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INDUCED REPRESENTATIONS OF RANK TWO QUASI-SPLIT
UNITARY GROUPS OVER A p-ADIC FIELD

KAZUKO KONNO

ABSTRACT. We classify the irreducible non-supercuspidal representations of rank two
quasi-split unitary groups attached to a quadratic extension E/F of p-adic fields. This
extends Shahidi’s classification for rank two split groups to the quasi-split groups of the
same rank other than certain forms of type Dj.

1. INTRODUCTION

Let G be a connected reductive group over a non-archimedean local field F of char-
acteristic zero. One hopes to classify the isomorphism classes of irreducible admissible
representations of G. The problem divides into the following two steps: to describe the
isomorphism classes of the irreducible supercuspidal representations of its Levi subgroups
and to study the representations parabolically induced from them. Both steps are hard
due to the rich structure of p-adic groups.

In this note, we report our results on the latter problem. More precisely, let Ip(p) be a
parabolically induced representation, where p is a supercuspidal representation of a Levi
component M(F') of a parabolic subgroup P(F). The problem is to have a criterion of
reducibility for Ip(p). Such a criterion was available for GL(n)r thanks to the work of
Bernstein-Zelevinskii [BZ] [Z], who utilized Gelfand-Kazhdan theory of “derivations” of
representations [GK]. Unfortunately, similar theory does not exist for G # GL(n)r. On
the other hand, if the inducing representation p is generic, the theory of Eisenstein series
relates the reducibility of Ip(p) to the analytic behavior of certain L-factor of p [Sh]. If
G is of rank 2 and split, p is always generic, and the analytic properties of the relevant
L-factors are known by [Sh2] [GJ] [JL]. Consequently, the classification in this case was
established by Shahidi [Sh]. Once the reducibility is determined, then the irreducible
constituents of Ip(p) at each reducible point can be calculated by their Jacquet modules.
In the above case, this was given by Sally-Tadi¢ [ST] for G = GSp(2), Sp(2), and Muié
[Mu] for G of type Go.

Our result extends Shahidi’s result to the rank two quasi-split unitary groups. Let
E be a quadratic extension of F, G, and G) be the quasisplit unitary groups of 2n
and 2n + 1 variables associated to E/F, respectively. Any proper parabolic subgroup
of G (resp. Gj) is isomorphic to one of P, = M;U; (resp. P/ = M!U!) (i = 0,1,2),
whose Levi subgroups are given by My = T =~ (ResE/FGm)2, M, ~ Resg/rGL(2) and
My ~ ResE/me X Gl (resp. M(/) =T ~ (ResE/FGm)2 X GG, M{ s RGSE/FGL(Z) X G6
and M; ~ Resg/rGm X G1). Each Ip,(p) (i = 0,1,2) has different aspects. The (possible)
reducible points of Ip,(p) are easily calculated. Those of Ip, (p) were obtained by Goldberg
[G]. But for Ip,(p), we have to use the base change lift for G5 or @ [R] to derive the
standard L-factor of Gy and G} from those of GL(2)g and GL(3)g. Here, the key is the
uniqueness result for Shahidi’s y-factor [Sh, Th.3.5]. Our method seems to apply to more
general twisted endoscopic liftings of GL(n) to derive the product L-factors of G x GL(m)
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from the Rankin product L-factor of GL(n) x GL(m), where G is a classical group. Some
related results were obtained by Zhang [Zh] assuming certain conjectures.

The organization of this note is as follows. In Section 2, we describe the reducible points
of Ip,(p) and its irreducible constituents at those reducible points. Section 3 begins with
a review on the base change problems for unitary groups. We adopt new general set-up
of twisted endoscopy [KS] for this. We review the result of D.Goldberg [G] on Ip, (p) in
this framework. In Section 4, an argument on Poincaré series due to Henniart [H] and
Vignéras[V] enables us to apply Shahidi’s uniqueness result to calculate precise L-factors.
Then the reducible points of Ip,(p) turn out to be described in terms of endoscopic liftings
of G [R], and we determine its irreducible constituents at each points.

I would like to thank the participants of the mini workshop on automorphic forms for
help and encouragement. In particular, H. Saito, T. Ikeda, H. Matsumoto and K. Hiraga
give interesting lectures. I am grateful to T. Konno for helpful discussions and advices.

Notation We write o for the generator of the Galois group I'z/r of E/F. Fix an
algebraic closure F' of F' containing E. Wr = W /r and I'r denote the absolute Weil and
Galois group of F', respectively. Write | | and ¢ for the absolute value and the cardinal of
the residue field of F', respectively. We also use similar notations W and | |g for E.

Let G = G, or G),. Fix the usual F-splittings spl;, = (B, T,{X,}) and splg =
(B, T',{X.}) of Gy, and G, respectively. In particular, (B, T) and (B’,T’) are upper
triangular and diagonal Borel pairs. Write X = X(B, Ag) (resp. £(B’, Ag)) for the set of
B-positive (resp. B’-positive) relative roots. Here Ay is the split component of T or T".
Ao = A§ and AY = ASY denote the set of simple roots and simple coroots of Ag in B or
B'.

Put H, = Resg/rGL(n). The standard parabolic subgroups of G, and G, are classified
by the partitions n = (ny,...,n,;ng) of n with a distinguished component ny > 0. That
is, Py = MuUy, (resp. P, = M]U}) is the standard parabolic subgroup, whose Levi
component My is isomorphic to Hy, X -+ X Hp, X Gy, (resp. Hy, X -+ X Hy X G} ).
"The above P; (¢ =0, 1,2) in the introduction are P 1,0), P2;0), F1;1), respectively.

Let II(H(F)) (resp. Mynit(H(F)), Miemp(H(F)), Ho(H(F)) and Io(H(F))) be the set
of isomorphism classes of irreducible admissible (resp. unitarizable, tempered, square
integrable and supercuspidal ) representations of a reductive p-adic group H(F'). Set
ay = Hom(X*(M),R) and a3}, := X*(M) ® R, where X*(M) is the group of F-rational
characters of M. Recall the map Hy, : M(F) — ap [Sh]. By this map, we identify
v € ti¢c = a3 ® C with the quasi-character M(F) 3 m r— gHMm) e CX. Write
I§(m;v) = indim [7[V] ® 1y(p)] with 7[v] == 7 @ v, m € (M (F)), v € a}y.

Denote by wg/r the non-trivial character of F*/Ng/r(E*). We reserve the scripts u
and n for unitary characters of E* such that p|px = wg/r and n|Fx = 1, respectively.

Another such characters are denoted by p/, 7/, etc. 1 being as such, let 7, be the unitary
character of G = U(1, F)g/r given by nu(zo(z™1)) = n(z).

2. IRREDUCIBLE REPRESENTATIONS SUPPORTED ON F,

We begin with G = G,, or G},. Each irreducible admissible representation of T(F') (resp.
T/(F)) is of the form of x[v], where x = @i_; Xi (resp. Qi1 Xi ® ) (Xi € Munie(E>))
and v € ag := .

Since v = iy is a reducible point of I(x; v) := I§(x; v) (vesp. I§/(x;v)) if and only if so
is w(vp) for I(w(x);v) [BZ, 2.9], it suffices to study I(x; ) with v in some closed positive
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chamber:
cri={A€aj, [2/(N) >0 (VaeAg\AY), o'(\)=0 (VaeAM)}

m;

Putting m; := Z;zl nj, we write X =@ 41 Xi» (1<i <) and X5 = ®?=mr+1 X;j-
Then we have I(x;v) = I§, (I™(x);v) where

Ma(y) = izt T (x) ® I (x2) if G =Gy
=\ @y I (x?) @ I (x® ,mu) i G =Gl

Since the R-group of H,(F) is trivial, I (x) are all irreducible and tempered. Suppose
that s denotes the number of different x; (m, + 1 < ¢ < n) such that y;|px = WE/F
(resp. xi|px is trivial but x; # 7). Since the R-group of G, (resp. G) is isomorphic
to (Z/2Z)° [Ke, Th.3.6][Ke2, Th.8], I%o(x?) and I Gno (X5 ® ) are direct sums of 2°
different irreducible tempered representations:

28 98
Gr, 4 Gy,
I () = P r™0E), %)~ "l m):
i=1

i=1
Thus we are reduced to study the reducibility of I§ (7:(x);») and Ig;‘ (1i(x, u); v) with
() 1= @y T (x7) ® 7% (1) and 7 ma) = @y L (x) © 77 (32, ).

For each standard Levi subgroup M, write Wy, for the set of w € W of minimal length
in the coset wW™ such that w(M) is again a standard Levi subgroup. For w € W,
Py = MyU, denotes the standard parabolic subgroup with the Levi component M, =
w(M). For a standard parabolic P, let Xp := {(ala,) | € Zo \ T} and write T, for
the set of reduced elements in it. Define

invp(w) := {a € Tp |w(a) ¢ Ep, }.
For w[v] € II(M(F)) the integral
[M(w, 7o) = [ Hutug)du, ¢ € Il
(U (U)) (F)\Uw(F)

converges absolutely if a¥(v) > 0 for every o € invp(w). It extends to a meromorphic
function of v on all aj,¢ (cf. [Sh3], [Si]). Outside its poles it defines an intertwining
operator M(w,n[v]) : I§(n[v]) — I§ (w(r[v])). It follows from the properties of the
intertwining operator that:

Lemma 2.1. The set of zeros of M(wy, x[X]) in the region A € aj;, ¢, Re()) € cp, is the
union of those of M(rq, x[A]), @ € T4\ T3,

M(ra, x[N]), o € T\ Z4™ are essentially intertwining operators for rank one subgroups
G,. More precisely, we have
Lemma 2.2. Let o € &\ TH» and take w € W such that w(a) € Ag. Write Pyo) =
Mya)Uw(ay for the standard parabolic subgroup satisfying A(I)VI “® = {w(a)}. Then the set
of zeros of M(ra, x[V]) coincides with that of M™Muw(@ (1, w(x[V])).

In our case, G, is isomorphic to either Hy, Gy or G). The zeros of intertwining operator
of those are given by the following. In any case o denotes the unique simple relative root.
Write 67 for the Steinberg representation of a reductive p-adic group H (F).
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(1) Ho(F) = GL(2,E) [JL]. Let x € Myny(EX). a} is identified with R? so that v =
(11, v5) € R? corresponds to

TH2(F) 5 diag(ts, t2) — [t:5/ [t2] 2% € C*.
Then M (rq; x[v]) has a zero in the region a”(v) > 0 if and only if x1 = X2. In this case,
the only zero occurs at oV (v) = 2. If we write such v as (A +1,A — 1),
(2.1) 0 — x(det)6™[v] — I(x[v + 1] ® x[v — 1]) — x(det)[v] — 0.

(2) Gi(F) =U(1,1)g/p(F) [LL]. x = x for x € Munis(E). Note that v € R is identified

with 4 '
T(F) > diag(t, o(t)™}) — [t|4* € CX.

M(rq; x[v]) has a zero in the region (v) > 0 if and only if x|rx = 1. In this case, the

only zero located at a¥(v) = 1 and we have

(2.2) 0 — 7 (det)6Ct — I(n; 1) — ny(det) — 0.

(3) GL(F) =U(2,1)g/r(F) [KeS]. Let x = x € Huus(E*). Again, ag is identified with R
in such a way that v € R corresponds to
T'(F) 5 diag(t, 2, 0(t)™") = [t[%* € C.
M(ra; X ® 1u)[v]) has a zero in the positive region if and only if either x =7 or Xlpx =
WE/F-
(i) If x = n, the zero occurs at a"(v) = 4 and we have

(2'3) 0— nu(det)éall - 1(77[2] ® nu) - nu(det) — 0.
(ii) If x|rx = wg/F, the zero occurs at o' (v) = 2 and we have
(2.4) 0 — &M (u,m) — I(ul1] ® M) — m () — 0.

Here 61y, ) € Iy(G'(F)) and 7k, (u,n) is the non-tempered representation.
The above implies

Proposition 2.3. (i) Suppose G = Gy,. The set of the reducible points of I (7i(x);v) is
given by

xix;'=|lp 1<i<j<n
v:= ¢ x[V] Xilpx =15, 1<i<n .
Xin=||E> 1<i<j<n

ii) Suppose G = G'.. The set of the reducible points of IS (1i(x,mu); V) is given b
n 0 \TilX Y

xix; =15 1<i<j<n

' xi=nllg 1<i<n
V= v _
X1V Xilpx =wg/p| |5, 1<i<n ’
xx; =115 1<i<j<n

Now we restrict ourselves to the cases G = G and G’ = G. By [BZ, 2.9), it suffices to
consider the case of
oy = {_X_[V] leX;1 = l IE}v Vo = {X[V] 1X2|FX = ' IF}
for G and
to, = {xWllxaxz' =116}, tw = {xWMIxe =716}, v, = {x[V]|x2lrx = wg/r| |F}
for G'.
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Proposition 2.4. Suppose x € Ili(E*) and A € Ryo. We have the following (1) and
(2) for G, and (3), (4),(5) for G'. ‘
(1) Both I§ (x[\6¥2) and I (x(det)[)]) are irreducible outside the points Wy, -conjugate
to one of the following:

tao(X) = x[1] ®x[~1], x=porn,
ta,1(X) == x[2] ® x, X = ormn,
tay,2(n) 1= n[3] @ n[1].

(2) Both I (x[\ ® nu0%) and I (x[\] ® n.(det)) are irreducible outside the points Wy, -
conjugate to one of the following:

Tar,0(X, 1) = X @ n[1], X = porn,
tap 1 (0, m) =011 @ (1], 7' may ben,
Ta,3(1) = Tay,2(M)-

(3) Both IF (x[N§™2®@n,) and IF (x(det)[\| ® ) are irreducible outside the points Wy, -
conjugate to one of the following:

T, 0(0) = X[ @ X[-1]®nu, x=p or,
T, 1(X) = x[2] ® X ® Ny, X = or 1,
Tay,2(1) = p[3] ® pll] ® N,

T3 = N[4] ® (2] ® 1.

(4) Both I (x[N @ mu6%t) and IS (x[X]| ® nu(det)) are irreducible outside the points Was,-
conjugate to one of the following:

T 0(X) =X ®n2]®m, x=pory,
Tap,1 (1) = u[1] ® 7[2] ® 14,
tay,2 = N[2] ® N[2] ® Ny,

taz ,4 = tal ,3 .

(5) Both IS (x[A] ® 6(p,n)) and I§ (x[\ ® & (u,m)) are irreducible outside the points
W, -conjugate to one of the following:

205,0(X; 1) = X @ p[1] ® 1y, x=u oryn,
©0p,1 (s 1) = W] @ p[l] @ nu, 4 may be p,
Taaz2(1) = N[2] ® p[1] @ Ny,

T20,3(1) = Tay,2(H)-

The real part of these reducible points are illustrated as follows.
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\ (9} Too0  |Taol |tap2 Ye /

A 2\ 1,3 = Vas,4
Taz  |Ta3,0\] Tas,l / 20,0 02 Y2001 {¥20,.2 Y202

calaQ = taz,B + 1,2 = t20(2,3
» tal,l > toq,l
Q3 Tay,0 ai
Toy Ty tal,O
Fig.1 Re(ty)’s for G Fig.2 Re(ty)’s for G,

A formula for Jacquet modules [T] at each reducible points combined with Langlands
classification enables us to calculate the irreducible constituents of Ip(x;v) (resp. Ip/(x®

i V))-
Write JZ () for the Langlands quotient of I%(r). i¢(m) denotes the image of I¢ () in
the Grothendieck group KII(G(F)).

Theorem 2.5. Suppose that I§ (m; s) with m € Mynis(Mo(F)), s € Rxo has more than two
irreducible constituents. Then its irreducible constituents are given by the following.

(A) First we consider the reducible points which is regular, that is, ts, 2(n) for G, and
ta1,3s ton2() and te, () for G
i§ (n[3) ® n[1]) = nu(det)6% + JE (n(det)5™[2]) + JF (n[3] @ 7u(det)6S) + 7u(det),
i§ (n[4] ® (2] ® m) = 1u(det)8% + I (n(det) 6™ (3] © 7.)
+ J57 (n[4] © 1u(det)5) + 1 (det),
i§) (3] © ull] @ m) = Mg () + I (u(det)6™[1] @ )
+ J57 (3] ® 8 (i, m) + J§7 (ul3] ® u[l] @ nu),
i§’ (n[2] ® plL] @ 1) = 85 (1) + J5 (n[2] ® & (s, m))
+ I3 (1] ® M) + J§ (n[2] ® ul1] © ma).
Here 8§ (1) is the unique square integrable constituent of 3§ (u[3] ® p[1] ® 1) and
65" (14,m) denotes the unique square integrable constituent of i§' (u[1] ® 7[2] ® 1)

There two other types of reducible points where the generalized principal series contains a
square integrable constituent.

(B) The first case occurs only for G at to,1(1).

i5 (2] ® p) = i5 (2] @ 7' (1)4) @ 35 (u[2] ® 7' (1))
ig (u[2] @ 71 (1)) = 65 (1) x + JF ((det)6™2[1]) + J§ (u[2] ® 71 (1)a),

where §G(p)+ are the square-integrable constituents. Note that J&(u(det)s™2[1))
has the multiplicity two in i§ (u[2] ® u). :



79

(C) The second case, they consist of ta,1(n',m) for G and taa,1 (¢, p) for G', where
n #n and y' # p.

is (' [1] @ n[1]) = do(n’, m) + J§ (' [1] ® nu(det)6S")
-+ J5 (n[1] @ 7, (det)8) + I (152 (n @ 7)[1)),
i§ (W] @ pll] ®nu) = Sol, 1) + IS (1] ® 6 (1, m))
+J5 (1] ® 8 (i, m)) + I (g7 (1 ® w)[1] @ mu),

where do(n',n) = do(m, 1) and do(u, 1';n) = So(1', ;M) are the unique square inte-
grable constituent, respectively.

Next we treat the rest reducible where the generalized principal series contains some tem-
pered constituents. These fall into two patterns.

(D) First we consider ta,o(p,n) for G and ta,o(n') and taa, o) for G'.
i (n @ n[1]) = (ro(1, n)+ ® 7ol m)-) + IS (1] ® 7' (1)) + JE (n[1] ® 7 (1)),
i§' (0 @ 2] ® nu) = To(, 1)+ ® To(n', 1)
+J5 (2] @ 13 (1fm)+) + IS (n[2] ® 73 (n'sm)-),
i (' @ pll] @ nu) = (r(n, 8 (i, m))+ ® (', 6 (1, m))-)
+J5 (1] @ T (n'sm)4) + 5 (1] @ T (n'sm)-),

where To(p, M)+ € Mtemp(G(F)) and 1o(n', ), T(0', 8 (4, M)+ € Miemp(G'(F)).
(E) At to,1(n) for G and ta, 0 and to, 1 for G'.

i§ (n[1] ® 1)) = mur(6"2) + I (1] ® 7u(det)6) + JE (52 (n ® ML) + 7t (L),
ig (1] ® ull] ® ) = 7(6" (1)) ® 7(ma (11, m))
+ J5 (1] ® 6 (1, m)) + I (352 (1 @ p)[1] ® mu),
i§ (2] @ 1 @ ) = mu(7'(6™2)) @ nu(r'(18))
+JF 8" @ m) + J§ (n[2] ® i (0 © m),

where 1,7 (672) and ny7(1g,) € tenp(G(F)), and 7(6" (1, 1)), T(ma (s, 1)), (7' (672))
and 1u(7'(1,)) € Htemp(G'(F)).

3. BASE CHANGE PROBLEMS AND THE RESULT OF GOLDBERG

3.1. Base change problems for unitary groups. We first review some definitions from
[KS]. We always work over a fixed non-archimedean local field F' of characteristic zero.
A twisted endoscopy problem is considered for a triple (G, 6,a) where G is a connected
reductive group defined over F, 0 is a quasi-semisimple F-automorphism of G (i.e. ‘its
restriction to Lie (G)qer is semisimple) and a is a class in H*(Wg, Z (@)) For convenience
we fix a splitting spl; := (B, T,{X4}) of G and an L-group datum (G PG, Ne) where
G is the dual group of G, pg is an L-action of T" on G and Ne is a I-bijection between
canonical based root data. We fix a splitting sply := (B,7,{X}) of G which is fixed by
the I'p-action pg. The dual of the inner class of 6 determmes an automorphism of the
based root datum of G. This lifts to an automorphism 8 of G which preserves spla.
Recall that a quadruple (H,H, s, §) is an endoscopic datum for (G, 0, a) if

(1) H is a quasi-split group over F. We fix an L-group datum (f] ,pH,NH) for H.
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(2) H is a split extension
1-H-HS Wr—1

Thus we have a splitting, that is, an injective homomorphism ¢ : Wp — H satisfying
7 ot = idy,. We impose that the inner class of Ad(¢(w))|g coincides with that of
pu(w) for any w € Wpg.
(3) s is a f-semisimple element in G. That is, Ad(s) o 9 is a quasi-semisimple automor-
phism of G.
(4) £ : H < LG is an L-embedding satisfying
(4a) Ad(s)ofo& =a ¢, for some d’ € a.
(4b) (H) = (GAEP)

An endoscopic datum (H, ™M, s, &) is elliptic if £(Z(H)TF)° c Z(G). Two elliptic data
(H,H,s,€) and (H',H', s',€') are isomorphic if there exists g € G such that

(3.1) Ad(g)é(H) = €' (H')
(3.2) s € Ady(g)s - Z(G).

We now classify the base change problems for unitary groups. Let G be the quasi-
split unitary group in n variables associated to E/F. Put G = Resg/rG. @ denotes
the F-automorphism of G associated to o by the F-structure of G. Then GN ~ G? and
we may choose 0" to be 0"(z,y) = (y,z). Since Z(GM) Mg Wr = (Resg/rGjp), we
may identify each class a € H' (W, Z(G")) with the (Resg,rGjp) -conjugacy class of
Langlands parameters attached to some x € II(E*) by the Langlands correspondence for
tori. We write this as a = a,,.

Suppose that (H,H,1,£) is an endoscopic datum for (G,7, ay).

First note that the quasi-split group H must be G itself. We identify H and 'H with
its image under £ : H — L@. The definition of the endoscopy (4b) implies H= (G’\)" =
{(9,9)|g € G} =G. 1 in (2) can be written as

Hw) = a(w) x,5 W, w e Wr

for some G"-valued 1-cocycle {a,(w)} satisfying Ad(ab( ) OpG(w)fAI H. Since our H is

preserved by ps(w), we have a,(w) € Norm(H, G") = HZ(G") and the inner class pg (w)
of Ad(t(w)) coincides with pz(w)|g. Hence H = G.

Next analize H = ﬁL(WF) Fix once for all w, € Wr \ Wg. For x € II(E*), the
character of Wg corresponding to it by Langlands’ version of classfield theory is denoted
by the same symbol x. Then the 1-cocycle a, given by

oy (w) = (x(w),o(x) ™ (w)) if we Wg
" (x(w?), 1) if w = w,

~ belongs to a,. Since &’ in (4a) belongs to the same class a, it must be of the form

d(w) = (z W) p=(w) (21 u=1) = (x(w),o(x) Y (w)) ifweWsg
() = @ vln{wlegwlie™s™) {(xyx(W3),ym) if w=w,
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for some (z,y) € Z(G"). That is,

2 (w) - { (x(w),0() (W) if w e W
(2'x(w?), 2 if w = w,,

for some 2’ EA,Z(@)' Writing a,(w) € GZ(G") as a(w) = (z(w), z(w)z(w)), (z(w) €
G, z(w) € Z(G)), the condition (4a) becomes

2w z(w). z(w)) = (x(w)z(w), o(x) Y (w)z(w)z(w)) ifwe Wg
(z(w)z(w), z(w)) {(z’x(w?,)w(wa),Z'x(wa)z(wa)) if w = w,,

or equivalently,

x(w) = o(x)(w) = 2(w), Vw € W,

2(wy) = 2'x(w2), 2z(w,) = 1.

In particular, we have no endoscopic data with s = 1 unless x(w) = o(x)(w), w € Wg. If
x(w) = o(x)(w), (4a) is equivalent to

(3.3) zlwy =x for Vw e Wg, z(w,)? =x(w?), 2 =z(w,)"!
Since a, is a 1-cocycle, z|w, and z|w, are homomorphisms and

at(w?,) = a,(we)pg(ws)(a.(ws))
gives z(w?) = 2(w,)?. Regarding this, (3.3) is equivalent to
(i) z|w, and z|w, = x are homomorphism,
(i) 2(wy) = 2(wq)® = x(w}), 2’ = 2(w,)™".
Recall that the base change problem for G is, by definition, the twisted endoscopy

problem for the triple (G,,1). More precisely the base change problems for G is the

endoscopy problems attached to the endoscopic data of the form (H,H, 1,£) for (é, o,1).
Thus we suppose x = 1. Then (i) and (ii) become

(i) z|w, = 1 and x|w, is homomorphism,

(i) z(w?) = z(ws)? = 1, 2’ = z(w,)~".

By (ii)’, we have z(w,) = 1 or —1 and

(z(w), z(w)) if w € Wg,

a(w) = ¢ (z(w), z(w)) if w=w,, 2(w,) =1,

(z(w), —z(w))  if w=wy, 2(w,) = —1.
Now granting (3.1), we see that if 2(w,) = 1 (H,H,s,£) is isomorphic to (G,LG,1,¢)
with

f:LGangawH(g,g) xpéwELG,

and if z(w,) = —1 it is isomorphic to (G, LG, 1,¢') with

(9,9) %o, w € LG if w € Wg

/. L
G D g N, w -
J 9 %o {(g, —-g) Mpg W E Lq otherwise.

Thus we recover the following.
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Proposition 3.1. (Rogawski [R]) Up to isomorphism, the base change problem for G is
the endoscopic liftings from endoscopic data (G, LG, 1,€) and (G,LG,1,¢) for (G,5,1) to
G. Here

§:I‘G'3g><lpéwf—+(g,g)><1,,C.;wEELC~vY

(gag) Xp@'weLé if w € Wg

" LG g X, w ~
¢ 9% {(Qa —g) X, w ELG otherwise.

We call the former the standard base change and the latter the twisted base change, re-
spectively.

3.2. The result of Goldberg. Now we review the result of Goldberg about the irre-
ducible constituents of Ip (r[v]) m € o(M1(F)), v € a};,. T denotes the contragredient
of w. From [G] and [Sh, Th.8.1], the result is summarized as follows.

Proposition 3.2. (Goldberg) Let G = Go, G' = Gy and 7 € IIo(Hy(F)).
(1) IS(r[v]) and IF (x[v] ® n) are irreducible unless o(7) ~ =.
(2) If o(7) ~ m, there are the following two cases.

(a) Suppose that w, 7" € Ilo(M1(F')) are the twisted and standard base change lifts
of some irreducible supercuspidal representations of G1(F'), respectively. Then
IS (n[v]) and IF' (x'[v] ® ny) are reducible only at v = 1. Each induced repre-
sentation has only two irreducible constituents, a square integrable representa-
tion and the Langlands quotient.

(b) Suppose that m and ' are the standard and twisted base change lifts of some
irreducible supercuspidal representation of G1(F'), respectively. Then IZ(w[v])
and I¢ (n[v] ® n,) are reducible only at v = 0, each of them decomposes into
the direct sum of two irreducible tempered representations.

4. TRREDUCIBLE REPRESENTATIONS SUPPORTED ON P2
4.1. Product L-factor for G X H,,. Let G := G, or G|, and G := Gy, or G,

m+n?

respectively. P = MU denotes the standard parabolic subgroup of G such that M ~
H,, x G. Take x € I(H,(F)) and 7 € II(G(F)) and consider the parabolically induced
representation

I§(m;s) = indG g [(| det %X @ T) @ Ly, T=Xx®T,

and the intertwining operator M (w,;s) : IS (m;s) — IS (w(r); —s). Here w denotes the
unique non-trivial element in Wj,. B

Write St,, for the standard representation of GL(n,C) and St,, for its dual. Let r,,, be
the representation of “M defined by

Tlgp = [Ste @ (Stm ® Larem)] @ [Ste ® (Lorm) ® Stm)],

Tmn(W) (V1 @ v2) = {

v1 B vy ifwe Wg,

vp @ vy otherwise,

where ¢ = 2n or 2n + 1 according to G = Gmyn or G, .. Also let 74 be the twisted
tensor representation of LH,.:

v1Quy if we Wg,

Asail 7, m my Tasi(w)(n 2)_ {U2®v1 otherwise.
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We view this as a representation of “M trivial on G, or @;,,

Suppose x and 7 are generic for some non-degenerate characters of U#™(F) and of
US(F). Then Shahidi defined the automorphic L and e-factors attached to Tn,m and Tassi
[Sh, §7]:

L(s,7 x x) = L(5,7,Tmp), €&(8,7 X X,%) = &(8,7, Tm.n, V)
LAsai(Sa X) = L(S, T, ""Asai)a €Asai(31 X ¢) = 8(87 Ty T Asaiy "/))
Here 7 is a fixed non-trivial character of F'. Moreover setting
L(S,T X X) LAsai(2sa X)
5(37 T XX, ¢)L($ + 17 T X X) €Asa,i(23, X w)LAsai(zs + 17 X) ’
he showed that the normalized intertwining operator
N(w,;s) :=r(w,m;8) " M(w,m;s)

is holomorphic on {s € C|Re(s) > 0} [Sh, Prop.7.3, Th.7.9]. Since the reducibility of
I§(m; s) is controlled by the poles of M (w, ; s) [Sh, Th.8.1], we have to calculate the poles
of L(s,T x x) and Lasi(2s, x). Since Lagi(2s, X) is treated in [G, §5], we concentrate on
L(s,7 x x). ‘

r(w,T;s) =

4.2. Application of the base change. We now turn to the case where m = n = 1.
Then we have the standard base change lift attached to (G, LG, 1,&). For each 7 € IIo(@),
we write & (7) for the base change lift of the unique tempered L-packet containing 7.
Define v

P

Lyc(s, 7 x x) = L(s,¢(7) x x),

——

epc(s, 7 X X, ) := ME/F,$)™e(s,£(1) x x, ¥ o Trg/r).

Here the factors on the right hand side are the Rankin product factors [JPSS]. Then by
some local-global argument we can prove:

Proposition 4.1. Suppose that 7 € Io(G1(F)) or IIo(Gy(F)) and x € II(HL(F)) are
generic representations. Then the two product L and e-factors defined above coincide:

L(s,7 x x) = Lpc(s, 7 X x), €(s,7 x x,%) =epc(s,T X x,%).

4.3. Reducible points. Any supercuspidal representation of G1(F') is generic, but there
exists a non-generic representation 7’ in IIo(G;(F')). We have a tempered L-packet T
which contain 7/ [R]. By [FGJR], T contains a unique generic representation 7. The
result of base change [R] yields that the Plancherel measures u(x ® 7, w) have a same
value for any 7 in same L-packet. Thus from Prop.4:1 we have

L(s,7" x x) = Lec(s, 7 x x), €(s,7 X x,%) = enals, T x X, ).
Using this we can determine the reducibility of If (m;s). Let A, : “(U(1)g/r X
U(1)g/r) — LGy and A LGy x U(1)g/r) — LG} be the L-embeddings :

-1 .
(zw(W) zzu(w)‘l) xw ifweWg

Au i (2 3 29) X Wb

© ( 1 2) {(Zz —z1) X W otherwise
X f

A;‘ 1 ((85)2) xwr— (gu(w_)bz du(w)) w fweWg

| (c # _d) XA w otherwise,
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respectively. The associated lifting of n, ® 7., € II(Gy(F)?) (resp. 7 Q@ 7., € I(G1(F) x

Go(F)

)) to an L-packet Au(n,7) of Gi(F) (resp. Au(m,n’) of G4(F)) are constructed in

[R]. From the above argument and [Sh, Th.8.1], we can deduce the following theorem.
Theorem 4.2. Let G = Gy or Gy. I§(x| |5 ® 7) with x € Ih(E*), T € o(G1(F)) or

(G (
(1)

(2)

(3)

[BZ]
[FGJR]
(GJ]

[GK]

[H]
[JL]

[JPSS]
K¢
[Ke2]
[KeS]

[KS]

F)) and s € Rxg s irreducible unless the next three cases.

Suppose that x = p and 7 & M\, (n,7) if G = Ga, and x = n and 7 ¢ A\, (m, 7)) if
G = GYy. Then IS(x| |5 ® 7) is reducible only at s = 0. It decomposes into the
direct sum of two tempered representations.

Suppose that x = pn~" and 7 € Ay(n,n') if G = Ga, and x =1 and 7 € A\, (m,7)
where n may be ' if G = GY. Then IS (x| |4 ® T) is reducible only at s = 1.

i§ (un™ e ® 1) = 652 (u™ n, ') + J5 (un | |E @ Nu(m, '),
where 652 (u~'n, u~'n') € Ty(G(F)).

is?(n] | @) = 652(n,7) + Jg*(n] | @ 7).

Here 5?2 (n, ) € IIa(GL(F)):

Suppose x =1 if G = Gz, and x = p if G = Gy. Then I(x| |% ® 7) is reducible
only at s = % It has two irreducible constituents, its Langlands quotient and square
integrable representation.
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