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TORIC MODIFICATIONS OF LINE SINGULARITIES ON SURFACES

GUANGFENG JIANG(%/"#) AND MUTSUO OKA(FH EfE)

ABSTRACT. We study the topology of the Milnor fibre F of a function f with critical locus a
smooth curve L on a surface X, where X has an isolated complete intersection singularity and
contains L. We use toric modification to resolve the non-isolated singularity V = X n £~1(0).
Then we compute the Euler-Poincaré characteristic of F. Some examples are worked out.

INTRODUCTION

Let (X,0) C (C™*,0) be a germ of an icis (isolated complete intersection singularity) and
contain a smooth curve L, which will be called a line in this article. We are interested in the
topology of the Milnor fibre Fy of a function f whose zero level hypersurface passes L or is
tangent to the regular part of X along a line L. Hence the critical locus of f contains L if
its zero hypersurface is tangent to Xz along L. Since toric modification is used, we assume
that f together with the defining equations hq,..., h,—1 of X form a non-degenerate complete
intersection.

Let L be the z-axis in a local coordinate system defined by the ideal g = (y1,...,yn). Since
L C X, their defining ideals satisfy the relation § := (h1,...,hp—1) C g. This implies that X
is not convenient or commode in French. Also the zero level hypersurface defined by f contains
L, so V := X N f~1(0) is not convenient either. If X also contains another axis of the local
coordinate system, then there is a point () in the dual Newton diagram I'™*(hq, ..., hp—1, f) of
V such that @ is not strictly positive, not on the axes and the minimal value d(Q;¥h) of the
linear function determined by the covector @ on the Newton polyhedron I';(h1,...,hs—1) is
positive, but d(@; f) = 0 on I'y(hy,...,hn-1, f). This means that the assumptions, called
and {’ conditions in the literature (see for example [12, P.128, P.205] ), are not satisfied. These
“sharp” requirements seem essential in order to get the good resolution and zeta function along
the last “ principal direction” of the non-degenerate complete intersection (h1,... , An—1, f).

Nevertheless, in case X is a surface with isolated singularity, we really can replace these “sharp”
conditions by a weaker one and obtain a good resolution of f on X. By A’Campo’s theorem, we
are able to compute the zeta function of the algebraic monodromy of Fy and the Euler-Poincaré
characteristic of Fy.

In case f is a generic function contained in g, our work also supplies some information on the
hypersurface intersection of X along the line contained therein.

If f € g? and the transversal singularity type of f along L is A;, practically to get the Euler-
Poincaré characteristic of Fy we do not need to resolve the function f (which might be very
general) since the theory developed in [6]. For example we can consider the Milnor fibre Fy of a
generic quadric form ¢ in the variables ¥1,...,yn. The Euler-Poincaré characteristic of Ff can
be expressed by: the Euler-Poincaré characterlstlc of Fy, the number of Morse points outside L,
-and the number of Dy, points on L\ 0 of the Morsification f + q. If, moreover, Fy is connected,
F is also connected, hence a bouquet of one circles.
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As applications, we prove that Fy is homotopically a bouquet of one cycles if f € g° has
transversal A; singularity along L and X is an Ay — Dy — Eg — E7 type surface singularity. We
also prove that Fy is in general not connected when X is a Brieskorn-Pham surface.
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1. PRELIMINARIES

1.1. Let Ocgn be the structure sheaf of C™. The stalk Ocm g of Ocm at 0 is denoted by O.
Let (X, 0) be a reduced analytic space germ in (C™, 0) defined by the radical ideal § of O. Let
(L, 0) be the germ of a subspace of X defined by the radical ideal g of O. Denote Ox = O/b,
OL:=0 / g

Let Der(O) denote the O-module of germs of analytic vector fields on C™ at 0. Define Dx :=
Dery(O) = {¢ € Der(O) | £(h) C b}, which is the O-module of logarithmic vector fields along
(X,0) (cf. [1]). Geometrically, Dx consists of all germs of vector fields that are tangent to
the smooth part of X. Equiped with X there is a so called logarithmic stratification induced
by logarithmic vecotr. fields [1]. Especially, when X is purely dimensional and has isolated
singularity in 0, then {0} and the connected components of X \ {0} form a holonomic logarithmic
stratification of X. And this stratification is a Whitney stratification.

Let S = {S,} be an analytic stratification of X, f : (X,0) — (C,0) an analytic function
germ. The critical locus L‘]f of f relative to the stratification S is the union of the closure of

the critical loci of f restricted to each of the strata S,, namely, L‘}' =ULys,. If dim L}g =0,

[0 1
we say f is (or defines) an isolated singularity on (X,0). Otherwise, f is (or defines) a non-
tsolated singularity on (X, 0). If L‘J? is a smooth curve, we say f is (or defines) a line singularity

on (X,0). In this article, we always use the logarithmic stratification to define singularities of
functions.

All the functions whose critical loci contain L form an ideal of O
/Xg:={f€0|(f)+JX(f)Cg},

called the primitive ideal of g (cf. [15, 14, 6]). This ideal collects all the functions whose zero
level surfaces are tangent to Xreg along L. Obviously g?+§ C [y g C g.

1.2. For f € [ g we define an ideal Jx(f) := {£(f) | £ € Dx}, called Jacobian ideal of f. Call
8/(Jx(f) +b) the Jacobian module of f on X, and its dimension over C is called the Jacobian
number of f on X and is denoted by j(f) := dimc g/(Jx(f) +b). If Xsing C {0} and dim L =1,
it is known [6] that j(f) < oo if and only if the transversal singularity type of f along L\ {0}
is Al. .

The Op-module M := §/§% = g/(g%> +b) is called the conormal module of § (as an ideal of
Ox). Denote T := [, g/(g> +b), N := g/ [y 8. We have the exact sequence of Or-modules

0—T(M)— M—N—0.

~ If L does not contain any irreducible components of Xging, T'(M) is the torsion submodule of
M. In case dim L = 1, T(M) has finite length, called torsion number of (L,X), denoted by
AL, X). See [9] for generalizations of primitive ideals and torsion numbers.

1.3. Let L be a line (i.e. smooth curve). We choose L to be the z-axis of the local coordinate
system in (C™*1,0). Then L is defined by ideal g = (y1,...,¥yn). For a function f € g2, we
n

have f = Y huyryr with by = hy. Let U = {u := (up) € cn’ | up = wi}, and V = C™
k,i=1
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with coordinates v = (vjk)1<j<m,1<k<n- Let s = (u, v) be the coordinates of S = U x V. Define
fs(2) = f + q(s, 2) with

n m
q(s, 2) := Z Ukl + Z 2jVkOkl | YY1,
kl=1 j=1
where dy; is Kronecker’s delta, 2o := , 2; := y;(1 < j < n) are the local coordinates of (C™*1, 0).
The following proposition is a generalization of a result due to Siersma-Pellikaan [17, 16], and
the proof is similar to [16](cf. [6]).

Proposition 1. Let (X,0) C (C™*',0) be an icis of pure dimension n —p + 1, and (L,0) C
(C™*1,0) be a line. If j(f) < co. Then there exists a Zariski open dense subset S’ C U x V such
that

(1) For any s € ', fs has only isolated Morse points on X \ L, and only Ay and D, type
singularities on L \ {0};
(2) The module N is free, and if the images of Yp+1s- -+ ,Yn form the basis of N ,

OL

§:= Do = di :
me (det(hri)p+1<k,i<n)

We say that f; is a good deformation of f.

1.4. Let B. denote an open ball of radius ¢ centered at 0, A, denote an open disk in C with
center 0 and radius 7. Let ¢ and 7 be admissible for the Milnor fibration of f. Namely, there
exists the following local trivial topological fibration, the Milnor fibration

F:BO)nXnf A — A;,

where A* =4, \ {0} The ﬁbre F of this fibration is called the Milnor fibre of f. The Milnor
fibre F*¢ of fs i 1s called the central type of the Milnor fibre F' of f. The following proposition is
a generalization of a result of Siersma (17, 18]. The proof of it can be found in [6]

Proposition 2. Let L and X be the same as in Proposition 1, and f,; be a good deformation
of f. Let € and 1 be admissible for the Milnor fibration of f. Then for s € S' with | s |,n and €
sufﬁczently small, the map

fs: BN f;l(Afl) N A71
has the following properties:

(1) Forallt € Ay, f77(t)MOB, (as stratified spaces);

(2) For every t € DAy, and hence for every t € A, \ {critical values of f,}, there is a homeo-
morphism: F = f~Y(t) = F = f;1(t);

(3) There is a homeomorphism: f~*(A,) = f71(A,);

(4) Let FO be the intersection of F' with a sufficiently small tubular neighborhood T of L such
that inside T there is no Morse type points. Then F° can be obtained from F* by attaching
n-cells along a transversal vanishing cycle of F¢, the number of the n-cells is 2 b

(5) If dimX =n—p+1 > 3 and F° is simply connected F ~ FOyv §npy. S”“P the
number of S"7P is the number of Morse point on X \ L: Al,

(6) Ifdim X = 2 and F® is connected F' ~ FevSlv.. .V S!, the number of S is 4;+2'Dey—1. ]

In this article we study mainly the central type F¢ of functlons defining isolated line singular-
ities on a two dimensional non-degenerate icis .
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1.5. Let g : (C**1,0) — (C,0) be an analytic function germ. Let g := 3_ay2” be the Taylor

v
expansion of a representative of g. The Newton polyhedron T'+(g) (with respect to the local
coordinate z) is by definition the convex hull of |J {v +R"™"'}. The Newton boundary T'(g)
' {vla,#0}
(with respect to the local coordinate z) is by definition the collection of all the compact facets
of F+ (g) .

Let P € Homgz(Z"t!, Z) with non-negative integral coordinates po, . .. , Pn, and be denoted by

P= T(po, ...,pPn) > 0, called positive covector. As an R-linear function on R, the restriction

of P to I';(g) has a minimal value, denoted by d(P;g). Denote also A(P;g) = {z € T4(g9) |

P(z) = d(P;g)}. The face function of g with respect to P is by definition gpr(2) = ga(p;g) =
> .

veA(P;g)

Let X be a complete intersection defined by O-regular sequence hi,...,h,. The Newton
polyhedron T'y(hy,...,hy) of X is by definition the mixed sum of I';(h;), and the Newton
boundary T'(hy, ..., hp) of X is the mixed sum of I'(hj).

Two positive covector P, Q are equivalent if and only if A(P; ;) = A(Q;hy) for j=1,...,p.
The dual Newton diagram I*(hy,...,hp) of X is a collection of all the equivalent classes of
positive covectors under the aforementioned equivalence.

X is called a non-degenerate complete intersection (with respect to the local coordinate z) if
X N C***1 is a reduced non-singular complete intersection in the complete torus cHl

For more systematical introduction to toric modifications of non-degenerate complete inter-
sections, we refer the reader to [12], where the notions and notations used in this article without
explanations can be found.

2. LINES ON SINGULAR SPACES

2.1. Let (X,0) be a reduced analytic space germ in (C**!,0). A smooth curve germ (L, 0) in
(C™*+1,0) is call a line. If L\ {0} C X;eg, We say that X contains (or has ) o line passing through
O .

On a singular space X in C**! one can not always find a line passing through (not contained
in) the singular locus of X. Gonzalez-Sprinberg and Lejeune-Jalabert [4, 5] proved a criterion
for the existence of smooth curve on any (two dimensional) surface.

The existence and number of lines on surfaces with isolated simple singularities and on
Brieskorn-Pham surfaces have been studied in (8, 7].

2.2. Let R be the group of all the local automorphisms of (C"*1,0). Ry, := {¢ € R|$(L) = L}
is a subgroup of R. Define 1K := R % C, the semi-product of Rz with the contact group C
[11]. This group has an action on the space mgOP consisting of mapping germs h : (C"*1,0) —
(CP,0) with components h; € mg. For A = (h1,...,hy) € mgOP, we define an analytic space
X =V(h), where b is the ideal generated by hs, ... ,hp. The image of the morphism:

o1&, op
is denoted by th(h), where dh is the differential of h. Define

- . ) or
Remark that )\ is ;K-invariant.

Let z,%1,.-.,Yn be the local coordinates of (C™*1,0). Let L be the z-axis defined by g =
(y1,---,Yn). Then L can be defined by g = (y1,..- ,¥n)-
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2.3. Theorem. Let L be a line on an icis X defined by g and b as above. Then h is K-
equivalent to a mapping germ with components

ﬁj = bjy; mod g%, j=1,...,p (2.3.1)
where b; & g. Moreover
ML, X) = A(L X)=dimcg_é=2p:>\~. | (2.3.2)
’ ’ (b) = J s0e

where b is the image of b := by ---by in Or, and A;j is the order ofBj in Oy,

Proof. Since L C X, h C g. Then for a given generator set {hq, ..., hp} of b, we have
he =) by, modg? k=1,...,p.

where Ekj € Or, and for fixed k, l—)kj’s are not all zero since Xsing = {0} g L. Since O is a
principal ideal domain, by changing the indices, we can assume by; | bg;. Let

n -
by
U = + :—l .
= ;buw
Then
h1 =b11y; (mod g?).
Let -
;c.':hk~2-lf—]:-h1,< k=2,...,p-
b11

Repeat the above argument will prove the first part of the theorem.
Consider the exact sequence

ortt B op , coker(dh*) — 0.

By tensoring with Of,, we have exact sequence
o+t &, O — coker(dh*) — 0.

However by the expression of ﬁk’s above, this is just

p dh, L
O =0 — ih(h) +g0p

Since b # 0, by [3, A.2.6], we have the formula for . ‘ O

3. TORIC MODIFICATIONS OF LINE SINGULARITIES ON SURFACES

3.1. In this section we study the toric modifications of functions with lines singularities on
surfaces. Let zp := z,21 = y1,...,2, = Yy, be the local coordinates of (C"+1,O). Let L =
{y1="++=yn =0} be contained in X = {2 € C"*! | hy(2) =+ = hyp_1(2) = 0}, the germ at 0
of a two dimensional irreducible non-degenerate icis. Assume that h; takes the form in (2.3.1).
Consider a function germ f : (X,0) — (C, 0) such that V = X n f~1(0) is a one dimensional
non-degenerate complete intersection. Let # : X — C™*! be the admissible toric modification
for V' associated with a small admissible regular simplicial cone subdivision X*. Denote by X
the strict transform of X by #. We denote by E; the unit vector along the j-th axis of R"+1,
For P € X*, denote by E(P) the exceptional divisor of #, and D(P) := E(P)nX. For a vector
Q = (g0, q1-- .. ,an), define I(Q) := {j | g; = 0}. Let | 4| denote the cardinality of a finite set A.
The following theorem generalizes [12, I11(6.2)]. :
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3.2. Theorem. Let X be a 2-dimensional non-degenerate icis defined by b = (hy,... y hn—1)
with the form of (2.3.1).

(1) There exists at least one primitive integral covector @ = (0,p1,. .. ,pn) in I*(h), the dual
Newton diagram of b, such that dim(A(Q;h)NT(h)) =n—1;

(2) Assume that X is (n—1)-convenient. If on each Cone(Ey, . . E,_l, E;, Ei1,. .., Ep), there
exist at most one point Q) which belongs to I'*(h), such tbat dim(A(@;H)N I‘(b)) >n-—1,
then the small toric modification = : X — X for b is a good resolution of X.

Proof. The first statement follows straightaway from Theorem 2.3.

The proof of (2) is similar to that of [12, III(6.2)].

Suppose X is not convenient, for each vertex @ € vertex(X™) with |I (Q)I =1,%:EQ) —
Cl@ := {z € C™1 | z; = 0if j ¢ I(Q)} is a surjective morphism with fibre P!. Since X

is (n — 1)-convenient, 7 is biholomorphic over X N { C**1\ |J C!|. Take such a point @
[Il=1

on, for instance, Cone(E1, ..., E,) with dim(A(Q;§) N T'(h)) = n — 1 by assumption. Hence

the exceptional divisor D(Q) is the only non-empty divisor which is surjectively mapped onto

L={y =+ =yp=0}. As dim D(Q) = 1, the fibre of 7 on L consists of finite points. Indeed
it contains exactly one point by {12, 111(6.2.1)]. By using Riemann’s removable singularity
theorem, 7 : X \ 771(0) — X \ {0} is a biholomorphism. a

The following theorem is a slight generalization of [12, III(3.4.11)].

3.3. Theorem. Let X,V, be as above. Suppose that X is (n — 1)-convenient, and on each
Cone(Eq, ... , Ei-1, Ei, Eiy1, - - - , En), there exist at most one point which belongs to I'*(h), such
that dim(A(Q; ) NI'(h)) > n — 1. Assume that

") Qe vertex(£*),1 < {[(Q)| <n, E(@QNX # 0= d(Q; f) > 0.
Then the restriction = : X — X of # is a good resolution of f.

Proof. Since the dual Newton diagram T'™*(hs,... ,hnp—1, f) is finer than I™(hy, ..., hn-1), the

smoothness of X is obvious by [12, I11(3.4)] as X* is admissible for I'*(hy,...,hn—1). And the
map

XN (X\ U E(a)) — XN (C"‘”\ U cf)
|T'(o)|<n {I|<n
is biholomorphic.

However, for Q € vertex(X*) \ {Eo,...,En}, if 1 < [I(Q)| < n, then E(Q) N X is included
in the zero locus of f om. U |I(Q)| =1, then Q is on a Cone(Eq, ..., Ei_1,E;, Eit1,...,En).
Hence even though E(Q)N X might not be included in the zero locus of fom, w is still buectwe
on E(Q)NX by Theorem 3.2. Hence 7 : X — X is a good resolution of f. O

3.4. Remark. Note that in case X is a surface in C3, the (§”) condition is empty.

3.5. The zeta function. Let Fy be the Milnor fibre of f. We are interested in the zeta function
¢s(t) of the Milnor fibration of f.

Let f, X,V be the same as before. Assume (}”). Let X* be the small regular simplicial
subdivision of I'*(h, f), where h = (h1,...,hp—1). Let #: & — C™t1 be the associated toric
modification map. By Theorem 3.3, the restrlctlon 7: X — X of # to the strict transform X
of X is a good resolution of f.

For P € vertex(X™), denote by

D(P):= E(P)n X, E(P):=E(P)nV
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D(P)* := D(P) \ ( U D(P’)) ; E(P)*:=E(P)\ ( U E(P’)) )

P'#P P'#P
VH(f) = {P € vertex(Z*) | d(P; f) > 0}.
The total transform is
Vet =V+ > d(P;f)D(P).
PeV+(f)
Note that the multiplicity of 7*f along D(P) is d(P; f). Let

D(P) = (D(P)\ (E(P)U U D(P’))) Nna~(0).

PleVt(H\{P}
By A’Campo formula we have the zeta function and Lefschetz number

Gy= JI (1-#®)~ > AP HXBP) (k2 1).

PeV+(f) d(P;f)lk

(D(P))

3.6. Since X is a surface, D(P) is a smooth curve. Hence D(P) N D(Q) and E(P) are at most
zero dimensional for all P,Q € V*(f). Define e(P) := |E(P)], the cardinality of the set E(P).
é(P,Q) :=|X NE(P)NE(Q)|.- Then

x(D(P)) = x(D(P)) —e(P)= Y &PQ).
. QeV+(f)
Let {S; } 1 be a set of simplexes in R®. We say that {S; } _, satisfies the (Ap) condition if
for any I C {1 ., k}, the dimension of the mixed sum dlm(z e Si) 2 .
Let P e V*+( f) be strictly positive. By [12, IV(6.2)], we know that

1) e(P) > 0 if and only if {A(P;hy),..., A(P; hn-1), A(P; f)} satisfies the (Ap) condition;
2) é(P,Q) > 0 if and only if both {A(P h)} and {A(Q;h)} satisfies the (4o) condition,
Cone(P Q) C X* anddimA(P;h)NA(Q;H) =>n—2.

Hence we have (see [12, IV§7])
e(P) = x(E(P)) = x(E*(P)) = nlVa(A(P; h1), -y A(P; hn-1), A(P; f)),

where V(- - +) is the Minkowski’s mixed volume.
Let ¢ := Cone(P,Q, P,...,P,) € X* be a regular sunplex By [12, III(3.4.10)], in the
coordinate chart C2*!

EP)NE@Q NX ={(0,0,4,) | by p,(4) = -+ = hp_y po(4,) = O}
={, €CT by p,(yh) =+ =hy_y p,(4,) = O},

where P = P+ Q, and kg p , () = hq 5, (Fo(¥0))/ _n y5F5e) Hence
1=

&(P,Q) = x(E(P) N B(Q)NX) = (n— 1)Va_1(A(B;D)).
If P € V*(f) is not strictly positive By [12, IV(6.5)],
3) e(P) = 0 since E(P) is empty; ‘
4) é(P,Q) > 0 if and only if both {A(P’; hy P)y+vry A(P'; hn_1,p)} and {A(Q;h)} satisfies
the (Ap) condition, Cone(P, Q) C X* and dim A(P; hHNA(Q;h)=>n-2.
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4. LINES SINGULARITIES ON CERTAIN SURFACES

4.1. Lemma. Let (X,0) be a 2-dimensional icis containing the line L. Let f € g be a function
with j(f) < oo such that hy,...,hn_1, f define a complete intersection. Then for generic s € S,
the Milnor fibre F¢ of f, is homotopoy equivalent to the Milnor fibre of q(s, z), if the Milnor
fibre of q is connected. ~Proof. We give the outline of the proof. Note that in this case
N = M/T(M) is free Or-module, and q is defined by

n m
q(s,z) = Z (Ukl + szvjk5kz) YkYL»

k=1 j=0

where 2o = x, and z; = y; for j > 0. Hence for generic parameter value fs is a good deformation
of f. Fix such an s, define f; :=t- f +q(s, 2). Then one proves that for ¢ € C\ { finite points #
0,1}, f; has no critical points outside L and has only A type singularity on L \ {0} in a small
neighborhood of 0. By using a generalized version of additivity of vanishing homology (see e.g.
[18, 6]), one proves that F° and the Milnor fibre of g have the same homology, which implies

that they also have the same homotopy type since we assume the connectedness of the Milnor
fibre of ¢ O

4.2. Denote by

n
(U, 2) =) URYRYL
k=1
Note that all the terms in g — g; are “above” the Newton boundary I'(q1) of g1 The following
lemma is a corollary of Damon [2, Corollary 1].

4.3. Lemma. If, for a fixed u, h,...,hn-1,q define a non-degenerate complete intersection,
then the Milnor fibres of q and q; are homeomorphic. a

4.4. In the remainder of this section we study certain functions whose zero level surfaces have
higher order contact with a surface along a line contained therein. Let L be a line in C3 defined
by g = (y, z), and contained in a surface X defined by b = (k) C g. Assume that Xsing = {0}.
Define ) = 3°5_, a;y5 2" € g°, where (ao, ... ,a;) € C*! are generic.

Let X* be a regular simplicial cone subdivision of I'"*(h), the dual Newton diagram of h,
such that the restriction of X* to each two dimensional cone Cone(P,Q) is obtained by the
canonical way as described in [12, 11§2]. Associated with this X* there is a toric modification
X — C3, called canonical toric modification. The restriction m of # to the strict transform
X of X under # is called the canonical toric modification of X. Denote by I'*(h)7 the union
of two dimensional cones o5 = Cone(P, Q) of I*(h) such that for any P; € oo N X*\ {P,Q},
P; >> 0 and dim(A(P; h)) > 1. Let G4 be the graph of X|I'*(h)3. The dual resolution graph
Gx of X can be obtained from G in the way described by [12, I1I1(6.3)]. :

Now we study I';. (h) more carefully. In I';.(h) we have a non-compact face Q : qy+z = q by [12,
ITI(6.1)] with vertices A(a, 1,0) and C(c, 0, q) (see the proof of loc. cit.). Let P : az+8y+vz =19
be the face in I'y.(h) which intersects with Q along AC. Assume that ged(e, B,7) = 1. Hence

in the dual Newton diagram I'*(h) we have the point Q = T(O, g,1) on the edge EoF3. And the

Cone(P, Q) also belongs to I'*(k). One sees that P = T a,8 — ac, $=22) and det PQ = a.
q

4.5. Lemma. The divisor E(Q) is a reduced smooth curve on X intersecting the exceptional

divisor E(Q1) transversally, and is biholomorphic to L under =. And d(Q; f©)) = .
Proof. Let Q1 = 1(P + kiQ) = T(1,q1,q2) be the first point (“near” Q) in the canonical

subdivision of PQ. One sees that
_d—aa+kig ¢ 0 —ac+ kiq

W= o
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where k; is the smallest integer such that 0 < k; < «, and both ¢; and ¢ are integers. Then
the simplex o determined by QQ1E> is regular for h. The restriction of # to this chart is

fio : ¢ =0,y = ulvPw, z = uv?,
then
hoy =ut® 0 (1+w+---).

One sees that u = 0,v = t defines L, which is mapped on to L biholomorphically. O

4.6. As the Newton polyhedron T'y(f()) consists of one non-compact face: U : y + 2z = «,
we assume from now on that f(&) = agys + a.2¢. The Newton polyhedron I'y (h, /) consists
of two kind of faces: 1) certain faces coming from the parallel transformations of the faces of
Ty (k) UT4(f)); 2) the faces spanned by the parallel transformations in y-direction and 2-
direction of the edges of I'(h). A calculation shows that each face from class 2) has equation of
the form P’ : o/z+3'y+ 3z = . Hence the dual Newton diagram I'*(h, f()) is a subdivision of
T*(h) by adding the point U = T(0, 1,1) to E2E3 and certain points of the form P’ = T(oz’ ,6.,8)
to some two dimensional cone of I'™*(h).

Note that if all the points of form P’ which are qualified to be added to I'™*(h) are equal to
some points in I'*(h), then the canonical toric modification of X is also a good resolution of f(5).
And V and X have the same resolution graph (including the self intersection numbers of the
exceptional divisors). Although in general this is not the case, the dual resolution graph Gy and
the total dual resolution graph G¥¢* of f(4) can be obtained from Gx by adding some vertices.
To do this one only needs to identify the faces of the form P’. In the remainder of this section
we will do this for certain classes of surfaces. ‘

4.7. Theorem. If X is a surface with isolated simple singularity and contains a line, the toric
modification of X is already a good resolution of f(&) and the Milnor fibre of () is a bouquet
of 1-cycles for any integer t > 0. In particular, the Milnor fibre of any function f with j(f) < oo
is a bouquet of 1-cycles. The zeta function {4 (t) and Milnor number u( 1)) are listed in table
1L

Table 1
Type of X | Equations B 0 T
Ak, :(c;cy: 23235:234-_3/12, l: 201, s> 0) ! (—1(%2“3; 2 +4(I—2)c+1
Dyy |2y +y*1+22=0(k24) |2 a(_lg:c');l 26241
D;’Q =yt 22 +y =0 2 Sl:ﬁi(ll(—i_t—§€)_€_—1 262+1

—t25(l~1) 4
Dui | dyra+A=00328) | 1] ST [

EI=1) Tove—T
Doy1y | zly+z22+9y2=0(23) | = (11(3) S | heern) 2541
Eg2 ?z+y +22=0 21 (1 =¢t*)(1 %)= 2241
Erg By+yP+22=0 3 (—1—'1%—(_—}{2:—;(—)(: 3624+l

Proof. By studying I'(h, f()) case by case, one sees that the resolution of X is already a good
resolution of f(5) : X — C. One only need to resolve X. By toric modification (cf. [12]), we
obtain a “canonical” resolution of X. The dual resolution graph G can be obtained by the way
described in §4.4.
Note that the strict transform of () only intersects with the reduced components of Z x. The
weight of each component E(T') of Zx can be computed on the line z +y = ¢, the only compact
“1-facet of T*(£(<)).
We include the total resolution graph of f (). In the graphs, a bullet o denotes an (compact)
exceptional divisor of the resolution of X. A small circle o denotes a branch of the strict transform
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of V. A circled circle ® denotes the lifting of L, the divisor corresponding to the point @ in
§4.4. Each number in the parentheses denotes the multiplicity of f(5) o m along the divisor to
which the number attached.

¢ copies
7 N (€)
(Uv(l) T
G, . . v — - —e : — . —e
() (-1) ) () (o) () ((=1)) @
(s) 1)
AN
Q}?,fﬂ : oo S copies
(25) (%) _
© M
(s) '
) ®
N
(Is) ¢ copies
Gtot . v v
Dy ° - —— r° —e * (20-2)5)
(s) (26) ((21-3)c) \ ®
((I-1)s)
(1)
AN
¢ copies
o | 4
5,2 @ )

()
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¢ copies
gg’ztzﬂz ’ R — i —a .
(l 2 3) (<) (2¢) ((21-2)¢)
D ()
Q (26) o
AN
: QE‘,?;Q : * . . * ¢ copies
’ (4e)  (39) (4)  (3) (%)
\ v
(1)

(s) ‘ :
(3¢) ) _
] T/ N
QE’: 3 E L - * - T ¢ copies
' (2)  (4) 6s)  (5) (45) (3¢
7
(1)

From the total resolution graphs we see 1mmed1ate1y the zeta functlons and the Euler-Pomcare
characteristics. _ a

4.8. Remark. Among simple surface singularities only Ay — Dy — Eg — E; type surfaces have
lines and their definition equations are given in the table 1 (cf. [8]). If ¢ = 1, the above theorem
- gives information about the hyperplane intersections of X by a generic plane passing through
the line. If ¢ = 2, the zeta functions and Milnor numbers are those of the central type of a
function with line singularity and j(f) < co. One sees clearly how the torsion number () = l)
enters the resolution data. The theorem also provides information about the topology of generic
functions coming from g¢/gs+?.

4.9. Let X be a Brieskorn-Pham surface G(p,q,7) : h = 2P + y? + 2" = 0. Assume that
l<p<gqg<randged(pg) =1 Byl[7,ifr > pgandptrqir, there exists [ﬁ] different
families of lines on G(p, g,7). Let Lr,,, be the family of lines with A = Mgy == (kK + 1)(p — 1)q
(k=0,1,. [pq] 1). We first choose a line in Lry,, on G(p,g,7) to be the last axis in a
local coordmate system #’,y/, 2 of C3. Then the line is defined by g = (z',3'). Define function
f,gi)l := az'* + ay’*, where ¢ > 0 is an integer as before, and a, b are generic constants. Then we
consider the transformed function of f1£21 under the inverse coordinate transformation. We still

denote this function by f,g?l
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4.10. Theorem. The Milnor fibre of f,(ci)l is a bouquet of 1-cycles. The Milnor fibre of f,gi)l is
not connected and consists of ¢ disjoint pieces. The zeta function is

(1 — t+1psyP(] — ¢(k+1)p%q)
$po, (8 = (1= #7%)(1 — g0+ DP2e) (1 — R F1)pas)’

and the Euler-Poincaré characeristic of the Milnor fibre is x( f,ﬁi)l) = —sp(Ae+1 + k).

Proof. Note that F*(h)'{ consists three arms: PE1, PEy and PE3. Let R;, S; and T} denote
the points added to these arms in order to get the canonical subdivision of the respective 2-
simplex. One sees that (cf. [7]) the exceptional divisor corresponding to T41 = T((k +1)g, (k+
Dp, 1), (k=0,..., [5%} — 1) are reduced. And they are the only reduced ones in Zx. The
lines in Lr,,, can be parameterized as

1+(kp+o)g
g=cy, P kDI = Pyfprogkt ey = cuyt,

where u; is & unit satisfying 1 + uy + ¢"—kPay]~*P+%r—(k+1pe — 0 and 0 < a < p such that
}i'ﬁ%;iﬂ is an integer. The torsion number of the lines in Lr,,, are: Ags1:= (k+1)(p — 1)g.

Then

£5)) = ale — @z + by — 2P,

where %; and iy are unit functions of 2.

From the Newton boundary I'*(h, f,gjzl), one sees that the canonical toric modification of X is

a good resolution of f,gi)l. The following is the total resolution graph.

< copies SlI ((k+1)p%)
v N
(c)v(c) T
. T ' T | l R
gg(tpﬂar)' '1 e 'k 4 o o+ - P- " —.1
(<) (kps)  ((k+1)ps) ((k+1)pgs) ((k+1)pgs)

From the total resolution graph one sees immediately the zeta function. The Milnor fibre

F,S_l,_)l of f,g_)l is connected since there are reduced components in Ggp, ). In case ¢ > 1, all the

multipilcities of the divisors in gg(tp o) have common divisor . Hence the Milnor fibre F,gi)l of

f,Ei)l is a disjoint union of F,g}{_)l ' O

4.11. Remark. The reason for the Milnor fibre F,gj_)l (¢ > 1) being not connected is that the

function f,gfgl does not have Dy in its deformation. In the following example, the function
considered has a Dy point in its good deformation, and its Milnor fibre is a bouquet of one
cycles. This is similar to the case in which X is smooth {17, 18].

4.12. Example. Let X be defined by h = 2% + y® + 27. There is a line L on X parameterized
by (see [7])

z=—c(1+t)13,y == —c(1 +1)t?, 2z == —c¥(1 + t)3¢.
Let o := a(z), B := B(z) be analytic functions such that o(0)3(0) # 0 and g—a =0,y—B2% =
0 define L. Consider the function f = (z—a23)?+2(y—B2%)%. The Newton polyhedron 'y (h, f)
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is as Figure 1. The equations of the faces other than the coordinate planes in I'y(h, f) are as

follows.
FHZ: 2z+14y+6z=72 ~Pel*h,f)

CDFH : 3z+2y+2z=11 ~ P eI*(h,f)
ABCD: 3T+2y+22=12 ~~ P eT*(h, f)
ADF': Sz+4y+22=20 ~» ReI*(h,f)
BC : T+22=2 ~QeI*,f)
Part of the minimal regular subdivision X* of the dual Newton diagram I*(h, f) of V :=

X N f71(0) is as Figure 2, where Ry = (11,7,3), Si = (7,5,2), S = {13,9,4), Q; =

T(2, 1,2),Qs = T(4, 3,2). From the total resolution graph Figure 3 we see a reduced branch.
This implies the Milnor fibre F' of f is connected and is a bouquet of p = 16 copies of S?.

H(0,3,5)

F@0.3) C(0.5,1)

D(2,2,1)

B(2,3,0)
x/ A(4,0,0)

FIGURE 1. The Newton polyhedron I'y (h, f)

FIGURE 2. The dual Newton diagram I'*(h, f) and part of X*
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6

63}
2 °
(2)
(5)
P,
(2}
(15) (30) (10)
0
R, P S,

F1GURE 3. The Total resolution graph of V
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