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1 Introduction

Large-eddy simulation (LES) is a turbulence simulation method in which the large scale
(grid scale) field is directly calculated, while the small scale (subgrid-scale or SGS) field is
modeled. The velocity and pressure fields $(f)$ are decomposed into grid-scale component
$(\overline{f})$ and SGS component $(f’=f-\overline{f})$ using a filtering procedure:

$\overline{f}(\mathrm{x})=\int_{-\infty}^{\infty}f(\mathrm{x})’\overline{G}(\mathrm{X}, \mathrm{x}^{l})d\mathrm{x}’$, (1)

where $\overline{G}(\mathrm{x})$ denotes the filter $\mathrm{f}_{\mathrm{U}11\mathrm{c}\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}$.
The effects of the SGS field on the grid-scale field is represented by the SGS stress

tensor, $\tau_{ij}=\overline{u_{?}u_{j}}-\overline{u}_{i}\overline{u}j$ , which results from filtering the Navier-Stokes equations, where
$u_{i}’=u_{i}-\overline{u}_{i}$ . The energy transfer between the grid scale field and the SGS field occurs
through the SGS production $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{n},$ $P=-\tau_{ij}\partial\overline{u}_{i}/\partial x_{j}$ . When $P$ is Ilon-negative, the grid
scale energy is forwardly transferred into SGS ( $\mathrm{f}\mathrm{o}\mathrm{l}\cdot \mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}$ scatter), while if $P$ is negative
the SGS energy is in turn transferred backwardly into the grid scale (backward scatter).
Recent direct assessment of the energy transfer carried out using DNS data for wall-
bounded flows $\perp,$ $2,3,4$ ) revealed that the energy exchange is not unidirectional. Although
a lnean direction of energy transfer is from the grid scale to the SGS, SGS energy is also
transferred in the opposite direction to the grid scale.

One of advantages of LES is that it can estimate an energy cascade from the given
scale down to the slnaller scales locally in the physical space via the SGS production
term, enabling a detection of events which provides intense energy transfer. Coherent
structures are known to exist in the wall-bounded and free shear turbulent flows such as
the streaks in the former and the rib vortices in the latter. The objective of the present
study is to investigate a correlation oi these coherent structures with the SGS energy
transfer mechanism by utilizing the direct numerical simulation (DNS) flow fields (Sec.
2). A particular emphasis is placed on the backward scatter effect. In Sec. 3, the time
development of the educed coherent structure is pursued $\mathrm{i}\mathrm{I}1$ the actual LES.

2 Eduction of intense SGS energy production events

In this section, we educe the structures associated with the generation of intense SGS
energy using a conditional averaging $1\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{d}}$ .
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2.1 Channel fiow
The wall-bounded turbulence DNS data that we used were for fully developed incompress-
ible channel flow with $Re_{\tau}$ (Reynolds number based on the wall-friction velocity, $u_{\tau}$ , and
the half channel height, $\delta$ ) $=180$ . The Fourier-Chebyshev polynomial expansion method
was used with 128, 129 and 128 grid points, respectively, in the $x,$ $y$ and $z$ directions. 5, 6)

In the following, $y_{+^{\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}}}\mathrm{s}$ the wall coordinate $u_{\mathcal{T}}y/\nu$ , where $\nu$ is the $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{n}_{\grave{1}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}$ viscosity.
The channel flow field was filtered to 32 $\cross 129\cross 32$ in the $x,$ $y$ and $z$ directions,

respectively. In the filtering procedure described in Eq. (1), the $1\overline{1}\overline{1}o\mathrm{s}\mathrm{t}$ conumon filters
are Gaussian, top-hat and spectral cutoff filters. In the present study, we adopted the
Gaussian filter because this filter has a localized support in physical space, which property
is beneficial for the use of the scale-similarity model that we incorporate into actual
LES. In the present work, no filter was applied in the $\mathrm{i}\mathrm{n}\mathrm{h}_{01\mathrm{n}\mathrm{o}}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{S}$ direction, but the
same numerical discretization method was used in the inhomogeneous direction both in
the direct $\mathrm{n}$-umerical simulation (DNS) data generation and in the LES $\mathrm{c}\mathrm{o}1_{-}11\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ .
Numbers of LES grid points were chosen so that the turbulent kinetic energy retained in
the SGS components was large.

Figures 1 shows the $\mathrm{t}/$ -distributions for plane-average of the individual terms in $P,$ $P_{ij}$

(no $\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ in $i$ and $j$ ), in which $\tau_{xj}$ is estimated from$\cdot$ the exact SGS stress $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{d}\mathrm{i}_{\mathrm{I}}1\mathrm{e}\mathrm{d}$

from the channel flow DNS data. These terms were decolllposed into two-parts which
contribute to forward and backward scatters. Significant backward scatter arises in the
normal production term of $P_{1\perp}$ term at $y_{+}\approx 15$ . It can be seen that the $\mathrm{n}\overline{\perp}$agnitude of
forward and backward scatter terms in $P_{\perp\perp}$ is very close each other, wvith the total sunl of
$P_{11}$ being slightly positive, but the sum even becoll\‘ies negative in the region at $y_{+}\approx 12$ .
Subsequently, the $\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}_{- \mathrm{m}\mathrm{e}}\mathrm{a}\mathrm{n}-\mathrm{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}(\mathrm{r}\mathrm{m}\mathrm{s})$ value of $P_{11}$ term showed a largest value among
the $P_{ij}$ terms, and the rms values were several times larger than the average values (figure
not shown).

The shear production term, $P_{12}$ , is $\mathrm{d}\mathrm{o}\mathrm{n}$) $\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{t}$ in the very vicinity of the wall $(y_{+}<10)$ .
The energy transfer arising in this ternl is predominantly forward due to the presence of
the large mean velocity gradient near the wall. 1, 4, 6) When the mean velocity gradient was
subtracted from the estimate of $P_{12}$ term, its $\mathrm{n}\overline{1}$agnitude was substantially reduced. Thus,
the local variation of energy exchange between $\mathrm{g}_{\mathrm{T}}\mathrm{i}\mathrm{d}$ scale and SGS is better represented
by $P_{11}$ term rather than $P_{12}$ or $P$ terms. It can be considered that $P_{11}$ ternl is nlore
appropriate to use for the detection of the events associated with intense grid scale-SGS
energy transfer.

Based on above observations, we educe the coherent structures by sampling the events
with intense $P_{11}$ term by applying a conditional averaging procedure. $\mathrm{L}1.7$ ) The velocity
fields were averaged for the events that corresponded to strong forward and backward
scatters in $P_{11}$ term. Strong forward scatter event was detected by $\mathrm{i}_{111}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ the one-
point conditions of the type $T(p_{t})>0.1_{\mathit{1}}$. where $T( \int J’)$ is defined as

$T(p_{t})= \int_{pt}^{\infty}fP(f)df//-\cdot\infty\infty|.fP(f)|(lf$ . (2)

Here, $P(f)$ denotes the probability $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\cdot \mathrm{t}\mathrm{i}\mathrm{o}\mathrm{I}\mathrm{l}$ of $P_{\perp\perp}$ . $\mathrm{S}\mathrm{i}_{111}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}$ , for the $\mathrm{b}\dot{\mathrm{c}}\mathrm{L}\mathrm{c}\mathrm{k}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}$ scatter
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event, the conditions of $T(p_{t})<-0.1$ was imposed, where $T(p_{t})$ is

$T(p_{t})= \int_{-\infty}^{p\iota}.fP(f)df/\int_{-\infty}^{\infty}.|fP(f)|df$ . (3)

This detection was carried out for the grid points in the $x-z$ plane located at $y_{+}=12$ .

It was felt that when an excessive symmetry is $\mathrm{i}\mathrm{n}$) $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}$ for the conditional averaging,
important fine structures are eliminated by superposing the structures with opposite ori-
entations.

In the previous analysis of the vortical structures in the channel, 8) it was reported that
the histograms of $\theta$ , inclination angle to the $x-z$ plane of the projection of the vorticity

vector in the $x-y$ planes, $\theta=\tan^{-1}(\overline{\omega}_{\underline{9}}/\overline{\omega}_{1})$ , was concentrated $\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\pm 90^{\mathrm{o}}$ in the $x-z$

plane located at $y_{+}=12$ . Here, $\overline{\omega}_{2}$ denotes the GS normal vorticity $\overline{\omega}_{2}(=\partial\overline{u}/\partial Z-\partial\overline{w}/\partial \mathcal{I})$ .

This result indicates a significant contribution of the wall-normal vorticity for the vortex
dynamics in the near wall region. In fact, the intensity of the shear production term of
$P_{13}$ shown in Fig. 1 is not negligible.

In order to eliminate the imposition of excessive $\mathrm{s}\}^{r}\mathrm{n}_{\overline{1}}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}$, we further constrained the

orientation of wall normal vorticity, i.e., the events with positive wall-normal vorticity
$\overline{\omega}_{arrow}9>0$ was chosen. Each time an event was detected, the whole grid scale velocity field
was stored, centering on the event. All the realizations where the condition was satisfied
were then averaged to yield the conditionally-averaged fields. 7) Detection was done for
both lower and upper walls. Approximately 150 events with large positive $P_{1\perp}$ term value
and a positive normal vorticity were detected and averaged from the 10 realizations of
the DNS data separated by non-dimensional tillle interval $0.6tu_{\tau}/\delta$ .

Figure 2 shows the contours of the streamwise velocity, $\overline{u}’’=\overline{u}-<\overline{u}>$; in the $x-z$
plane at $y_{+}\approx 12$ , associated with the detected events. $<f>$ denotes the average of $f$

in the $x-z$ plane. Positive values are plotted by the solid lines, and the negative ones
by the dashed lines. The flow is from left to right of the figure. Figures 2 (a) and (b)

show the results obtained from the forward-scatter events $(T(p_{t})>0.1)$ (referred to as the
$P_{11}$ -Forward event) and the the backward-scatter events $(T(p_{t})<-0.1)(P_{\perp\perp}$ -Backward
event), respectively. These contours show asynunetric streaky structures. In Fig. 2 (a),

the region with negative contours (low speed streak) is $\mathrm{p}_{\mathrm{J}}1.\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{d}_{\mathrm{o}\mathrm{W}\mathrm{n}\mathrm{S}}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{n}1$ of that with
positive contours (high speed streak) near the detection polnt located at the center of this
$x-z$ plane. This result is similar to those obtained in Johansson et al. 10) using the VISA
method and also those obtained using the $\lambda_{2}$ method in Jeong et al. 11).

To examine the accuracy of the educed flow field for an $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{X}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of the “real”
turbulence, the $y$-profiles of the grid-scale turbulence intensities are shown in Fig. 3,
in which the intensities are compared with those obtained fronl the ‘ exact’ filtered-
DNS data. Although these intensities decay llluch faster as the distance fronl the lower
wall is increased, because the vortical structures in the upper half of the channel were
smeared out, the overall intensity profiles are well represented $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}_{C}1\mathrm{t}\mathrm{i}\backslash ’\cdot \mathrm{e}\mathrm{l}\mathrm{y}$ . It should
be noted that, quantitatively, the alnplitude of the intensities for the educed flow field is
approximately a quarter of the filtered DNS data. This is because the significant $\mathrm{p}\mathrm{o}\mathrm{r}\iota \mathrm{i}\mathrm{o}\mathrm{l}\mathrm{l}$

of educed structure is concentrated near the detection poillt.
In the $P_{11}$ -Forward event, a strong shear is generated $\mathrm{i}\mathrm{I}1$ the region where a high

speed streak catches up with a low speed streak. This region coincides with the detection
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point, where a large negative value for the longitudinal velocity derivative $\partial\overline{u}/\partial x$ occurs.
A large wall normal vorticity, $\overline{\omega}_{2}$ , is generated in this region.

In the $P_{11}$ -Backward event, alow speed streak is placed upstream of high speed streak
as shown in Fig. 2 (b). Alarge positive value for the longitudinal velocity derivative $\partial\overline{u}/\partial x$

occurs in the region where a low speed streak resides adjucent to a high speed streak, and
a large streamwise vorticity, $\overline{\omega}_{1}(=\partial\overline{w}/\partial y-\partial\overline{v}/\partial z)$ , is generated here.

Figures 4 (a) and (b) show the scatter plots between the $P_{11}$ ternl and the strealDwise
and the wall-normal vortices, respectively, which were taken from the region $9\leq y_{+}\leq 21$ .
It can be seen in Fig. 4 (a) that large $\overline{\omega}_{1}$ is associated with negative $P_{\perp\perp}$ , whereas large
positive $P_{11}$ generates no significant $\overline{\omega}_{\perp}$ . In Fig. 4 (b), large $\overline{\omega}_{\sim}9$ is correlated with large
positive $P_{11}$ . Thus, principal vortical structures educed in the present detection are the
streamwise vortices generated along the $P_{11}$ -Backward event and the wall-normal vortices
generated along the $P_{11}$ -Forward event.

This result can be explained by using the vortex stretching term in the governing
equation for the grid-scale enstrophy $P_{\omega}=\overline{\omega}_{i}\overline{\omega}_{j}\partial\overline{u}_{i}/\partial x_{j}$ . Major term for the streamwise
enstrophy equation is the term $\overline{\omega}_{\perp}\overline{\omega}1\partial\overline{u}_{1}/\partial x_{1}$. It can be readily seen that $P_{1\perp}$ -Backward
event provides positive contribution to this term, $\mathrm{i}.\mathrm{e}.,$ enhances $\overline{\omega}_{1}$ , whereas $P_{1\rfloor}$ -Forward
event makes negative contribution i.e., reduces $\overline{\omega}_{\perp}$ . $\mathrm{S}\mathrm{i}_{1}\mathrm{n}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}$, the terlll for the wall-
normal enstrophy equation, $\overline{\omega}_{9}\overline{\omega}_{9}\simarrow\partial\overline{u}_{\underline{9}}/\partial x_{2}$ can be approximates as $-\overline{\omega}_{-},\overline{\omega}_{2}\partial\overline{u}\perp/\partial.x_{\perp}$

. via
the continuity equation. $P_{11}$ -Forward event provides positive contribution to this term
and enhances $\overline{\omega}_{2}$ , whereas $P_{11}$ -Backward event lnakes negative contributioI] i.e., recluces
$\overline{\omega}_{2}.12)$

In order to classify the educed vortical structures, we utilized the $\lambda_{2}$ nlethod, where
$\lambda_{2}$ denotes the second largest eigen value of the tensor $s_{ik}s_{\iota_{j}}-+\Omega_{\dot{\mathrm{z}}k}\Omega_{k^{\backslash }j},$ $(S_{ij}=(\partial\overline{u}_{i}/oxj+$

$\partial\overline{u}_{j}/\partial x_{i})/2,$ $\Omega_{ij}=(\partial\overline{u}_{i}/\partial x_{j}-\partial\overline{u}_{j}/\partial x_{i})/2)$ . $11$ ) Figure 5 shows the scatter plots between
the $P_{11}$ term and $\lambda_{2}$ . $P_{11}$ -Forward event is primarily correlated with positive $\lambda_{2}$ , while
$P_{\perp\perp}$ -Backward event is associated with negative $\lambda_{2}$ . That is, the wall-normal vortices gen-
erated with the $P_{11}$ -Forward event are classified as a vortex sheet, whereas the streaJuwise
vortices generated with the $P_{11}$ -Backward event are classified as a vortex tube.

In summary, forward cascade of the grid-scale energy is associated with the vortex
sheet-like structure, which is consistent with the previous result for the $\mathrm{h}_{\mathrm{o}\mathrm{n})\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{n}}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{S}$

isotropic turbulence. 13) On the other hand, backward scatter is associated with the for-
mation of vortex-tube like structure. Figure 6 shows the histogram for the longitudinal
velocity derivative $\theta\overline{u}/\partial x$ in the $x-z$ plane at $1/+=12$ , obtained fron) the filtered DNS
data. Its distribution is asylnmetric with respect to $\partial\overline{u}/\partial x=0$ , and skewed for negative
values. This asymlnetric and non-Gaussian distribution has been noticed, $\mathrm{e}.\mathrm{g}.$ , in Vincent
et al. 14) We consider that this occurred so that the energy cascade beconles forward on
average.

2.2 Energy transfer in mixing layer and homogeneous isotropic
turbulence

In this section, we assess the correlation of the energy transfer and $\mathrm{v}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}_{-}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{t}/\mathrm{t}\mathrm{u}\mathrm{b}\in 1$

structure in nlixing layer and decaying homogeneous isotropic turbulence.
For free shear turbulence, we have chosen incompressible mixing layer flow that de-
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velops in time, and generated DNS data using the $\mathrm{F}_{\mathrm{o}\mathrm{u}\mathrm{r}}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ difference method, with
192, 128 and 128 grid points, respectively, in the $x,$ $y$ and $\approx$ directions. 6) The Reynolds
nulnber, $Re_{\theta}$ , based on the mean velocity difference between the two edges of the lnixing
layer, $\triangle U$ , and the initial momentum thickness, $\theta_{0}$ , was set equal to 200. The pseudospec-
tral Fourier expansion method was used in the $x$ and $z$ directions, whereas the $2\mathrm{n}\mathrm{d}$-order
central finite difference lnethod was used in the $y$ direction. This mixing layer DNS data
was filtered to $96\cross 128\cross 64$ grid points, respectively, in the $x,$ $y$ and $\approx$ directions. As-
sessment was done at $t=350,6$) when streamwise rib vortices had been formed in the
braid region between the rollers after the occurrence of a mixing transition, $\perp 5$ ) and the
flow was in a turbulent regime.

The incompressible homogeneous isotropic turbulence DNS data were generated using
the pseudo-spectral method with 128, 128 and 128 grid points, respectively, in the $:\mathrm{r},$ $y$

and $z$ directions. The initial Taylor microscale Reynolds number was approxinlately 100.
Assessment was done using the data when the Taylor microscale Reynolds number was
approximately 45. This honlogeneous flow DNS data was filtered to $32\cross 32\mathrm{x}32$ in the
$x,$ $y$ and $z$ directions, respectively.

Figures 7 sh $o\mathrm{w}\mathrm{s}$ the scatter plots between the $P$ ternl and $\lambda_{2}$ obtained for the mixing
layer flow. Forward scatter event is rather correlated with negative $\lambda_{2}$ , indicating that
energy cascade $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}_{\overline{1}}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{l}\mathrm{y}$ occurs through a tube-like structure, $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{n}\overline{\mathrm{l}}$ably by a stretching
of vortex tubes. The degree of an occurrence of the sheet-like structure with positive $\lambda_{2}$

is reduced compared with the result from the channel flow shown in Fig. 5, i.e., the
tube-like structure is dominant in the lnixing layer. $\mathrm{S}\mathrm{i}\mathrm{n}\overline{\mathrm{l}}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}$ results were obtained both in
the rib region and the braid region of the nlixing layer. This $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{u}1\uparrow J$ nlay be affected by
the low Reynolds nulnber for the DNS data used here. We are currently working on an
assessment at the high Reynolds nulnber case using the high ${\rm Re}_{}.\mathrm{v}$nolds nunuber DNS data
$(Re_{\theta}=240016))$ .

Figures 8 shows the scatter plots between the $P$ term and $\lambda_{2}$ obtained for the decaying
homogeneous isotropic turbulence. Overall, the result is similar to that for the channel
flow, i.e., intense forward cascade is primarily associated with the sheet-like structure and
the degree of an occurrence of the sheet-like structure is more enhanced $\mathrm{c}\mathrm{o}\mathrm{n}$)$\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{d}$ with
the mixing layer. However, it should be noted that the degree of an occurrence of the
tube-like structure is not negligibly small compared with the channel flow.

3 Time development of the educed flow field in the
channel flow

In this section, we pursue the time evolution of the educed flow $\mathrm{n}\mathrm{e}\mathrm{l}\cap \mathrm{d}$ for the channel $\mathrm{f}\mathrm{l}0^{1}\lambda$.

in Section 2. To do this, the effects of the SGS field nlust be correctly represeIlted bv
the SGS models for the SGS stress tensor, $\tau_{ij}$ . We have used the $\mathrm{d}\mathrm{y}_{11\mathrm{a}\iota 11}\mathrm{i}_{\mathrm{C}}\cdot \mathrm{t}\mathrm{w}\mathrm{o}-\mathrm{P}\mathrm{a}\mathrm{I}\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}$

mixed nlodel (DTM $C_{B}-C_{S}$ model 9)
$)$ obtained by lineal$\cdot$ly conlbining the SGS eddy

viscosity coefficient model (the $\mathrm{s}_{\mathrm{m}}\mathrm{a}\mathrm{g}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{s}\mathrm{k}\mathrm{y}$ model 17)
$)$ and $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{e}-\sin$ ) $\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}$ nlodel $\perp 8$ ).

The assesslnent of the previous SGS lllodels, Dynamic Smagorinsky $\mathrm{n}$) $\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l},$

$19$ ) the
dynamic mixed model, 20) the DTM proposed by Salvetti and Banerjee 21) and $C_{B}$

’
-

$C_{S}’ \mathrm{n}\overline{\mathrm{l}}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}$ , for wall-bounded and free shear flows 9) and the decaying colnpressible and
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incompressible $\mathrm{h}_{0111\mathrm{O}}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{S}$ isotropic turbulence have been previously reported. The
$C_{B}^{l}-C_{S}$ model yielded the most accurate results in both “a priori’ and $‘\iota \mathrm{a}$ posteriori”
tests. Particularly important for the present study is the assessment results for the grid
scale-SGS energy transfer. It was found in all of tested cases that the $C_{B}’-C_{S}\mathrm{n}\overline{\perp}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}$

is capable of accurate representation of both forward and backward scatters, while other
models overestimate forward scatter and underestimate backward scatter. In fact, the
$C_{B}-C_{S}$ model yielded a very accurate approximation for the distribution of the $P_{11}$ term
associated with the educed velocity field obtained in Section 2 (figure not shown).

$\mathrm{T}\mathrm{i}\mathrm{n})\mathrm{e}$ evolution of the asymmetric streakv $\mathrm{s}_{\mathrm{I}}$tructure obtained for $P_{11}$ -Forward event
was pursued in LES using the $C_{B}^{l}-C_{S}$ model. The initial condition was given as the
velocity and pressure fields derived from $P_{1\perp}$ -Forward case. With a lapse of $\mathrm{t}\mathrm{i}_{1}\mathrm{n}\mathrm{e}$ , the
portion with positive contours catches up with that with negative ones, and the asynnnet-
ric streaky structure in Fig. 2 (a) was transformed into the $\mathrm{s}\mathrm{y}_{\mathrm{l}\mathrm{n}\mathrm{m}\mathrm{e}\mathrm{t}}\mathrm{r}\mathrm{i}\mathrm{C}$ streaky structure.
Later, this symmetric structure became asymmetric again, in which the portion with pos-
itive contours were placed $\mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\ln$ of that with negative ones, sinlilar to the contours
shown in Fig. 2 (b) obtained for $P_{11}$ -Backward event. Thereby, initially, an intense for-
ward scatter occurred, and to relax this $\mathrm{t}i\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{e},\mathrm{S}\mathrm{s}\mathrm{i}_{\mathrm{V}}\mathrm{e}$

” generation of the SGS energy, the flow
tended to adjust itself to reduce the cascade. It was found, however, $\mathrm{t}_{}\mathrm{h}\mathrm{a}\mathrm{t}$ the turbulent
state gradually decayed when the educed velocity field was directly used. This was because
a lift-up of the low-speed streak was not strong enough to sustain the turbulence. $1^{\underline{)}}$ )

When the amplitude of turbulent fluctuations was set twice as large as those of the
educed velocity field, a lift-up of the low-speed streak was initiated. Figure 9 shows the
end view of time lines generated in the $x-z$ plane at $y_{+}=12$ for $P_{1\perp}$ -Forward case, after
a non-dilllensional time of $1.0tu_{\mathcal{T}}/\delta$ elapsed. The tinle lines for the same plane and at
the same instant obtained for $P_{11}$ -Backward case are shown in Fig. 10. The degree of
lift-up of low-speed streak shown in Fig. 9 is much larger than that shown in Fig. 10,
implying that more intense lift up occurs in $P_{11}$ -Forward event. It was found that this
lift up was caused by a pair of counter-rotating streanlwise vortices located above the
detection point. It should be noted that this lift up did not occur uniformly along the
low speed streak, but it was lnore manifested in the region where the high speed streak
approaches the low speed streak. This result was consistent with that obtained in Fig.
10 that the region with the second largest lift up found in Fig. 10 $(\approx/\delta\simeq 1.0)$ coincided
with the region where the high speed streak approaches the low speed streak. It can be
inferred that the largest lift up, or burst, is generated along $P_{11}$ -Forward event, leading
to the production of the slllall-scale (SGS) turbulent energy.

With the lapse of time, a lift up of the low-speed streak intensified and the low-speed
streak located in the central region 01 the $x\cdot-z$ plane observed in Fig. 2 (a) was allllost
$\mathrm{P}^{\mathrm{U}\mathrm{n}1}\mathrm{p}\mathrm{e}\mathrm{d}$ out of the sublayer into the buffer laver. Thus, the wall vicinity became very
tranquil. Figure 11 shows the contours of $\overline{u}’’$ in $\mathrm{t}1_{1}\mathrm{e}.\mathrm{r}-\approx$ plane at $y_{+}=12$ obtained at
$t=2.2$ . The low-speed streak in the central region of the $x-\approx$ plane is $\mathrm{a}\ln\overline{\mathrm{l}}\mathrm{o}\mathrm{s}\mathrm{t}$ invisible,
and the central region is mostly occupied with the high-speed fluid. Although another

$1\mathrm{o}\mathrm{v}_{\iota}^{\gamma}$-speed streak can be seen besides the central region, the $\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{d}\mathrm{e}$ of fluctuations along
these streaks is not large enough to cause the lift up. In turn, the down wash (sweep) of
the fluid in the region away from the wall into the near-wall region is initiated. Currently,
we consider that this down wash was caused by a large scale streamwise vortices generated
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by the G\"ortler type instability. With the injection of the high speed fluid, amplification

and destabilization of the low-speed streak found in Fig. 11 occurs, as indicated in the

contours of $\overline{u}^{\prime l}$ in the $x-z$ plane at $y_{+}=12$ obtained at $t=3.8$ shown in Fig. 12, which

leads to the lift up of these low-speed streaks.
We consider that a cyclical repetition of these three processes is the scenario in the sus-

tenance of turbulence for the channel flow. More detailed investigation of these processes
is currently underway.
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$J_{+}$

Figure 1 : $\mathrm{y}-\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ for plane-average of the individual
terms in Pノ $P$

$\mathrm{i}\mathrm{i}$

.

Figure 2 (a) : Top view of the contours for streamwise velocity in
the $x-z$ plane at: $y_{+}\sim 12$ . $\langle$

$P_{11}$ -Forward event)
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Figure 2 (b) : Top view of the contours for streamwise velocity in
the $\mathit{2}:-Z$ plane at $\mathrm{y}_{+}$

$\sim 12$ . ( $P_{11}$ -Backward event:)

$\eta\frac{\supset}{\alpha}$

$\frac{-^{\mathrm{H}}\vdash}{\mathrm{c}+}$.

$\mathrm{a}^{\frac{\mathrm{g}}{\mathrm{o}}}$

$(\mathrm{D}(\mathrm{t}\mathfrak{Q}_{d}\eta$,

$1rightarrow$

$\omega \mathrm{Z}\mathrm{O}$

$\mathrm{n}_{\dashv}$

$y/\delta$

Figure 3 : $\mathrm{y}$
– profiles of the grid-scale turbulence intensities

( $P_{11}$ -Forward event) .
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$\mathrm{o}_{\triangleleft}^{\neg}$

Figure 4 (a) : $\mathrm{S}\mathrm{c}\mathrm{a}\{\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{r}$ plots between the $P_{11}$
$\mathrm{t}:\mathrm{e}\mathrm{r}\mathrm{m}$ and the streamwise

vort:ici $\mathrm{t}\mathrm{y}$ .

$\mathrm{Q}_{\backslash }\neg$

Figure 4 (b) : Scatter plots between the $P_{11}$ term and the the wall-

normal vorticity.
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$\mathrm{h}^{\eta}$

Figure 5 : Scatter plots between the $P_{11}$ term and $\lambda_{2}$ . for the chamel

flow.

$\overline{\overline{\mathrm{O}\mathrm{o}}}$

Range

Figure 6 : Histogram for the longitudinal velocity derivative in the
x-z plane at $y+=12$ , obtained from the filtered DNS data.
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$\mathrm{h}$

$\lambda_{\mathit{2}}$

Figure 7 : Scatter plots between the $P$ term and $\lambda 2$ for the mixing

layer.

$\mathfrak{Q}_{\neg}$

$\lambda_{\mathit{2}}$

Figure 8 : Scatter plots between the $P$ term and $\lambda 2$ for the decaying
homogeneous isotropic turbulence.
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ら

$z$

Figure 9: End view of $\mathrm{C}$ ime lines generated in the x-z plane at $y+=12$

$\mathrm{f}$ rom $P11$ -Forward cas $\ominus$ a $\mathrm{C}$ $\mathrm{t}$ $\tau/\grave{o}--1.0$ .

ら

$z$

Figure 10 : End view of time lines generated in the x-z plane $\mathrm{a}\mathrm{c}$

$y+=12$ from $P$ $-\mathrm{B}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{W}\mathrm{a}\mathrm{r}\mathrm{d}$ case at $\mathrm{C}$ $\tau/\delta=1.0$ .11
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$———————–\nearrow------------\sim--------------$

$——\sim---------------------------’-------------------arrow---------------------------------’---\vee-’--------’--arrow-----------\vee-----------------\backslash _{----}’------------------’-----\vee----------------------’-----’-\sim----------------’-’--\vee---’-\backslash --------------\vee^{--}-----------\sim----------\sim-------------\sim----\sim-----\sim----------’--------\sim-\wedge------\sim---\sim------\sim---\sim------------\sim-----------$

$—-’——\sim\sim_{arrow}-\sim-$

Figure 11 : Top view of [he $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{s}$ for $\mathrm{s}\mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{m}\mathrm{w}\mathrm{i}\mathrm{S}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}_{0}\mathrm{c}\mathrm{i}\mathrm{c}_{Y}$ in the
$x-z$ plane $\mathrm{a}\mathrm{C}\mathrm{y}_{+}\sim$ $12$ and $t=2.2$

Figure 12 : Top view of the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t};\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{S}$ for streamwise velocity in the
$x-z$ plane $\mathrm{a}\mathrm{C}\mathrm{y}_{+}$

– 12 and $t=3.8$
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