Tipax. We
shall show the following.

Lemma 9 For any z9 € B and 0 < R < 1, it holds that

8m (zo € N)

4w (29 € 0N). (43)

lim inf u(z,t)dr > m, = {
1 Tmax J Br(zo)n$2

Lemma 9 implies Theorem 3 as follows. First, any sequence #; T Timax
admits a subsequence {#;} such that w* — limy ., u(z, ;,)dr = p(dz) exists.
Because p(dz) — f(z)dr € M(Q) has the support on the finite set B and
(43) holds, we have m' : B — [4m, +00) satisfying m|z, > 87 and

plde) = 37 m(w0)8rg (dz) + f(z)dz

xoEB

However, from the proof of Lemma 8 we have the existence of

tTl%’I,.I}“ . u(z,t)p(z)dr

for any smooth function ¢ on 2, and the value m/(z,) is independent of the
choice of {tx} or {t;.}. This shows (8).

To prove Lemma 9 we take o € B and 0 < R’ < R < 1. Letting
¥ = Qzo.R',R, We Introduce the localized Lyapunov function

1 2
W,(t) = /Q {ulogu--— uv + 3 (IVvI + v2)} P.
We have the following.
Lemma 10 It holds that

d 2__d ’ "
W@+ [ulVlogu—v)lp== [up+ Riwv,0),  (49)
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where
Ri(u,v,) = L [(1 —v)Vu — (ulogu — uv + 1) V] - Vp

+ / (ulogu)Aep.
Q

Proof: Multiplying (logu — v)¢ by the first equation of (1), we have
1 _
L u(logu — v)p
= L V - (Vu — uVv)(logu — v)y

= — L u|V(logu — v) 2o — L(logu —v)(Vu —uVv) - V.  (45)
Here, it holds that

d d
Lut(logu—v)cp— (%L(ulogu——uv)w—zﬁ Qucp+/nuvtgo (46)

and
[togw)vu-v [u9-(oguve)+ [ (ul )2¢
. e — -{lo —_
e v Q guve ™
= ——A{(ulogu)Atp + Vu-Vp}. (47)
In use of the second equation of (1), we have

/u'utcp = /(——Afu+'v)'vt<p
[0 Q

_1d 9 . o
= 2dt/9(|vv| +v)<p+/ﬂvtV'u-V(,a.

This, together with (45), (46) and (47), leads to

d 2
EW¢+/§lu|V(logu—-v)| @

d
= = pr+ L(ulogu)Ago
+ L (1 —v)Vu — (ulogu — uv + 1) V] - Ve
The proof is complete.

The above lemma implies the following.



Lemma 11 Let zo € B and ¢ = ppy g fJor 0 < R' < R < 1. Then we
have .

W*= sup W,(t) < +oo (48)
0<t<Tinax
and
limsup [ |Vv]? ¢ = +c0. (49)
t1Tmax /2 ‘

Proof: Recall (44) and put
F(t) = W,(t) — At R;(u,v,p)ds — Lucp.
Relations (9), (40), and (41) imply
l L ”"”1 < lluollzry  and oS3 |R1(u, v, p)| < +o0.

By Lemma 10, F' is monotone decreasing in [0, Tu,.) and (48) follows. Then
we have '

I <w*
/Q(u ogu)p < W +Luv(p,

and Lemma 5 gives

In use of Young’s inequality we have
1
< 1 _/ av
alzu'ucp < L(uogu)cp+e s
1
W f _/ av
e+ A uvp + % Jo e

1
W*+/ +—/ e,
e+ e

IA

IA

and hence ,
(a—l)/ uvp < —/ e+ W*.
Q e Ja
Therefore, we have

limsup | €*p =400
tTTmax /2

for a > 1, which implies (49) by the following lemma.
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Lemma 12 Leta >0, 29 € B, and ¢ = gy pr for 0 < R < R« 1.
Then, the inequality
2

[ 1o 90) (50)

L e®p < Cgexp (é;

holds on [0, Tyyax). If zo € 2, then we have
/ e™p < Cyex @ / |Vl (51)
as PP T6n Jo £)

Proof: We recall the following inequalities by Moser [16] and Chang and
Yang [5]: There exists a constant K determined by Q such that

S\ 1 2 1
log(Le )S%HleILz(Q)JrI—Q-'LwJI—K

for w € X, where

o 4 if X=HY(Q)
T ] 8 if X = Hj(N).

First, we take o € BN 0Q. It holds that
sup ”v(-,t)”cl(m\BR,(m)) < +o00

by (41). Therefore, we have

/eav(P < / ea‘u+/ e
Q B(zo,R')NK2 Br(z0) 2\ B (z0)

< / e + Cyo
Q.

av

2
a 2 allv||
< ( e+ 4 Cy) exp ( / |Vof? <P)

by (17). This shows (50). A similar calculatlon gives (51) for o € BN Q.
The proof is complete.

The following lemma is a modification of [19], [3], [8].
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Lemma 13 We have
Lump < L(u logu)p + M, log (L e"go) —M,log M, (52)

where M, = |, up.

Proof: Since —log s is convex, Jensen’s inequality applies as
—lo 1 / e’ = —lo
5 M, Ja L B & L U M
1 U
< —1 —e’ ) —
< { o8 (3¢") 3709
= {'u, lo ¢ }
- g(5)v
This means (52).

We are ready to give the following.

Proof of Lemma 9: We have proven that hmtTTm lluell L1 q) exists.
Suppose
tTl%‘f.nm M, (t) = tTlil‘I,.I,lax lupll g1y < - (53)

In the case that xo € 2 we have (51). Inequality (52) implies
1
5 LUVoP 4 = W, — [ (wlogu—u)y
< W,+M, log(/ & )—~M log M,,

< W*+———/|Vv|2<p+M IogACJ

by (48). It follows that

1/ M, \ C
¥ < W* 1 ——<
2(1 Sﬂ)/wvw W* o+ Mylog 32 < Cra

Therefore, (53) with m, = 87 gives

lim sup |Vv| cp < +00.
1T imax
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This contradicts (49). We have

lim inf u(z,t)dr > lim u(z, t)p(z)dz > m,.
1 Tmax J Br(zo)NQ ( ) T 11 Tmax JQ ( )(P( ) -

The case zy € 00 can be treated similarly and the proof is complete.
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