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INTRODUCTION TO TORIC MODIFICATIONS WITH AN
APPLICATION TO REAL SINGULARITIES

TOSHIZUMI FUKUI
B B BERFERER

INTRODUCTION

One of motivations of this talk is to understand topological aspects of real polynomial-
germs of three variables. If we draw a good picture of the zero-locus of a polynomial in
a small ball in the real space, it assists working on the topology of them. The reader may
expect there are no difficulties to draw a picture of the zero locus defined by relatively simple
polynomials. But even if they defined by tetranomial like 25 +ty82 + zy” + 2%, the local
pictures of zeros at the origin changes drastically when the parameter ¢ passes through 0.
S.Koike drew a picture of this polynomial in [12] with deep penetration on the location of
arcs on its zero locus. This polynomial was known as the Briangon-Speder’s family, which
gives a p-constant but not p*-constant family as complex polynomial-germs. See the page
12 in [4] for more information.

We prefer to draw pictures of zeros for such polynomials without much geometric intuition!
We present a procedure to draw the picture of zero locus near the origin, and see that this
is a routine for a relatively simple polynomials. If once we understand such a procedure,
it becomes easy to understand what makes the picture looks different for e.g. Briangon-
Speder family. The key is to understand a toric modification in a geometric way. Since it is
easy to draw local pictures of nonsingular varieties, good geometric understanding of toric
modification helps us to draw the pictures of singularities resolved by the toric modification.

We adopt here the definition of resolution into our situation from H.Hironaka’s papers
[8, page 142], and [9, page 459]. Let f : U — R be a representative of a function-germ
(R",0) — (R, 0) on some neighborhood U of the origin of R™. We say that 7 : X — U gives
a resolution of f if the following conditions are satisfied.

(i) X is non-singular.
(ii) 7 is proper and almost everywhere isomorphic.
(iii) f o m defines locally everywhere normal crossings in X, that is, for each point ¢ in X,
there exists a local coordinate system (y1, ..., yn) for X centered at £ such that fon(y)
is expressed by a monomial of y;’s.

In section 1, we present a brief review of toric modification with emphasizing geometric
meaning. For complete treatment and more information about toric modification, the reader
consults (3], [15] [10, 11], [6], and [1]. For detailed study about the use of toric modification
and resolutions of non-degenerate complex singularities, see [17]. In section 2, we describe
a condition (Proposition 2.4) which implies that f is resolved by the toric modification
P, — R™ This condition (called A-regularity) is weaker than non-degeneracy. We then
present a method drawing pictures of zeros of relatively simple polynomials like the Briangon-
Speder’s family, and make some claims on topological aspects of real germs defined by
them. To discuss the difference between non-degeneracy and A-regularity, we present the
propagation of regularity in next section. In last two section, we consider the relation between
our treatment and equisingular problem.
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1. PROJECTIVE TORIC VARIETIES AND MODIFICATIONS

We recall the construction of the toric variety P associated with a polyhedron A followmg
to [3] and [15]. However, I do not know any literature concerning the construction of Pa
which appeared below.

1.1. Projective toric varieties. Let M be the n-dimensional lattice Z", and MV =
Hom(M, Z) the dual lattice of M. We identify (MV)Y with M in the usual way. We denote
by m = (my,...,my) an element in M = Z™, by a = *(ay,...,a,) an element in MV, and
(@a,m) = a(m) = aymy + -+ + aymy,.

Set K = RorC,and R, = {z € R| z > 0}. Let A be a convex polyhedron in
Mq =M ® Q. We denote F' < A, if F is a face of A. With each face F of A we associate
a cone Cr in Mq: to do this we take a point m € R" lying inside the face F, and we set

Cr = Cone(A, F) = Ur- (A —m).

r>0

Setting
or=Cpr={aeMg=M"®Q| (a,m) > 0,Ym € Cr},

the system {or}, as F ranges over the faces of A, is a fan, which we denote by 5. With
each face F' of A, we denote Ry the K-algebra generated by the semi-group Cr N M. That
is,
Rp=K[CrnM]= P Kz™
meCpnNM

Here, 2™, m € M, are just symbols and the multiplication is defined by ™ . ™2 = g™+m2,
Set Ur = Spec(Rr) and denote Ur(K) the set of K-valued points of the affine scheme
Up. In other words, Up(K) is the set of morphisms from Spec(K) to Spec(K[Cr N M]),
or equivalently, the set of ring homomorphisms from K[Cr N M] to K. Let my,...,m, be
generators of Cr N M as a semi-group. Then there is an injection of Up(K) to K® defined
by u = (u(my),...,u(my)). The image of this map has a structure of algebraic varieties.
Let Ur(R4) be the set of semi-group homomorphisms from Cr N Z" to R.,. The image of
Ur(R,) is a semi-algebraic subset, and is homeomorphic to Cp.

If F is a face of F, then C}, is a face of C}, thus Ug, (resp. Up, (K), Ur, (R4)) is identified
with an open subset of Ur (resp. Up(K), Up(R;)). These identifications allow us to glue
together of Up, Up(K), and Up(R,), as F ranges over the faces of A, which are denoted
by Pa, Pa(K), and P5(R), respectively. We can start with a fan ¥ = {oy,...,0,} in
MY, a finite collection of rational polyhedral cones in MV which forms a complex. Gluing
Spec(K|o;Y N M), 0; € L, in a similar way, we can construct general toric varieties.

Let F be a face of A. A polyhedron A is nonsingular at F if the of is generated by
part of basis of MV. A polyhedron is nonsingular if it is nonsingular at all faces. If A is
nonsingular, then Py (K) is a non-singular variety. We have that PA(R.,) is homeomorphic
to A.

Let A; be a face of A. We set

Ay ={a € MY | {a,Cone(A;, Fy)) = 0,YF;, < A},

and Ma, = (A{)*, the minimal sublattice of M containing Cone(A;, Fy) N M, VF; < A;.
For each face F' of A, we set Ia, r the ideal in K[Cr N M| defined by

IAl,F = @ Kz™.

meCpNM~CpNMa,
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These ideals Ia, p, F' < A, define a closed subset in Pp (resp. Pa(K), Pa(R.)) which is
canonically isomorphic to Pa, (resp. Pa,(K), Pa,(R4) ). We allow a certain freedom in the
notation and denote it by the same symbol Pa, (resp. Pa,(K), Pa,(R+) ). If F is a face of
A, then Pr C P (resp. Pr(K) C Pa(K), Pr(R+) C Pa(R4)). Set theoretically,

PF N PFI = Ppnpl, PF(K) n PFI(K) = Ppnpr(K), and PF(R+) n PFI(R+) = Ppnpl(R+).
Let Tp = Pr — Uger Fo, and Tr(K) = Pp(K) — Ug<p Pe(K). Then

PA(K) = H Trp(K) (the toric stratification of Pa(K)).
F<A
For a € MV, we define the derivation
§e: K[Cr 0 M] = K[Crn M]
by ™ + (a,m)z™. Here, F is any face of the polyhedron A. We understand that 4, is a
vector field on Up(K ), and thus on Pa(K). Since , preserve the ideal Ia, r, dala, := d|p,, (%)

gives a tangent vector of Pa,(K), for any Ay < A. The vector fields 4,, a € M"Y, generate
so-called logarithmic vector fields on Pa(K).

Example 1.1. Since K[Z"] = K[z1,27",...,Zn, T, ], we have d.y = 1;0/0z;, where e; =
(0,.,0,1,0,..,0), s = 1,...,n.

Lemma 1.2. &,|a, =0, if and only if a € Af.

Proof. Since K[Cr N M|/Ip,r = ®m€CFﬂMr;0MA1 Kz™, this is obvious. O

1.2. Projective toric modifications. Let My, M, be two lattices, and A;, Ag polyhedra
in Miq = M; ® Q, Maq = M, ® Q, respectively. We say A; majorizes Aj if there exist a
lattice homomorphism « : My — Mj, and an order preserving map £ : sof(A;) — sof(Az)
such that :

a(Cone(As, B(F))) C Cone(Ay, F)
for any face F of A;. Here, sof(A) is the set of faces of A. If A; majorizes Ay, then there
are canonical maps

B: Pa, = Pa,, IB:PA1(K)_—>PA2(K)a and ﬂ:PAI(R+)_—>PAQ(R+)7
induced by the natural homomorphism of K-algebras
K[Cone(Ag, B(F)) N My] — K|[Cone(Ay, F') N M.

Lemma 1.3. Under the above notation, we have that dB3(8,) = av(a), where o is the dual
morphism of a.

Proof. Tt is enough to show the case A; = Mjq, and Ay = Myq. Set M; = Z™ and
M, = Z™. For e; € M, with i = 1,...,ny, we write a(e;) = (al,...,af*). If we identify
K[M), K[My] with K[y, 97", s Yny, i), K[21,277 ...y Ty, T;,) ], Tespectively, we have that

al a

1
z;00(y) =y1* -+ Yni , for i =1,...,,ny. By routine calculation, we obtain

0 N, 0
d ia ] T " i
IB (y] 6?]3) ; G,,L.'IJ 8-’51,
which proves the lemma. 0

Example 1.4. Let Ay be a trapezoid A1A3B1B2 so that the segment A1 B is parallel to
AsBs. Let Ag be a segment AB. Then A; majorizes Ay by the map defined by A; —
A,B; — B,i =1,2. This gives a KP'-bundle Pa,(K) — Pa,(K) = KP".
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For a convex polyhedron A in R™ majorizing R", we get maps
Pa : PA(K) - -PRi(K) = Kn,

which we call the projective toric modification of K™ defined by A.
We continue the notation above. We set m =1+ 3 | ;2071 for e; € {0,1}, and

Ap = {(az;, . Tn) € R™ | signz; = (—1)%}.

We denote by A, (A) the closure of p3'(Ay) in Pa(K). Each An,(A) is homeomorphic to
A, and

PAR) = |J An(a).

1<m<2n

Remark that Py is obtained by gluing of A,,(A)’s along all faces of A. Set P the space
obtained by gluing of A,,(A) along the faces of A in the coordinate planes, and pa the
natural map of ﬁA to R". We remark that there is a natural map pa : ﬁA — Pa(R) such
that pa o pa = pa.-

Example 1.5. Let A be a convez polyhedron in R™ coinciding with R7 outside some com-
pact set. Then A majorizes R} and we get maps

pa :PA(K) = Ppy(K) = K", K =R, C,
pa+ Pa(Ry) = Pry(Ry) =RY, and pa:Pa— R™

We have that pa is proper and is an isomorphism over K™ —{0}. The ezceptional set p~1(0)
consists of the varieties Pr, where F' ranges over the compact faces of A.

Definition 1.6 ([7] p.221). Let n > 2 and S be the unit sphere with center at the origin
in R*. Let 7 : Rx § — R by (t,v) — tv. This is a degree two proper map of real
analytic manifolds, which is called double oriented blowing up of R™. The map m; induces
T+ X = Ry X § — R", which is called (simple) oriented blowing up . It also induces
my: X =R x §/Zy — R", where Zy = Z/2Z = {£1} acts on R x S by (t,v) = (—t,—v).
This g s called the (non-oriented) blowing up of R™ with center 0 € R™.

Set Ag = {(v1,...,Vn) ERY | 1+ -+ + 1, > 1}. Then py, is the blowing up of R with
center 0 € R™. Moreover, pa, is homeomorphic to the oriented blowing up of R™ with center
0 € R™. Thus we may understand that the map Py 5 R" is, at least topologically, a toric
analogue of the (simple) oriented blow-up.

The following figures explain the blowing up of R? at the origin.

(0,1) - —

(1,0 00)  Pa, R?
Ao — RZ

The relation between the polyhedron A and the fan ¥ is summarized by the following figure.
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For an a € MV, and a polyhedron A in M, we set
{a(a) = min{{a,m) | m€ A}, and ~a(a)={me A {a,m)="~{r(a)}.

Let A;, Ay be nonsingular polyhedra in Mg, such that A; majorizes Ay. Set sov(A;/A2)
be the set of primitive a € MV, with dim vy, (a) = n—1 and dim~ya,(a) < n—1. sof(A;/As)
denotes the set of faces of the form (,c,7a,(a), A C sov(A;/Az). Since Pyo)(K), a €
sov(A;/A,), are exceptional divisors for Pa,(K) — Pa,(K), the system

Ep(K) := Pp(K) — U Po(K)y, F €sof(A1/Ay)
G<F,Gesof(A1/A2)

gives the ezceptional stratification for Pa,(K) — Pa,(K).

2. RESOLUTION AND NEWTON POLYHEDRON

Let f(z) be an analytic function of n variables © = (23, ..., Z), defined in a neighborhood
of the origin of K™. In this section, we consider when a toric modification, constructed in the
preceding section, gives a resolution of the function of f(z). Set grad f the gradient vector

of f
( )
Ory’ 7 Oz, /)

We start the case of the simplest toric modification: the blowing up at the origin. Let
B : M(K) — K" be the blowing up at the origin, and E(K) = 7'(0) = KP" 1 the
exceptional set of 3. Let [f] be the initial polynomial of f. Then the following proposition
is well-known.

Proposition 2.1. The following statements are equivalent.
(i) The strict transform of f by B is nonsingular and B gives a resolution of f.

(i) {grad[f] =0} C {(1,...,2s) = O}.

(iii) [f] defines a nonsingular variety in the projective space K pr1

Let us briefly consider how our principle works in this case. Suppose that f satisfies the
conditions above, and n = 3, K = R. According to our principle, if we can understand the
location of the zero locus of [f] in K P?, we can draw a picture of f~1(0) near the origin. If
the degree of [f] is low, then we can determine possible pictures, using the list of topological
classification of non-singular real plane curves. There exist a complete list of non-singular
real plane curve with degree < 7. See the works of D.A.Gudkov ([7]) and O.Ya.Viro ([19]).
If the degree of [f] becomes high, this is a very hard problem (the Hilbert’s 16th problem).
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Let
v v1 v —
E cyxr’ = E Cotyom®l T V= (V1 ., Un)

be the Taylor expansion of f(z) at the origin. Let I'y(f) be the Newton polyhedron of f at
the origin, that is, the convex hull in R" of the set
{v+R% | e, 70},

Let A be a nonsingular polyhedron in R = M ® R majorizing R}. The first problem we
are facing is when Pp — K™ gives a resolution of f. In this section, we seek the condition
for f such that Po — K" is a resolution of f.
For a face F' of A, we take a Qp € M satisfying
I'i(f) € Qr + Cone(A, F), and

I'y(f) ¢ Qr + Cone(A, F) + N™

We set
fr=" ca’ wherey=v(F)=(Qr+ Mp)NT(f).
vey

We then have the canonical morphism Tr(K) — T, (K), induced by the embedding M, —
MF, whose fiber is (K — {0} )dim F-dim~,

Let Z = Za(f) (resp. Z = Za(f)) be the zero locus of the proper transform of f via pa
(resp. pa). Remark that Za(f) contains the proper transform of f~'(0), but does not equal
in general. Then we have the following lemmas.

Lemma 2.2. (i) If y(F) is not empty, then
Za(f) N Tp(K) =2 Ey(f) x (K — {0})mF=om7,
where E.(f) is the algebraic set defined by f, =0 in T,(K).
(i) If v(F) is empty, then Za(f) NTr(K) =Tr(K).

Proof. By nonsingularity of A, K[Cp N M] is isomorphic to K[y, ...,y,] for a vertex P of

the face F. We note that z; can be written in the form y'f‘l . -yf;, fori = 1,...,n. Set"
@ ="*a},..,a}) and ¢; = bp,(r)(¢’). We may assume that (;_, ., ¥, (s)(a’) =~. Then the
lift of f to K[Cr N M] can be written in the following form:

1 n 1 n
Flyft ey gy =yt (Y, e ).
Here we have v

1 n 1 n
fPITF(K)(yla "'7ys) - yi-ll e "y;enf’}’(yicl e yzl 3 "')y?n e yﬁ")

—ls s

—_ a.l 3 a}l
=y ey e e e YY)
This implies the lemma. / O

It is not difficult to modify the proof of the lemma above for the case a polyhedron A which
is not nonsingular. We also remark that f and z™f have same zeros in Tp(K), for m € M,
and a polynomial f.

Lemma 2.3. The following statements are equivalent.

(i) Z is nonsingular near Tr(K) and intersects transversely with Tr(K).
(ii) {grad fy =0} C {z1:- -z, =0}
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We say f(z) is non-degenerate if grad f, is not zero except {1 - + - ¢, = 0} for any compact
face 7y of 'y (f). By the lemma above, we have f(z) is non-degenerate if and only if Zs(f)
is nonsingular and intersects transversely with the toric stratification of Pa(K) near p~1(0),
for any nonsingular polyhedron A majorizing I'y(f).

For a face F of a polyhedron A we denote by S(F) the set

H z; =0, for any vertex Pof F »,
i€I(P)
where I(P) is the set of numbers i € {1,...,n} with (e, P) > 0.
Proposition 2.4. For F € sof(A/RY), the following statements are equivalent.
(i) Z is nonsingular near Ep(K), and intersects transversely with Ep(K).

(i) {grad £, = 0} © S(F).
We say f is A-regular if the condition (ii) is satisfied for any compact face F' € sof(A/R?%).

Proof. Since A is nonsingular, K [Cp N M] is isomorphic to K[y, ..., yn] for a vertex P of

1 n
the face F. Remember that z; can be written in the form yg* -+ ynt, for i = 1,...,m. Set
o = Y(al,...,al). We may assume that [(P) = {t+1,..,n}, & = ¢, j = 1,..,t, and
ﬂﬁ;m ’)’A(aj ) = F'. We thus have

at+1 am

at+l o .
g — Y Y fori=1,..,t,
T t .
Ypi1 +oYnt, fori=t+1,..,n

Setting ¢; = ¢r, (5)(a;), and v = ~(F), we define fp(y), f,,p(y), and f, p(F), by
A R
f@) =yR - vlr fe(y),
¢
f(@) =yiH -y frp(y), and
F(®) = G5 g £,p(§)-
Here,
al ~al
E:(i;l,...,:in), jfl:glz "'ynz,

1, if j=s+1,..,p

Y = (yl,...;yn): Y= {yj, if j=1..,8p+ 1,..,n.

Remark that f(x) is divisible by wﬁ" , for j = 1,...,t. We thus have
3, 0 . '
__I_(w)__yﬂt+1__.yen (éjfp(y)+ﬁ y)), lez---ata

ayj — Jt+1 n Y5 6%‘
, of et Ln } ?_fﬁ .
Y5y, (@) =yt v \ iTP(W) + U5 B, (W)), j=t+1,.,n,
and
6f’7 L1 l ( ffy P(y) affy p ) .
o \T) = y T 'n,n g . + - ] :1,...,t’
Em () =yt =¥ Ty s (y) J
af’y af’y,P

£ .
yrgy—j(w)=ytiﬁ‘---yﬁ" (fij,z»(y)wj By, (y)), j=t+1,.,n.
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We also have

?—fl(ﬁ)zﬁfﬁ“--@ﬁ"(@f*’f() Ofy.r (g)), P=1t,

Oy; ¥ Oy;
- of. .
( ) =G50 (ffqp( )+ Uj ’yp(y) j=t+1,..n
Since y; - = alz; -2, the following hold.
7 By; = 1 i 3

Of, _ v w0fy .

- = v - =1,..,t

6%, Yi+a yn ) T, y yeey by

0f, 3 i Ofy :

_ T s :t 1,...

2 ay] p a’zw 8@' J + )y T

ofy - i 0fy _ .
y]ayj_gaz 18 =4fy, j=s+1,.,p

Therefore we obtain that Za(f) is nonsingular and intersect transversely with Er(K) at y

o ye.f{m >—o,‘;fp(w=o,j:1,...,s,p+1,...,n}

&y ¢ {f’)’, ( ) éf;’ (~) =0,7=1,..,8p+ 17"'_7"‘}
2
6 ~a1 ~af ~al ~an .
Ane ¢{ f’i( “Ynty o y"'-'yn"):O,zZI,...,n}

T gz{af'f() 0,4 = 1n}

Since [[;eppy %i # 0, if y € Er(K), this completes the proof of the lemma. O

3. REAL PLANE CURVE GERM

In this section, we consider function-germs f = f(z,y) defined by polynomials in variables
(z,y). Let f(z,y) be a non-degenerate function. For simplicity we assume that f is not
divisible by z and y. Then the Newton polygon I'y (f) intersects each axis. For a compact
face v of I'y (f), fy(z,y) is a weighted homogeneous polynomial and the zero locus of £,
is invariant under the R*-action defined by (z,y) — (t?z,t%), t € R*. Here (p,q) is the
vector supporting the face v of I'y (f). Let nyi(v) (resp. ni—_(v), n_y(¥), n__(7)) be the
- number of the half-branches of {f, = 0} in the region {z > 0,y > 0} (resp. {z > 0,y < 0},
{z <0,y >0}, {z <0,y <0}).

Let T'y(f) be an integral polyhedron in the first quadrant. We draw the images of I, (f)
by (z,y) ~ (£z,+y) in all four quadrants. Take n,,(y) points in v and connect these
points with the origin by a curve which is close to the corresponding half branch of fy, =0
in { > 0,y > 0} near the origin. We can draw half-branches similarly in each quadrant.
Drawing all half-branches in all quadrants in this way, we obtain the local picture of f = 0
near the origin.

This can be understood in the following way: We set A =TI';(f), or a regular polyhedron
majorizing 'y (f). Then Py is obtained by gluing of four copies of A along non-compact
faces of A. If f(z,y) is non-degenerate, the set (R?, f=1(0),0) can be resolved by a toric
modification defined by A. The number of components of the strict transforms of f which
intersect to the exceptional set corresponds to a compact face « is described by the numbers
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nss (7). If we know these numbers it is not difficult to draw the picture of zeros of f in Pa.
So the image of this set by Pa — R? can be draw as in the previous paragraph.

Example 3.1. Let f(z,y) = z%y? — 2° — y®. Let A denote its Newton polyhedron. We
denote by v; the segment connecting (2,2) and (5,0), and by v, the segment connecting (2,2)
and (0,5). Then f,, = 2%y — 2° = 2?(y* — 2°) and there is one half-branch of f,, = 0 in
{z >0,y >0} and {z > 0,y < 0}. Similarly f,, = a*y* — ¢° = y2(z? — y®) and there is one
half-branch of f, =0 in {z >0,y > 0} and {z <0,y > 0}.

Yy Yy

Pa

I believe many people know the result in this section (at least implicitly). But I do not
know any article which presents this explicitly.

4. REAL SURFACE GERM IN R?

In this section, we consider function-germs f = f(z,y, z) defined by polynomials in vari-
ables (z,y,2). We set A = I'y(f) or a regular polyhedron majorizing 'y (f). Then Py is
obtained by gluing of eight copies of A along non-compact faces of A.

Let F be a face of A. We assume F = v when A = I',(f), and F lies over v otherwise.
Let Pr be the corresponding component of the exceptional locus of PA — R". Let Pr be
the corresponding set in Pa. We denote by Zp(f) (resp. Zp(f)) the intersection of the
strict transform of the zero of f and Pr (resp. 13;?) This is determined by f,. If we draw
a picture of Zp( f)in Pp, we are able to draw a picture of {f(x,y,2) = 0} near the origin.
For example, if A coincides the positive orthant except some compact set, an approximate
picture of the zero set of f is obtained by taking a cone of

( U 7 U zF<f>)

F:compact F:compact

whose vertex is the origin.

We say that f is a trigonal trinomial, if each 2-dimensional face of the Newton polyhedron
[ (f) of f is a simplex, i.e., a triangle, and f, is a trinomial for any 2-dimensional face ~y
of I';(f). Let F = v be a 2-face of I'y (f). Then Pr is eight copies of triangles and f, is

trinomial. This it is easy to draw the picture of Z F(f) in Pp. Therefore it is easy to draw a
local picture of zeros of trigonal trinomials near the origin.

Example 4.1 (T} ). Let f(z,y,2) = o +y? + 2" + azyz. This is a trigonal polynomial
and we can draw the picture of the zero of f near0. Whenp=qg=r=4anda =1, i looks
like the following: :
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P Za(f) € Pa f74(0)
Thick lines correspond the components in {z > 0} and thin lines correspond the components
in {z < 0}. All these pictures are viewed from the point (0,0, 0).

Example 4.2 ([16]). Let f(z,y,z) = 2® + y* + 2° + t2%2% + 23y2%, £ > 16. This is a pu-
constant family. This is a trigonal polynomial when ¢ > 17 and we can draw the picture
of the zero of f near 0. Let A denote the Newton polygon of fi, t # 0. When £ = 17 and
t =1, the picture in PA looks like the following picture. Here thick lines correspond to the
zero locus in {z > 0} and thin lines correspond that in {z < 0}.

F71(0)

~ In a similar way, it is possible to draw the picture in the case t < 0. I hope the reader to
enjoy investigating the difference between the casest > 0 and t < 0. I also left the reader to
draw the pictures for the other £’s.

Example 4.3 ([2]). f(z,y,2) = 2% +ty®2 + 2" + 2'°. When t # 0, the Newton polyhedron
of f contains a quadrangle as a face. Let v denote the compact 2-face of I'y(f). defined by
(z,y,2) = (z,y) to the zero of f,. We also work about the discriminant of the restriction of
the projection Then we obtain that the picture of {f(z,y,2) = 0} with t = —1 looks like the
following:
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Ww A

Next we consider the case t > 0. Drawing the picture in a similar way, we obtain that the
restriction of the projection (z,y,z) v (z,y) to {f(z,y,2) = 0} is a homeomorphism.

It is reasonable to expect that Newton polyhedron of f gives some restrictions for the
topology of (R3, f~!(0),0) when f is non-degenerate. In the remaining of the section, we
consider a restriction on the Euler characteristics of local level surface of f.

For each 2-face F of T'y(f), we denote by ve(F) the area of F and v1(F) denotes the
perimeter of F. We also denote by e(f') the number of 1-faces of F. We set

A= ; (%vg(F) - %vl(F) + 1) , and A} = 2;(4 —e(F))

where the summations are taken over all compact 2-faces of I'; (f). For each vertex u of
', (f) we denote by n, the number of 1-faces containing u. We define the number B by

B = Z(Zi(u)—l _ nu)

where the summation is taken over all vertices u of I'y (f) such that the coeflicient of z* in
the Taylor expansion of f at 0 is positive. Here we denote by i(u) the number of non-zero
components of u.

Theorem 4.4. Let x+(f) denote the Euler characteristic of the local positive level set
{zeR®| f(z) =9, |g| <€}, for O<dé<e<l

We assume that T (f) is even, i.e., twice of some integral polyhedron. If f(z,y,z) is a
non-degenerate function, then we have the following inequality:

—2A+2A4; + 2B < x4+(f) <24+ 2B.

Proof. We set A =T',(f) and consider maps pa : PA — R?, and pa : Pr - R3. Let F be
a 2-face of A. Let Pp(f > 0) denote the intersection of the closure of pa{f > 0} and Pp,

and Pr(f > 0) the intersection of the closure of pz'{f > 0} and Pr. Let u be a vertex of A
such that the coefficient of z* in the Taylor expansion of f at 0 is positive. We first observe
that

Jim {z | f(e) =9, |o] <e} = gﬁp(f 2 0).

Since Py — R3 gives a resolution of {f = 0}, we obtain that

x+(f) =2x ( U Pe(f > 0)) .

F':compact 2-face
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We denote by B the union of one eighth’s of small “ball” centered at the points corresponds
to u in PA such that PF N B C PF( f > 0). Then we have

;zx( U ﬁF<fzo>)

F:compact 2-face

=3 2 (ﬁF(f > 0)— | JBun Pa(s 20)) +> Y x(BunPr(s 2 0))

F ueF

:ZZX(ﬁF(f>O UB ﬂPF’f>O>+22'L(u)
F

We denote by B, a small ball centered at the point corresponds to u in Pa such that
PrN B, C Zp(f > 0). Since we have

X (Pr(f 20)) =x (Pp(f >0) - JBunPe(f > 0)) +> x(B.N Pp(f > 0)),

ueF
we obtain that

S ox(Pe(f=0) =) x (Pp(f >0)—JBuNPr(f > 0)) + ) e

Using the equality

Yx (Pp(f >0) = JBuNPr(f 2 0>) =3 x (ﬁF(f >0) - JBun Bo(f > 0)) ,

u

we thus obtain that
= 2™ =23 "X (Pr(f 2 0))— 2 na.
u F %

By Theorem 0.3 of [5], we have

3 e() + 20 (F) — Sa(F) < X(Pr(f 2 0)) € 1= Ty (F) + Sua(P),

and we thus have A4; — A < > o x(Pr(f > 0)) < A. This completes the proof. O

5. PROPAGATION OF REGULARITY

Let A be a polyhedron. We consider a face of A with the following properties:

e F'is of codimension m.

e There exist integral vectors al, ..., a™ with

F =~pla) N+ Nya(a™).

We next consider a subset I of {1,...,n} with the following property:

o Fr:=FN[)c;7a(€) is of codimension m + #1.
We set -
S1i = {(my,...,my) € R" | my =1,m; =0 for j € I — {i}}.
Proposxtlon 5.1. We assume that Tr is in the reqular locus of Pn. Then the following
conditions are equivalent.

(i) Ty, is in the reqular locus of Pa.
(i) (FHYtNS:NZ"#0 foranyie I.
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This lemma is a generalization of a trick appeared in [16] which treats the case n = 3.

Proof. Without loss of generality, we may assume I = {s+ 1,...,n}. Then the condition (i)
is equivalent that '

1 1 : 21 -
det(a®,...,a™ et ..., e") =1, ie. det(a',...,a™) =1,

where & = t(al,...,al), j = 1,..,m. By the equivalence of (i) and (viii) in the following
lemma, this is equivalent to the condition (ii). O

Lemma 5.2. Let o = Y(a),...,al), j = 1,...,m, be integral vectors. Let s be an integer
withm < s < n. We set @ = ¥al,...,a), and @ = Y(al,q,...,a}). We assume that
det(al,...,a™) = 1. Then the following conditions are equivalent:

(i) det(a,...,a™) = 1.

(i) There exist a™*!,...,a* € Z° with det(a', ...,a%) = 1.

(iii) There ezist b) € Z, 4,5 = 1,...,8 with

BB ... B 10 -0
BlobZ ... B 01 -0
: 0t a,.a=|. . . |
BLoB2 ... b 00 - 1

(iv) There exist ¢l € Z, j =1,...,8; i =s+1,...,n with

((1) 0 - 0

(a',...,a*) = 10 20 e 1| (@, a%).
Cst1 Cot1 ''° Col

\ed & - o)

(v) There ezist ¢ € Z, j =1,...,8;i=s+1,..,n with

1 2 3
Cor1 Csy1 ' Copa
c

(vi) There exist ¢} €Z, j=1,...,8; i =s+1,..,n with

TR R I (et
0 0 1 0 0| (d,...,a°) = a(,){ %‘;
~Cip1 —Chp1 —Cop1 1 0 :

\ —ct ——;2 -t 0 -' 1) \0 0)
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(vii) There existcl € Z, j=1,..,8;5=s+1,....,n with

1 0 - 0 0 --0 . m

( 0 1 v 0 0 - 0\ /“1 “}\

0 0 - 1 0 0| (al...,a™) = ‘:)1 “5

~Coy1 ~Chy vt =€y 1 +e- 0 . )

\ =i~k a0 1 \o o)
(viil) There existcl € Z, j=1,...,8;i=s+1,...,n with
—Ciy1 —Chp ~Copp 1 ce0 0

: : : ' (a',...,a™) = 0.

—cl = —c: 0 1

Proof. (i)==(ii)==>(iii) is clear. For (iii)==(iv), set

Co1 *** Cop Ggp1 v G54 b -+ b
a el \a ooa) ey
(iv)=>(v)==(vi)==(vii) = (i) is clear. (vii)<=>(viii) is also clear. O

We now present one typical case that Proposition 5.1 can be applied. Let I = {s+1,...,n}.
Consider a function f defined by

f(.T) = gO(mla seey ws) + Z wkgk(mly seey .'Ds) + g(w)) g(!L’) € (ms+1; ‘”)wn)2-
k=s+1

We assume that Sy; NI, (f) has an integral point for each 1 € I. Let A be a simplicial
polyhedrons majorizing R%}. Let F' be a face of A and we let v = (F). We assume that

a point of FN Sp; NZ" is a vertex of F, Vi€ .

This implies Condition (ii) in Proposition 5.1. We also assume that f, can be written in the
following form:

f"/(m) = GO(xla ":ms) + Z kak(wl; S -773)-
k=s+1
Obviously
?_-fl B %%(a:l,...,ws)+ZZ:s+lxk%%(m1,...,ms), fori=1,...,s 4
0x; Gi(z1, ..., Ts), fori=s+1,..,n
‘So, if

{(@1y ey 2s5) | Gj(21,.0,25) =0, j =5+1,..,n} C S(F)
then the condition (ii) in Proposition 2.4 is satisfied. So it is possible to construct a polyhe-
dron A and a family {f;} such that
e f; is non-degenerate for t # 0.
o f; is A-regular.
The simplest examples are Examples 4.3, 4.2.
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6. SIMULTANEOUS RESOLUTION

Definition 6.1. Let U, P be a real analytic manifolds and let p : U — P be a submersion.
We set U, = p~1(t), fort € P. Let F : U — R be a real analytic function. Let I1: M — U
be a proper analytic modification. We say that I1 gives a simultaneous resolution of F, if the
following conditions are satisfied:
o M is nonsingular.
e For each point x of M, there is a local coordinate system y = (y1,...,Ym) centered at x
so that
Foll(y) =i 4 |
and that the restriction of p to {y;, = --- = y;, = 0} is a submersion onto P for each
1<p<- <jp§m withfj,---éjp#o.

The proof of Proposition 2.4 implies the following:

Proposition 6.2. Let {f.} be an analytic family of analytic functions. Let A is a nonsin-
gular polyhedron with lim., oA = R7. If {fi} is simultaneously A-regular, then Pa — R™
gives a simultaneous resolution of {f:}. '

It is natural to ask the following question.

Question 6.3. We set P = R™. IfIl : M — U gives a simultaneous resolution of an
analytic family {f; : Uy — R}term of analytic functions, then we have a family {H, : My —
Mo}ierm of real analytic isomorphisms which trivializes {F o m(x;t)}sep. Here F(z;t) =
fi(x). After changing {H}iep if necessary, can we expect that {H;} induce a family of
homeomorphism germs {h; : Uy — U, }icrm ?

The answer is No!
Example 6.4. Let f: (R3,0) — R be a family of function-germs defined by
ft(xl) T2, 3:3) - 3311123 - :L‘g + tCEzCBg.

Let m: M — R3 be the blow up at (z9,73). It is easy to see {f;} admits a simultaneous
resolution by 7. In fact, consider a coordinate system (y1,v2,ys) defined by

Ty =W
Tz = Y2lY3
r3 =13

and see
from(y1, 2, vs) = Y3 (v1 — Y5 + tya)-
Thus f, admit simultaneous resolution by 7. But there are no homeomorphisms between
(R%, f31(0),0) and (R?, £77(0),0). |
The following example suggests us that the situation would become very complicated in
general.
Example 6.5. Let f.: (R%,0) = (R,0) be a function defined by
fe(z) = $§($1$§ — fie(z4, $5,$6))2 + (31?2517‘3L — fae(®4, s, 376))2

where

fle($4, Ts, 336) = (61374 - 375)(62354 - $5)(€3w4 - 275)

fze(m, T5, 336) = (64504 - 375)(85934 - 185)(661174 - ws)ﬂ?s

€= (61, €2,€3, €4, €5, 66)-
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Now we consider the blow up My — R® at the ideal (z3,%4,Ts,7¢). Consider the coordinate
system (uy, ug, U, Uq, us, ug) defined by

T, =u; =123
z; =ugu; t=4,5,6
Then we obtain f = u§ (w1 — f1,(v4, vs,6))? + (ua — fa.(va, vs,v6))?). Next we consider the
blow up of My — M, at the ideal
(u’l - fle(u4:u5’u6):u2 - fze(u4,u5,u6),u;5).
Consider the coordinate system (v1,vq,vs, Vs, Us, Ug) defined by
Ui — fie(U4,U5,U6) = V;Us Z == 1,2
U; = v, 1=3,4,5,6

Then we obtain f = vi®(v? +v2), and this family admits a simultaneous resolution. We here
remark that

i =vvs+ fio(va,vs,06) ©=1,2
I3 = 7Ug
T; = Ugy; 1=4,5,6.

If we restrict this to the space defined by v3 = 0, we obtain a map defined by
(Uh Vg, 01 U4, Us, Uﬁ) = (fle(v4> Us, ’Us), f2e(v4: Us, 'US)’ Oa O, Oa O)

Accordz'ngr to [13], this family has infinitely many topologically right-left equivalence classes.
So no family of homeomorphisms on My that trivialize the family obtained by pulling-back
{f.} does not induce homeomorphisms on (RS,0).

7. EQUISINGULARITY VIA SIMULTANEOUS RESOLUTION

Let F : (R" x R™,0) — R be an analytic function and fy(z) = F(z;t). We assume
that f; admits a simultaneous resolution by the modification II : M — R™ x R™. Let
€ be the critical locus of II. We denote by M the strict transform of (R",0) x 0 and set
E = MNE. We say that f; is equisingular by Il at (R™, 0) if there are homeomorphism-germs
H:(M,E) — (M,E) x (R™0) and h: (R*” x R™,0) — (R" x R™,0) with

(M, €) I, ® xR0 IR ®RT0)

i 3| ll
(M, E) x (R™,0) =, (R",0) x (R™,0) 224 R x (R™,0)
where 7 = II|3s: We can generalize this definition as follows: Let F : (R* x R™,0) — R
be an analytic function and fi(z) = F(z;t). We consider a composition of modifications

M=My 5 Moy 225 0 — My 225 My B Ry
and denote the composition by II. We assume that f; admits a simultaneous resolution by
the modification IT : M — R™ x R™. Let &; be the critical locus of II; 0--- o Il;. We denote
by M; the strict transform of (R™,0) x 0 by I;0---oIl; and set m; = I, and E; = M;NE;,
for i = 1,..., k. For notational convention, we set My = R™ and Ey = {0}. We say that f; is
cascade equisingular by this diagram at (R™,0) if there are homeomorphism-germs

H;: (Mz’,gi) — (M.i,Ez') X (Rm,O), 1=0,1,..,k
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satisfying the following commutation diagram:

(Mi, &)  —5 (Mg, Ey) x (R™,0)

§ 0% T Xid
H,
(M1, Ex1) —— (Mr_1, Er_1) x (R™,0)
Hk—l rk-lxid
Iz o Xid
< N

(M, &) =B (My, By) x (R™,0)

I, | T Xid
(R* x R™,0) —%  (R",0) x (R™,0)

Fxid lfoxid

R x (R™,0) —— R x (R™,0)

Proposition 7.1. Let f; : (R",0) — (R,0), t € (R™,0), be a family of analytic func-
tions. Let U be a neighborhood of (0,0). Suppose that a modification II : M — U gives
a simultaneous resolution of {f;}. Let € denote the critical locus of II. We assume that
£ is normal crossing divisor. We denote by X the strict transform of (R",0) x 0 and by
7 the restriction of Il to X. We set E = €N X. If there exist a homeomorphism-germ
H:(£,E) —» Ex (R™0) and a homeomorphism-germ h : II(€) — 7(E) x (R™,0) such that
holl = (x x id) o H, then {f:} is equisingular by II.

So if we have a situation in which we can apply Thom’s second isotopy lemma (Theorem
in (8.6) of [14], or II Theorem (5.8) of [20]) for the following diagram, we have a criterion
for equisingularity.

e 25 Ex(®R™0)

Hl lwxid
(€) — =(E) x (R™,0) — (R™,0)

Corollary 7.2. Assume that II(€) = 0x (R™,0) (i.e., 7(E) = 0). IfIl gives a simultaneous
resolution of {f}, then { ft} is equisingular.

The proof of Proposition 7.1 is based on the following.

Lemma 7.3. Let F: My — M, be a homeomorphism between metric spaces, and g; : M; —
N;, i = 1,2, proper maps between melric spaces. If there is a map f : Ny — Nz with
fogi=gs0 F then f is continuous.

Proof. Let U be an open subset of Nj. If f 1(U) is not open, then there are a point
P € f~Y(U) and a sequence {P,} in Ny — f~!(U) tends to P. We remark that f(P,) ¢ U
for any n. Consider a sequence {@,} in M; with g;(Qn) = P,. Since g; is proper, there is
a convergent subsequence of {Q,}. We may write this subsequence by {@n}, by economy
of notation. The image of this by g, o F' is convergent to f(P). Since U is open, there is a
number N so that f(P,) € U for n > N, and this is a contradiction. O



113

Now we consider the tower of the polyhedrons: {Ay — Ag_y = «++ — A; — R2}. We
consider cascade equisingularity for the diagram: -

Pp, x (R™,0) = Pa,_, x (R™,0) = -+ — Pa, x (R™,0) = (R",0) x (R™,0).
" Because of Lemma 7.3, it is enough to analyse everything after restricting along the excep-
tional sets. After this we need to describe the critical locus of the restriction of II; to Zg(f)

where F; is a face of A;. The following lemmas are a consequence of Lemma 1.2, 1.3 and the
implicit function theorem.

Lemma 7.4. The critical point set of the restriction of Pr, — Pr,_, to Tp, N Za,(f) is
defined as the zero of 8,f,, a € Fi-,.

Lemma 7.5. The critical point set of the restriction of Pr, — Pp,_, to Er, N Za,(f) is
defined as the zero of 8,fy, a € Fit; with a & {ey,...,en}, and g%;{ for j with e; € F-,.

Now we concentrate the case n = 3, m = 1, that is, a l-parameter family of functions
fi(z,y,2) = f(z,y, z; t) in three variables (z,y, z). If we use all together below, we obtain a
sufficient condition for cascade equisingularity. We assume that the Newton polyhedron of f;
is constant, f; are simultaneously non-degenerate, and that Pa, — R3 gives a simultaneous
resolution of f;. Let E; be the critical locus of Py, — R". We seek a condition which
implies cascade equisingularity. To do this it is enough to seek a condition which assure the
existence of Thom regular stratifications for map Tp, — T, ,. We are going to construct
these stratifications of E; x R which are refinements of the stratification of F; x R induced
by toric stratifications of Pa.

Let F; be a face of A; and let F;_; be a face of A;_;. We assume that the map A; — A,
send F; to F;_;.

If dim F; = dim Fj_,, then the natural map of Tx to TF,_, is an isomorphism. So a
homeomorphism of Tr, X R induces a homeomorphism of Tx,_, x R.

We next consider the case dim F;_; = 0. In this case, we have Pp, , x R ~ R. Then we
consider a stratification of 1 whose strata maps onto Tr,_; X R ~ R submersively. Thus
a homeomorphism of Tx x R obtained by integrating a vector field constructed in the proof
of the isotopy lemma induces a homeomorphism of T, ; X R. So it is enough to construct
a regular stratification of Tr,. This is always possible when fi(z,y,z) is simultaneously
non-degenerate.

For the remaining case, that is, the case dim F; = 2 and dim F;_; = 1, we have the
following.

Proposition 7.6. We assume that dim F; = 2 and dim F,_; = 1. Let a denote a vector with
a € F,_yt. If there is a stratification of Pr, x R with the following properties, then there is
a stratification of Pp,_, such that Tp, X R = Tp,_, X R is a Thom map.

(i) For a 2-dimensional stratum X in Tr, X R, fi,|x = 0 and d,f;., does not vanish on X.
(i) For a 1-dimensional stratum X in Tp, X R, fi|x = 0afty|lx = 0 and 6,0, f1, does not
vanish on X.

Proof. We can consider the restriction of §, to T, as a vector field tangent to fibers of
Tr, — Tr,_,. We use the implicit function theorem. For a 2-dimensional stratum X, the
condition (i) implies the restriction of the map Tp, x R — TF,_, X R to X is a submersion,
since the strict transform of f intersects T, transversely. For a 1-dimensional stratum X,
the condition (ii) implies the image of X by the map Tr, X R — T,_, X R is a manifold. So
we can define a stratification of T,_, X R so that the map Tr, x R — T,_, X R is stratified.

The remaining assertions (regularities, etc.) are not difficult to see. O
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