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A bstrac $\mathrm{t}$ . In the $1\dot{\mathrm{m}}\mathrm{e}\mathrm{a}X\dot{B}$eedd local model of the generalized BVP system, the winding
number for a duck solution is not defined welL By choosing an adequate regular
transformation, which contains a new parameter, it can be proved that this number
becomes well defined after that and tends to infinity as a regular limit for the new
parameter. In case the new one is fixed sufficiently small, the number becomes large
as the absolute value of a coparameter embedded originally becomes small.

1. INTRODUCTION.

The modified Bonhoeffer-van der Pol(BVP) equations were proposed by
H.Kawakami et $\mathrm{a}1.[5]$ in 1999. Their result of the simulation for this system shows
that there exist winding orbits on some projected phase space. Furthermore, the
winding number increases when some parameter contained originalIy in this system
decreases.

The $B$VP equations are described as follows:

$L_{1}di_{1}/dt=E_{1}-R_{1}i_{1}-vJ^{\cdot}$

(1.1) $L_{2}di_{2}/dt=E_{2}-R_{22^{-}}iv$,
$Cdv/dt=i_{1}+i_{2}+\rho(v)$ ,

where $i_{1},$ $i_{2}$ are the currents through the inductors $L_{1},$ $L_{2}$ and the registors $R_{1},$ $R_{2}$ ,
respectively. Moreover, $E_{1},$ $E_{2}$ are the constant voltages, $v$ represents at the non-
linear registor $\rho(\rho(v)=v-v^{3}/3)$ and $C$ is a capacitor with very small capacitance.
Let consider the following generized BVP system:

$dx/dt=-ax-az.$,

(1.2) $dy/dt=-by-bz$,
$\epsilon dz/dt=x+y+z-z^{3}/3$ ,

where $\epsilon$ is infinitesimally small. In the equation (1.1), put $i_{1}=x,$ $i_{2}=y,$ $v=z$,
$C=\epsilon$ and then assume that $E_{1}=E_{2}=0,$ $R_{1}=R_{2}=1,1/L_{1}=a,$ $1/L_{2}=b$ .
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As the generalized BVP system satisfies the generic conditions; $\mathrm{A}1,$ $\ldots,\mathrm{A}5(\mathrm{s}\mathrm{a}\mathrm{e}$

Section2), some orbit expresses ajumping state with delay (duck solution, or simply
duck) in the system of the niimal polynomials (or in the minimat system). By
giving a relation between two parameters as $a-b=1$ , this system can be reduced to
the problem of one parameter family with incomplete ducks. See Section3. In this
paper, under the above assumptions, we will describe the following two theorems.

Theoreml. If the parameter $b$ satisfies-l $<b<0$ , then the minimal system has
a duck near the pseudo singular saddle point.

In the BVP system, the winding number for a duck is not defined well by itself.
By introducing some regular transformation, which contains a parasitic parameter,
the winding number for the duck turns to be well defined as a regular limit in the
regularized BVP system. In another point of view, there exists a regular coordinate
transformation containing certain parameter to realize it in the minimal system.
As a result, the following theorem is obtained:

Theorem2. If the parameter $b$ satisfies $-1/2-\sqrt{8}/5/2<b<-1$ , then the
minimal system $\mathrm{h}_{\mathrm{c}\mathrm{t}}\mathrm{s}$ a duck near the pseudo singular node point and the winding
number of the duck tends to infinity as $b$ tends to-l.

2.PRELIMINARIES
Let consider a constrained system(2.1):

$dx/dt=f(X, y, Z, u)$ ,
(2.1) $dy/dt=g(x,y, z,u)$ ,

$h(x,y, z,u)=0$,

where $u$ is a parameter (any fixed) and $f,g,h$ are defined in $R^{3}\cross R^{1}$ . Furthermore,
let consider the singular perturbation problem of the system (2.1):

$dx/dt=f(x,y, z,u)$ ,
(2.2) $dy/dt=g(x, y, z, u)$ ,

$\epsilon dz/dt=h(x,y, Z, u)$ ,

where $\epsilon$ is infinitesimally small.
We assume that the system (2.1) satisfies the following conditions $(A1)-(A5)$ :
$(A1)f$ and $g$ are of class $C^{1}$ and $h$ is of class $C^{2}$ .
$(A2)$ The set $S=\{(x, y, z)\in R^{3} : h(x,y, z, u)=0\}$ is a 2-dimensional differen-

tiable manifold and the set $S$ intersects the set
$T=\{(x, y, z)\in R^{3} : \partial h(x,y, Z,u)/\partial z=0\}$ transversely so that the set $PL=$
$\{(x,y, z)\in S\cap T\}$ is a 1-dimensional differentiable manifold.

(A3) Either the value of $f$ or that of $g$ is nonzero at any $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\cdot p\in PL$ .
Let $(x(t,u),$ $y(t,u),$ $Z(i,u))$ be a solution of (2.1). By differentiating $h(x,y, z,u)$

with respect to the time $t$ , the following equation holds:

(2.3) $h_{x}(x, y, Z,u)f(x,y, z, u)+h_{y}(x,y, z,u)g(x,y, z,u)+h_{z}(x,y, z, u)dZ/dt=0$ ,
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where $h_{i}(x, y, z, u)=\partial h$($x,y_{\tau}z$ , u)/&, $i=x,y,$ $z$ . The above system (2.1) becomes
the following system:

$dx/dt=f(x, y, z, u)_{j}$

$dy/dt=g(x, y, z, u)$ ,
(2.4)

$dz/dt=-\{h_{x}(x,y,$ $Z,\mathrm{u}\rangle f(x,y,$ $z,u\rangle+$

$h_{y}(x, y, z,u)g(x, y, z, u)\}/h_{z}(x, y, Z, u)$ ,

where $(x, y, z)\in S\backslash PL$ . The system (2.1) coincides with the system (2.4) at any
point $p\in S\backslash PL$ . In order to study the system (2.4), let consider the following
system:

$dx/dt=-h_{z}(x,y, z, u)f(x,y, z, u)$ ,
(2.5) $dy/dt=-h_{z}(x, y, z, u)g(x, y, z, u)$ ,

$dz/dt=h_{x}(x, y, z, u)f(x, y, z, u)+h_{y}(x,y, Z,u)g(x, y, z, u)$.

As the system(2.5) has well posedness at any point of $R^{3}$ , it has well posedness
indeed at any point of $PL$. The solutions of (2.4) coincide with those of (2.1) on
$S\backslash _{\backslash }PL$ except the velocity when they start from the same initial points.

$(A4)$ For any $(x, y, z)\in S$ , the implicit function theorem holds;

(2.6) $h_{y}(x, y, z, u)\neq 0,$ $h_{x}(x, y, z, u)\neq 0$ ,

that is, the surface $S$ can be expressed by using $y=\varphi(x, z,u)$ or $x=\psi(y, z, u)$ in
the neighborhood of $PL$ . Let $y=\varphi(x, z, u)$ exist, then the projected system, which
restricts the system (2.5) is obtained:

$dx \int dt=-h_{z}(x, \varphi(X, Z,u), z,u)f(x, \varphi(x, Z, u), z, u)$ ,
(2.7) $dz/d\mathrm{t}=h_{x}(x, \varphi(x, Z, u), Z,u)f(x, \varphi(x, z, u), z, u)+$

$h_{y}(x,\varphi(X, Z,u), z,u)g(X,$ $\varphi(X, \varphi(x, Z, u), z,u)$ .

$(A5)$ AI1 the singuIar points of (2.7) are nondegenerate, the $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{l}\mathrm{X}\sigma$ induced from
the linearized system of (2.7) at a singular point has two nonzero eigenvalues. Note
that all the points contained in $PS=\{(x,y, z)\in PL:dz/dt=0\}$ , which is called
pseudo singndar points are the singular points of (2.5).

Definition2.1. Let $p\in PS$ and $\mu_{1}(u),$ $\mu_{2}(u)$ be two eigenvalues of the linearized
system of (2.7), then the point $p$ is called pseudo singular saddle if $\mu_{1}(u)<0<$
$\mu_{2}(u)$ and called pseudo singular node if $\mu_{1}(u)<\mu_{2}(u)<0$ or $\mu_{1}(u)>\mu_{2}(u)>0$ .
Definition2.2. A $\mathrm{s}\mathrm{o}\mathrm{I}\mathrm{u}\mathrm{t}\mathrm{i}_{0\mathrm{n}}(x(t, u),y(t,u),$ $z(t,u\})$ of the system(2.2) is $\mathrm{c}\mathrm{a}\mathrm{J}\mathrm{l}\mathrm{e}\mathrm{d}a$

duck, if there exist standard $t_{1}<t_{\mathrm{O}}<t_{2}$ such that
$\{1) *(x(t_{0}, u), y(i_{\mathrm{O}}, u), z(t0,u\})\in S,$ where $*(X)$ denotes the standard part of $X$ ,
(2) for $t\in(t_{1},t_{0})$ the segment of the trajectory $(x(t, u),y(t, u),$ $z(t, u))$ is \’infinites\’i-

mally close to the attracting part of the slow curves,
(3) for $t\in(t_{0},t_{2})$ , it is infinitesimally close to the$\cdot$ repeling part of the slow curves,

and
(4) the attracting and repelling parts of the trajectory are not infinitesimally small.

If a duck exists as a part of a limmit cycle, it is called a proper duck.
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Definition2.3. Let $E$ be a set in $R^{3}$ . We call a point $p$ is a $\delta-$ micro–galaxy of $E$

when the distance from $p$ to $E$ is less than $exp(-n/\delta)$ , where $n$ is some positive
integer and $\delta=\epsilon/\alpha^{2}$ ($\alpha$ is indnitesimally small).

Definition2.4. Let $\theta$ is an angle of the polar coordinate after changing the coor-
dinates in the ”local model” such as the orbit passing through the pseudo singular
point becomes the $z$-axis itself as the below. See $[3],[4]$ . Then, the winding number
$N(\psi)$ of a duck $\psi$ is defined as follows:

(2.8) $N(\psi\rangle=(1/2\pi\rangle I_{\psi}d\theta$ ,

where $\psi$ is contained partially in the $\delta- \mathrm{m}\mathrm{i}_{\mathrm{C}}\mathrm{r}\mathrm{o}_{-}$ galaxy of $\gamma_{\mu}$ .
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.1(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$. In the system(2.1), if the following two conditions at a
pseudo singular saddle or node point;

(1) $f(O,u)\simeq h(O,u)\simeq h_{y}(O, u)\simeq h_{z}(O, u)\simeq 0$ ,
(2) $g(O,u)\not\simeq \mathrm{O},$ $h_{x}(O, u)\not\simeq \mathrm{O},$ $h_{zz}(o, u)\not\simeq \mathrm{O}$ , where $O=(\mathrm{O}, 0, \mathrm{o})\in PS$ ,

are satisfied, the explicit duck solutions $\gamma_{\mu.(\tau \mathrm{A})}$ in the first approximation of the
local model can be constructed:

(2.9) $\gamma_{\mu_{i}}(u\rangle(t)=(-\mu i(u)^{2}\# 2-\delta\mu i(u),t,\mu i(u)t)(i=1,2)$ ,

wehere $\delta$ is an infinitesimally small constant.

The above Definition2.3 is based on the following fact. If $\epsilon$ is fixed arbitrariIy
and $\gamma(t)$ is a duck near $\gamma_{\mu(u)}(t)$ is within $exp(-n/\delta)$ in some neighborhood of the
pseudo singular point. $\mathrm{S}\mathrm{e}\mathrm{e}[10]$ .

In the system(2.2), under the conditions (1) and (2) in the Theorem2.1, making
the following coordinate transformations (2.10) and (2.11) successively;

(2.10) $=,$ $(\alpha\simeq 0,\epsilon/\alpha^{2}\simeq \mathrm{o})$

(2.11)

$=(^{h_{x}(\mathrm{o},u})hzz(0,u)_{\tilde{X}/+}2(h_{y,\tilde{y}}(0,u)h_{zz}(\mathrm{o},u)-hz(y0,u)^{2})\tilde{y}^{2}/41-h(yz0,u)\tilde{y}/2-y/g(\mathrm{o},uh(zz0,u))\tilde{z}/2$
’

the following local model (2.12) is obtained:

$dX/dt=p\mathrm{Y}+qZ+\xi(X, \mathrm{Y}, Z,u)$ ,

(2.12) $d\mathrm{Y}/dt=1+\eta(X, \mathrm{Y}, z,u)$ ,
$\delta dZ/dt=-(Z^{2}+X)+\zeta(X, \mathrm{Y}, Z, u)$ ,

where
$p=g(\mathrm{O}, u)hx(\mathrm{o}, u)(f_{y}(\mathrm{o}, u)hzz(0, u)-f_{z}(\mathrm{o}, u)h_{yz}(0, u))/2$

$+g(\mathrm{O},u)^{2}(h_{yy}(\mathrm{o}, u)h(zz0, u)-h_{y}(z\mathrm{o}, u)^{2})/2$,
(2.13)

$q=-h_{x}(\mathrm{o},u)f_{z}(\mathrm{o},u)$ ,
$\delta=\epsilon/\alpha^{2}$ .

122



Here $\xi(X, \mathrm{Y}, Z,u),\eta(X, \mathrm{Y}, z,u)$ and $\zeta(X, \mathrm{Y}, z, u)$ are infinitesimal when $X,$ $\mathrm{Y}$ and $Z$

are limited. Note that the solutions (2.9) are in the first approximation system of
the system(2.12).

By applying the following transformations ofthe coordinates as mentioned above,
in Definition2.4, successively;

$u=X+z^{2}+\delta\mu$ ,
(2.14) $v=\mathrm{Y}-Z/\mu$ ,

$z=Z$,

$u=rcos\theta$ ,
(2.15)

$v=rsin\theta$ ,

the Hermite equation (2.16) is obtained. This equation associated with $\gamma_{\mu_{i}(u)}(i=$

$1,2)$ is the following:

(2.16) $\delta\ddot{z}-\tau\dot{z}+K_{i}z=0,\dot{z}=dz/d\tau,$ $t=\tau/\alpha,$ $(i=1,2)$ ,

where $K_{i}$ is a positive integer and $K_{1}=1+\mu_{2}(u)/\mu 1(u),$ $K_{2}=1+\mu_{1}(u)/\mu_{2}(u)$ .
See [3].

It is said that a duck $\psi(t)$ has a jump if the shadow of it contains a vertical
segment and that $\psi(t)$ is long if it is in an infinitesimally small neighborhood at the
pseudo singular point. It can be proved that if $\psi$ is not long, the standard part of
the winding number $N(\psi_{i})$ associated with $\mu_{i}$ is an integer. If the pseudo singular
point is node, it is positive. If the point is saddle, it needs some conditions such as
$K_{i}$ is poitive. The relation between $N(\psi_{i})$ and $K_{i}(i=1,2)$ is as follows.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}2.2(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$. If the duck $\psi_{1_{}}$. which is not long has 2 jumps,
$N(\psi_{1})\approx-[K1/2]$ , and if the duck $\psi_{2}$ has 2 jumps, $N(\psi_{2})\approx 0$ .

3. INCOMPLETE DUCKS.

Definition3.1. In the system(2.12), if the followings (1) and (2):
(1) for any limited parameter $u$ ,

it satisfies the conditions $(A1)_{-}(A5)$ and has a duck,
(2) when the parameter $u$ tends to infinity, one of the winding numbers

tends to infinity and the other tends to zero,
and the system does not have a duck as a singular limit,
are established, this solution is called an $\omega-in\omega mptebe$ duck.

Definition3.2. A solution $\psi(x, u)$ is called $S^{1}$ at a,
if there exists a real number $b$ such that

(3.1) $\frac{\psi(_{X},u)-\psi(y,u)}{x-y}\approx b$ ,

for any $x,y(x\approx a,y\approx a)$ .
A duck is called an $S^{1}$ duck if it is $S^{1}$ in some neighborhood
of the pseudo singular point.
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$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}3.1(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$. In the first approximation of the system$(2.12\}$ ,
if $\mu_{1}(u)/\mu_{2}(u)$ is positive $(>3)$ but no an integer, then all the $S^{1}$ ducks are expo-
nentially close to one of the two explicit ducks and there exists non $S^{1}$ du&s.

In the system(2.12), we assume that

(3.2) $f_{y}(0,u)=g_{u}(\mathrm{o}_{u)},=h_{yz}(0,u)=h_{yyu}(0, u)=h_{zzu}(\mathrm{o},u)=0$ ,

and that the following (1) or (2):
(1) $h_{x}(\mathrm{o},u)=O(u)$ and $f_{z}(0,u)=O(1)$ ,
(2) $f_{z}(0,u)=O(u)$ and $h_{x}(\mathrm{o},u)=O(1)$ ,
where all the coefficients of higher order (more than 2) for $u$ is negligible, that is,
only the coefficient $q$ can take an unlimited number:

(3.3) $q=c_{1}u+o(1),$ $C_{1}\not\simeq 0$ .

Then, blowing up only the variable $Z$ again;

(3.4) $Z=(1/u)\tilde{Z}$ ,

the first approximation of the system(2.12) becomes the following:

$dX/dt=p\mathrm{Y}+c_{1}\tilde{Z}$ ,
(3.5) $d\mathrm{Y}/dt=1$ ,

$(\delta/u)d\tilde{Z}/dt=-(\tilde{Z}^{2}/u^{2}+X)$ ,

where $c_{1}$ is limited (does not contain $u$ ) and $\delta/u\simeq \mathrm{O}$. The explicit solutions in the
system$(3,5)$ are

(3.6) $\gamma_{\mu_{i}}(u)(t)=(-\mu i(u)2t-2\delta\mu i(u),t,u\mu i(u)t)(i=1,2)$ ,

where $\mu_{1}(u),$ $\mu_{2(u)}(\mu_{1}(u)>\mu_{2}(u))$ are the solutions of the characteristic equation
of the system(3.5) in case $\delta/u\simeq \mathrm{O}$.

The above system satifies the conditions $(A1)-(A5)$ and the solutions(3.6) $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6\Gamma$

the condition (1) and satisfies the condition (2) when $uarrow\omega$ in Definition3.1.
In fact, if $q=\epsilon^{-1/3}$ , then the existence of such a duck is ensured. We choose
$\epsilon=1/n(n=2,3, \ldots)(u=1/n^{1/3})$ , then $1/n^{1/3}\gg exp(-n/\delta)$ for any $n(n\geq 2)$ .
In the system for each any fixed $n$ , let $J=[AB]$ be a connected segment in $R^{3}$ ,
where the solution which starts at $A(\mathrm{o}\mathrm{r}B)$ belongs to the family of the duck $\gamma_{\mu_{1}}$

(or $\gamma_{\mu_{2}}$ ). It can be proved that if any solution starting at $p\in J$ is not long, then
it has the same winding number. Rom Theorem3.1, a duck passing through the
pseudo singular node point belongs to one of two families of the above ducks. On
the other hand, there exists a segment $[CD]\subset J$ such that any solution starting
at $p\in[CD]$ is not long and the solutions passing through $C$ or $D$ are ducks. This
fact ensures the existence of a non $S^{1}$ duck. Note that $\mu_{1}(u)/\mu_{2}(u)$ is positive but
no an integer. If it is a positive integer $k$ , it indicates the fact that the slow vector
field has two $C^{1}$ trajectories but only one of them is $C^{k}$ . Then, it is not possible
to have an asymptotic expansion in powers of $\epsilon$ with the coefficients analytic in
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$t$ . Furthermore, one of the solutions(3.6) may tend tangent to the $X$-axis, since
$\mu_{2}(u)arrow-\omega/2$ as $uarrow\omega$ . In fact, for the first component of the solutions, the
following

(3.7) $\frac{-(\omega/2)^{2}(2/\omega)^{2}+(\omega/2)^{2}(1/\omega)^{2}}{2/\omega-1/\omega}arrow-3\omega/4$ ,

establishes. In this $8\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}$ , the windin$g$ number $N(\psi_{2})$ associated with $\mu_{2}$ tends
to infinity and the other $N(\psi_{1})$ associated with $\mu_{1}$ tends to infinitesimal. $\mathrm{V}^{\gamma}\mathrm{h}\mathrm{e}\mathrm{n}$

$uarrow\omega=\epsilon^{-1/3}$ , the eigen space of the linear part of the slow vector field for
$\mu_{2}\simeq-\epsilon^{-1/3}$ is $z\simeq\epsilon^{1/3}y$ ($z\simeq-\epsilon^{1/3}y$ for $\mu_{1}\simeq-\epsilon^{1/3}$). The ducks are almost
tangent to the $\mathrm{e}\mathrm{i}_{\mathrm{c})}\sigma \mathrm{e}\mathrm{n}$ spaces and therefore the $\omega$-hmit of the duck with respect to
the parameter $u$ ($\omega$-incomplete duck) is not $S^{1}$ .

Let $v=1/u$, then $\partial_{8\mathrm{A}}=-v^{2}\partial_{v}$ holds and then the following conditions are
assumed, $f(x,y, z,u)=\tilde{f}(x,y_{J}.z,v)\in C^{3},$ $g(x,y, z.u)=\tilde{g}(x,y,z,v)\in C^{1}$ and
$h(x,y, z,u)=\tilde{h}(x, y, z, v)\in C^{3}$ at almost every where but $v=v_{0}=0$ . Rom
the assumptions, the relation $q=-h_{x}(0,u)f_{z}(0,u)=c_{1}u$ holds. Differentiating
the both side of this equation by the parameter $v$ , we can lead to the following
theorem.

Theorem3.2. In the first approximation of the system(2.12), if $\mu_{1}(u)/\mu_{2}(u)$ is
positive but no integer under the condition (3.2) and if $\tilde{h}_{xv}(0,v)\tilde{f}\mathrm{z}v(0,v)=0$ when
either the condition (1) or (2) ;
(1) $\tilde{f}_{z}(0,v)=0,$ and $\tilde{h}_{x}(\mathrm{o}, v)\tilde{f}zvv(0,v)=0$,
(2) $\tilde{h}_{x}(\mathrm{o},v)=0$ , and $\tilde{h}_{xvv}(\mathrm{o},v)\tilde{f}_{z}(0,v)=0$ ,
where all the coefficients of higher order (more than 2) for $u$ is negligible are satis-
fied, then this system has an $\omega$-incomplete duck.

Corollary3.3. In the system(2.12), if the coefficient $q$ satisfies $q=c_{1}u+O(1)$ , that
is, $q=c_{1}u+c_{2}$ where $c_{1},$ $c_{2}\not\simeq 0$ and $p>0$ or $0>p\geq-1/32$ , then there exists a
finite value $u_{0}$ which makes the winding number infinite when $u$ tends to $u_{0;}$ the
corresponding duck is called incomplete , simply.

Remark. In this situation, the singular perturbation problem is equivalent to the
following system of two parameters family with $\epsilon_{1}$ and $\epsilon_{2}$ :

$\epsilon_{1}dXfdt=\epsilon_{1}p\mathrm{Y}+qZ+\xi(X, \mathrm{Y}, z,\epsilon_{1},\epsilon_{2})$ ,

(3.8) $d\mathrm{Y}/dt=1+\eta(X, \mathrm{Y}, Z, \epsilon_{1,2}\epsilon)$ ,
$\epsilon_{2}dZ/dt=-(Z^{2}+X)+\zeta(X,\mathrm{Y}, Z,\epsilon_{1},\epsilon 2)$ ,

where $\epsilon_{1}$ and $\epsilon_{2}$ are infinitesimally small.

4.THE REGULARIZED BVP SYSTEM

Let consider the following equations (regularized BVP):

$L_{1}di_{1}/dt=E_{1}-R_{11^{-}}iR(i_{1}+i_{2})-v$ ,

(4.1) $L_{2}di_{2}/dt=E_{\mathrm{z}-}R_{2}i2-R(i_{1}+i_{2})-v$ ,
$Cdv/dt=i_{1}+i_{2}+v-v^{3}/3$ ,
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where $R$ is a linear reistor and $C$ has a very small capacitance. The equation (4.1)
is composed of a parasitic resistor $R$ (as a parameter) to the BVP system. When
$R$ tends to zero, the system (4.1) tends to quite the same one (1.1) as a regular
limit. In the linearized local model of (4.1), the winding numbers for the ducks
are well defined since the matrix associated with the model at the pseudo singular
point are nondegenerate; it is called regularized $BVP_{\mathit{8}}ystem$ . The parameter $R$

holds the relation (3.3) as $u=R$. Thus, this system has an incomplete duck from
Corollary3.3. When $R$ tends to zero again, only one of the eigenvaJues tends to
zero, that is, the winding number for the duck tends to infinity.

The linearized local model of the system(1.2) could not make one of the winding
numbers defined well because the first equation does not contain the variable $y$ .
This fact causes that the value of $p$ in the equation (2.13) takes zero, therefore one
of the eigenvalues takes zero. There exists a problem how to avoid this trouble.
The mathematical model which it may concern is obtained as follows.

Lemma4.1. In the system(1.2), there exists a regular coordina$te$ transformation
such that the winding numbers become well defined.

(proof)
$\mathrm{C}\mathrm{h}\mathrm{o}\mathrm{o}8\mathrm{i}\mathrm{n}\mathrm{g}$ the following transformation:

(4.2) $=$,

where $u(\neq 1)$ is a parasitic parameter, the system(1.2) becomes

$dX/dt=-aX+u(a-b)\mathrm{Y}-(a+bu)Z$,

(4.3) $d\mathrm{Y}/dt=-b\mathrm{Y}-bZ$ ,
$\epsilon dZ/dt=X+(1-u)\mathrm{Y}+Z-Z^{3}/3$ .

Considering the coxstrained system of the equation(4.3) and the relation $a-b=1$ ,
the following

$dX/dt=(-(b+1)X+u\mathrm{Y}-(bu+b+1)Z)(1-z^{2})$,
(4.4)

$dZ/dt=(b+1)X-(bu+u-b)\mathrm{Y}+(2b+1\rangle Z$ ,

establishes, where $b,u$ are parameters. Substituting the following

(4.5) $\mathrm{Y}=(X+Z-Z^{3}/3)/(u-1)$ ,

for the above, the equation(4.4) becomes

$dX/dt=(-(b+1-u/(u-1))X-(bu+b+1-u/(u-1))z$
$-uZ^{3}/3(u-1))(1-Z^{2})$ ,

(4.6)
$dZ/dt=(1-u/(u-1))\mathrm{x}+(b+1-u/(u-1))z$

$+(b+u/(u-1))z^{3}/3$ .
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The pseudo singular points are
$PS_{-1}=(X0-, \mathrm{Y}_{0}-, Z0-)$ ,

$X_{0-}=(-(4b+1)u+4b+3)/3$ ,
(4.7)

$\mathrm{Y}_{\mathrm{O}-}=(-(4b+1)u+4b+1)/3(u-1)$ ,
$z_{0-=}-1$ ,

and
$PS_{1}=(x0+, \mathrm{Y}0+, z_{0+})$ ,

$X_{0+}=((4b+1)u-4b-3)/3$ ,
(4.8)

$Y_{0+}=((4b+1)u-4b-\iota)/3(u-\iota)$ ,
$Z_{0+}=1$ .

The values of $p,q$ in the equation$(2.13)$ at these points are

$p_{-}=uz_{0_{-}}(b\mathrm{Y}_{0-}-b)$ ,
$q_{-}=b(u+1)+1$ ,

(4.9)
$p_{+}=u(-b\mathrm{Y}_{0}++b)$ ,
$q+=q_{-}$ .

Since the value of $p$ is not zero, it becomes clear that the eigenvalues at these
points are nondegenerate, so the winding number is well defined. This completes
the proof.

Lemma4.2. If a duck of the system$(4.3)$ is proper, that is, there exists a limit
cycle, which has the duck as a part of the solution, the right hand of this $s\mathrm{y}\mathrm{s}t\mathrm{e}\mathrm{m}$

has minimal degree of the polynonials (minimal system) for the proper duck.

(proof)
If the degree of the polynomials are smaller than 3, there is not ajumping orbit to
return to an initial point. Therefore, there is not a limit cycle, which contains a
duck. This completes the proof.

In this paper, the condition for the existence of the proper duck does not be
treated.

5. $\mathrm{T}\mathrm{H}\mathrm{E}\mathrm{p}\mathrm{R}\mathrm{O}\mathrm{o}\mathrm{F}\mathrm{S}$ OF THEOREMI AND THEOREM2

In the generalized BVP system(1.2), there are three pseudo singular points $PS_{z}$

$(z=-1,0,1);PS_{-1}=(1+4b/3, -1/3-4b/3, -1),$ $PS_{0}=(0,0,\mathrm{o}),$ $PS_{1}=(1+$
$4b/3,$ $-5/3-4b/3,1)$, since we assumed $a-b=1$ . In fact, the constrained system
for the system(4.3) becomes the following; corresponding to the equation(2.7):

$dx/dt=-(1+b)(x+z)(1-Z^{2})$ ,
(5.1)

$dz/dt=x+(1+b)z+bz^{3}/3$ ,

where only $b$ is a parameter. However, the point $PS_{0}$ does not $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Psi$ the generic
condions, especialy the $\infty \mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(A\mathrm{s})$ in Section2. So, let consider other two points
$PS_{-1}$ and $PS_{1}$ .
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In both cases, the characteristic equations associated with the linearized system
of the equation(5.1) are quite the same as follows:

(5.2) $\lambda^{2}-(1+2b)\lambda+8b(1+b)/3=0$ .
If $b$ satisfies-l $<b<0,$ $PS_{-1}$ and $PS_{1}$ are the pseudo singular saddle points, that
is, there exist the ducks. This completes the proof of Theoreml.

In the regularized system(4.3), if the parameter $b\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathrm{f}\mathrm{i}\mathrm{a}\mathrm{e}-1/2-\sqrt{8/5}/2<b<$

$-1$ , the pseudo singular points $PS_{-1},$ $PS_{1}$ are the node type when coparameter
$u=R$ tends to zero. The characteristic equation of the linearized local model under
the condition (2.13) is

(5.3) $2\lambda^{2}-q\lambda+p=0$ ,

where $p,q$ are in the equation(4.9). Ron Lemma4.1, the winding number is well
defined. Furthermore, the constant $p\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\Phi \mathrm{i}\mathrm{n}\mathrm{g}$ the equation(4.9) ensures the
relation(3.3). Therefore, this regularized system has an incomplete duck. Then,
one of the eigenrues tends to zero as the parameter $u$ tends to zero. At that time,
the corresponding index $\mathrm{K}$ in the equation(2.16) tends to infinity, so the winding
number associated with the duck tends to infinity by Theorem2.2. Let the param-
eter $u(\neq 0)$ is fixed sufficiently $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{I}\mathrm{l}$ , then the winding number tends to infinity as
the coparameter $b$ tends to-l. In fact, it should be available if $u$ holds $u=O(\epsilon^{1/})2$

whenever $b$ satisfies $b+1=\epsilon$ . This completes the proof of Theorem2.
Remark. When $b$ tends to-l, the absolute value of $b$ becomes small as possible
in the above restriction. This fact coinsides with the reults of the simulation [5]:
when $1/L_{1}$ becomes smaller, the winding number becomes larger.
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