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1. INTRODUCTION & RESULTS

Recent developments of computers have made us possible to see fractal sets
casually. If you have any experience of drawing fractal pictures by computer, you
must have noticed that some points are easy to draw while others are not. This
means that an invariant set does not necessarily have uniform structure from the
dynamical point of view. One of the motivations for the multifractal analysis is to
uncover this hidden structure.

Given a measure p on a set X, a typical multifractal object is the Hausdorff

- dimension of points with the same scaling «;

fu(@) =HD{z € X| lim l_og_#l%?i)l ~a}.

For conformal hyperbolic systems with Gibbs measures u, the dimension spectrum
o fu(a) is real analytic (Pesin-Weiss[2]). On the other hand, based on the anal-
ogy of statistical mechanics, it is expected that spectra of non-hyperbolic systems
fail to be real analytic and that the point of phase transition has some cha,racter-
istics. In this work, we present some results along this line.

Let f : [0,1] — [0,1] be a piecewise monotone interval map with the following
properties;
(A1) 0 <3Jec < 1s.t. each of f}(0,c), fl(c,1) is strictly monotone and extends to a

C* function f; and fo with f1[0,c] = fo[c,1] = [0, 1].
(A2) f1(0) =0 and f; is C? except at z = 0.
(A3) Dfi(0) =1 and Dfy(2) > 1 for z € [0, ],
(A4) |Dfa2(2)| > 1 on f;7([c,1]) and |Dfa(z)| > 1 otherwise.
(A5) D?f, has an asymptotic expansion around 0 of the form
D*f(z) =bz"' +0(z""1), b>0, 7> 0.

Example 1.1 (Farey map). ¢ =1/2,

f(z) =2/(1-2),f2(z2) = (1 - 2)/z

Let u be the measure of maximal entropy for f.

Definition 1.1. For a € Rt define

_ i logu(B(z,7)
fu(a) = HD{z € [0, 1],}1_%——EE;——— = a},

I(a) = HD{z € [0,1); lim %log|Df"(z)| = a}

where HD stands for Hausdorff dimension. f,(a) is called the dimension spectrum
of u and I, (a) the Lyapunov spectrum for f.
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Main Theorem . 3T'(q) real analytic on R s.t.
(a) D?T(q) >0,T(0) =1 for ¢ > 0 and lim,—,0 DT(q) exists,
(b) The domain of f.(a) is unbounded. (f.(c),T(q)) forms a Legendre transform

pairy :
fu(a(g)) = T(q) + ga(q)

where a(gq) = —DT(q) > 0,
(¢) If a(0+) is finite then fy(c) =1 for every a > a(0+),
(d) Ua) = fu(log2/a).

Corollary . The followings are equivalent;

(a) a(0) = oo.
(b) fula) and l,(c) are real analytic.
(c) The absolutely continuous invariant measure is infinite.

(d) The Lyapunov exponent with respect to the absolutely continuous invariant
measure s 0.

ful(a) fu.(a)L
1 1

a(04)
a(04)=oc0 a(0+)<oo

[ 4

FI1GURE 1. Typical spectral shapes

2. How TO PROVE

Put J = [¢,1], I, = {0} and let I = f;*(J) for all k > 0. Define the subintervals
{Jx} of J by Ji = f;}(Ix—1). The next lemma is simple but essential through this
work.

Lemma 2.1. For arbitrarily small € > O there exist constants Cy,Cy so that
. Clk(l—-e)(1+'r)/r < ka(z) < Czk(1+s)(1+7)/r
for all k € N and all z€ I.



It can be shown that the induced map F on [c, 1] is an expanding Markov map
with a countable partition and, using the lemma above,that F' has bounded distor-
tion. Thus we can apply to F' the techniques of the thermodynamic formalism.

Define parameterized weight functions ¢, 4 by

$s,q(2) = qlogyp — slog| DF(2)|
where ¥(z) = 27%, z € intJj.
Theorem 2.2 (Walters). For each (s,q) € R x RT U D x {0} there exists an F-

invariant ergodic probability measure vy, on J so that for each n > 0 there is a
constant A(n) > 1 satisfying lim,_, log A(n)/logsupxepn|K| = 0 and

n An n
a7 4) 5 [ exp(nP(s,0) - 941))dvg
whenever F™ : A — F™A is invertible.

Definition 2.1. We call the invariant measure above the equilibrium state for ¢ 4
and the number P(s,q) = log (s, q) the pressure for ¢ q.

The next gives the definition of T'(¢)( a generalization of Bowen’s formula).

Lemma 2.3. For each ¢ € RT U {0}, the function s — P(s,q) is conves, strictly
decreasing(hence continuous) and has a unique zero T'(q).

Consider the one-parameter family of mappings ¢7(,),q for ¢ € RT U {0}. Let v,
be the equilibrium state for ¢7(4),4- Since v, is ergodic for each g > 0, there exists
a positive constant a = a(g) such that for almost every z € J

k—1

k-1
> —logp(F'z) / > log|DF(F'2)| — a(q) = — / log ydv, / / log| DF|dv,.

=0 =0
Then define the set

lc—-l 1
K(8) = {z € J\Jiny; lim —log Y(F72) ,5}
—ee Zz_o log| DF(F'z)]|

and denote the Hausdorff dimension of X (set or measure) by HD(X).

Proposition 2.4. For ¢ € R*
HD(v,) = HD(K(a(q))) = T(q) + qa(q).

The next lemma relates the original map f with the induced F' in the multifractal
formalism.

Lemma 2.5. For z € J\Jin, each of the following three implies the other two:

. logu(B(z, r))
(2) sl—m logr

-1 I
- (F
(b) lim nzi log Y (F"2) =
n-yeo Zz o log| DF (F'z)|

(©) lim ~log|Df"(z)| = “£2.

So far we have shown how to prove the main thoerem except the analyticity of
T(g), which is closely connected to Corollary.

29



Proposition 2.6. (a) T(q) is real analytic for ¢ > 0 and satisfies

Jlogy(2)dvy(z) —a(Q)
Tlog DF(@)|dv,(z) "

(b) If ¥ :=logy — DT(q) log|DF| then
D2T(q) = ( / log]DF(z)idyq(z)) ~ ()

DT(q) =

where
2

0(¥) = 5 P(T() + DT (), + 9))|

s=0
The formula in (a) leads to the proof of Corollary.

3. How TO FILL IN THE DETAILS

We refer to [5] for any reader who is interested in the details. See [1] also for
_the general background of multifractal analysis. The paper [4] contains number
theoretical applications and shares some results with this work, but its proof seems

to be missing some point.
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