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STRONG n-SHAPE THEORY
YUTAKA IWAMOTO AND KATSURO SAKAI

INTRODUCTION

Let u™*! be the (n + 1)-dimensional universal Menger compactum. In [Chi,],
A. Chigogidze introduced the concept of n-shape and established the (n + 1)-
dimensional analogue of Chapman’s complement theorem [Cha, Theorem 2|, that
is, two Z-sets X and Y in p"*! have the same n-shape type if and only if their
complements ™1\ X and ™!\ Y are homeomorphic (=), where X C M is a
Z-set in M if there are maps f: M — M\ X arbitrarily close to idy;. The n-shape
category of compacta was discussed in [Chis] (cf. [Chig]). Later, corresponding to
[Cha, Theorem 1], Y. Akaike [Aka] defined the weak proper n-homotopy category
of complements of Z-sets in p™*1 which is isomorphic to the n-shape category of
Z-sets in ™. Then, as Strong Shape Theory ([EH], [DS], [KOJ, etc.), it is a natu-
ral attempt to define the strong n-shape category which corresponds to the proper
n-homotopy category of complements of Z-sets in 1. Properly, one require this
category to factorize the natural functor (called the n-shape functor) from the n-
homotopy category to the m-shape category into two functors through it. In this
paper, we introduce the (n+1)-skeletal conic telescope to define the strong n-shape
category of compacta.

Throughout the paper, spaces are separable metrizable and maps are continuous.
It is said that two (proper) maps f,g: X — Y are (properly) n-homotopic relative
to A C X and denoted by f ~" g rel. A (f =~} g rel. A) if, for any (proper)
map p: Z — X, there is a (proper) homotopy h: Z x I — Y such that hg = fop,
hi =gy hee™ 1(A) folo™t(A) for each t € I. When A = 0, we say that f and g
are (properly) n-homotopic and denote f =~ g (f ==, g).

A map ¢: M — X is said to be n-invertible if any map : Z — X of a space Z
with dim Z < n lifts to M, that is, there exists a map ¥: Z — M such that Y =Y.
In case p is a proper map, if ¢ is proper then z,b is also proper. For an n-invertible
map ¢: M — X and A C X, p|p~1(A): p71(A) — A is also n-invertible. By the
result of Dranishnikov [Dra, Theorem 1], for any compactum X, there exists an
n-invertible map p: M — X of a compactum M with dim M < n. Then, for two
(proper) maps f,g: X — Y, f =" grel. A (f =~} g rel. A) if and only if fo =~ gy
rel. p~1(A) (f =~ gy rel. p~1(A)) for an invertible (proper) map ¢: M — X.
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1. THE POLYHEDRAL TELESCOPE

The n-skeleton of a simplicial complex K is denoted by K () whence K (0) is the
set of vertices of K. The polyhedron of K is denoted by |K| (i.e., |K| =, cx 7)-
By (v1,...,v,), we denote the simplex with vertices v1,...,v,. A subdivision oK
of K induces the subdivision § K™ of K™, It should be remarked that 6K ™ C
(6K)™ but K™ £ (§K)™ in general. The following is well known:

Fact 1. Let L be a subcompler of K and Z a space with dimZ < n. Then, for
any map p: Z — |K|, there is a map ¢: Z — |K) U L| such that p ~ 9 rel.
e HIK™ U L)).

An ordered simplicial complex is a simplicial complex with an order of vertices
such that the set of vertices of each simplex is totally ordered. The barycentric
subdivision Sd K of a simplicial complex K is an ordered simplicial complex with
the following order:

6T <:f> o is a face of 7,
de

where § is the barycenter of o.

Let I = {0,1, I} be the natural triangulation of the unit interval I = [0,1]. Then,
I is an ordered simplicial complex with the natural order 0 < 1. For an ordered
simplicial complex K, the product simplicial complex K x [ is defined as follows:

K><I={a><{0},0x{1}|a€K}

U{((’01,0),--.,('Ui,O),('Uj,l),---,('Uk,l» l <Ul7"'7vk> eK
n<--<vee KO 1<i<j<k)

Then K x I is an ordered simplicial complex with the following order on (K x I )0 =
K© x {0,1}:

(v,1) < (v',7) = v <o and i <7\
e

Let K and L be ordered simplicial complexes and f: K — L a simplicial map.
The simplicial mapping cylinder M(f) is defined as follows:

M(f)=KULU{{(f(v1),-, F(v:), 055, ve) |
<U17"'7vk>€K7 vy < - < g, 1<Z<]<k}

When L is degenerate (i.e., a singleton), M(f) is the simplicial cone C(K) over K.
We have the natural simplicial map qs: K x I — M(f) which is naturally defined
by q¢(v,0) = f(v) and g(v,1) = v for v € K©, The simplicial collapsing map
cg: M(f) — L is defined by cs(v) = f(v) forv € K© and ¢f(u) = u for u € L.
Then cfqy = fpry and ¢y ~id rel. [L| in [M(f)|. Extending the orders on K©
and L©O to M(f)©@ = K© ULO so that u < v for each u € L(® and v € KO,
M(f) is an ordered simplicial complex. Let f ) = fIK™) . K™ — (™) be the
restriction of f. Observe that

M(H)™ ¢ M(F™) c M(H)TD c M(FM)UK UL
and cf{M(f(”)) = cpmy = id rel. lL(")| in [M(f™)).



Fact 2. For a simplicial map f: K — L, c¢||M(f)"*D UK UL| ~™id rel. || in
IM(f)" D U K U L|, hence f = c;|K =™ idg in |M(f)"D UK U L|.

Since K x I can be regarded as M (idg ), we have the following:

Fact 8. Let p: |(K™ x I)U (K x {0,1})| — | K x {0}] be the retraction defined by
p(z,t) = (z,0). Then, p~"id rel. |[K x {0}| in |(K™ x I) U (K x {0,1})|, where
we identify K = K x {0}.

Let K = (| K;|, ¢ i+1)ien be an inverse sequence of ordered simplicial complexes
such that each ¢; ;41: K;+1 — 6K; is simplicial, where §K; is some subdivision of
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Ki. Let ¢;: lmK — |K;| be the projection of the inverse limit of K to |K;| and

denote
i = Q1o oGi-1,50 | K| — [K], ¢ <.
We define
(oS k-1
Teljj o) (K) = | [M(giiy1)| and Tl (K) = | [M(giir1)l, 5 <k,
i=j =]

where |M(g;i+1)| N [M(Giv1,i+2)] = |Kita] and [M(gii11)| N |M(g5,41)] = @ for
|i — j| > 1. The polyhedron Telj; o,)(K) is called the polyhedral telescope for K.
One should note that | Jio; M(g;) is not a simplicial complex unless §K; = K; for
every ¢ € N. Let

Teljg,c0) (K) = [C(K1)| U Telj1,00)(K) and Teljg ) (K) = |C(K7)| U Tely ) (K),

where [C(K1)| N Telj,00)(K) = |K1]. We call Teljg)(K) the polyhedral conic
telescope.

The simplicial collapsing map cg, ,,: M(¢;+1) — 0K; extends to the deforma-
tion retraction '

Crar: Teljg i) (K) = Teljoi(K) U M (g 341)| — Tjo,5 (K).

The following diagram is commutative:

K K ®
Teljo,1) (K) +——C—1§-—— Teljp 5 (K) % Teljo,3(K) c:;
U U U

K1 ——  [K2| e—— |K3] @ e—— ..
q1,2 42,3 43,4

The inverse limit of the upper sequence is denoted by Teljg «}(K) with the projec- -

tion ¢f¢: Teljp o) (K) — Teljg ;1 (K). We denote
ij = Cg;(,i—l—l" s ocﬁl’j . Tello,j] (K) — Tel[oﬂ-] (K), i < _] _
Regarding Teljy )(K) as an open subspace of Teljy (K), we have

Teljg o) (K) \ Teljp,c0) (K) = imK and cf|limK =g;, i €N.
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It is easy to see that each ¢ is a strong deformation retraction. Hence, it fol-
lows that Teljp o0)(K) is homotopy dense in Teljg ] (K), that is, there is a homo-
topy h: Teljg co) (K) x T — Teljg 0] (K) such that hg = id and ht(TeI[O ] (K)) C
Teljp,o0) (K) for t > 0. Since Teljp o) (K) is a polyhedron, Teljp,00) (K) is an ANR
by Hanner’s characterization of ANR’s (cf. [Hu]). Since Tel(p,c0](K) is contractible,
it is an AR. The above construction was founded in [Ko, Theorem 1 and Corollary
1]. For each j € N, we can similarly define Telj; o,)(K), which is an ANR and a
closed subspace of Teljg oo} (K). Clearly,

Tel(; 0] (K) \ Teljjo0) (K) = Teljp oo} (K) \ Teljo,c0) (K) = Im K.

Each d* = ci¢] Teljj,00) (K) : Teljj 00) (K) — | K ;| is a strong deformation retraction
and q”dK d¥| Tely; o0 (K).
Now, we define

Telft! (K U|K21uU |M(gii41)™| and
1=J 1=j
k-1

TelnH(K) U | K| U U |M(¢ii11) )|, < k.
1=j =j

These are subpolyhedra of Telj; «)(K). Recall that U2, M(g;) is not a simplicial

complex in general. We call Telﬁjr; )(K) the (n + 1)-skeletal telescope for K. Let

el (K) = |C(K) "V U Telf ) (K)  and
) (1,00)

el (K) = |C(K1) ™ | U Telli ) (K).
These are n-connected. The polyhedron Tel%j’oi)(K) is called the (n + 1)-skeletal
conic telescope for K. ,
Observe that ¢ (Te%t.il] (K)) = Tel{gfz’-]l (K). The following diagram is commu-
tative:

n+1 ciizl 1 chsl n+1 cHoal
Telfghy (K) «— Telfyly) (K) «—=— Teligiy(K) ——— -
U U u
K| —— Ky e—— By e—
q1,2 42,3 g3,4

Then the inverse limit of the upper sequence is the closed subspace

Telfy/oh) (K) = Telfy/s) (K) Um K C Teljg o0 (K).

For each j € N, let Tel’! (K) = Tel" ooy () ULim K.

[3,00]



Fact 4. For each j € NU {0}, Tel’t} (K) \ Tel’" | (K) = limK is a Z-set in
eI}’ (K).

Let ¥: Z — Tel*! (K) be a map of a space Z with dimZ < n. Then it

[7,00]

is easy to construct a homotopy h: Z x I — Tel”+1 (K) such that ho = 1) and
hi(Z) C Tel"t1) (K) for t > 0. In general, el (K) is not an ANR, but we have

[5,00)
the following:

Fact 5. Fach Tel’“rl |(K) 15 LC™, hence it is an ANE(n+1). Moreover, the space
Tel"+1](K) is n- connected so it is an AE(n +1).1

The following follows from Fact 2:

Fact 6. Fori < j € NU{0}, df,(j|Te1"f+l(K) ~" id in Tel"“(K) hence ¢; j ~

[4,5]

idg, in Telm | (K). Moreover, d¥| Tel”*! [(K) ~™ id in Tel”H](K), s0 g; =" idk;

[1100 [Z ,O0
in Telﬁj]l (K)

2. THE STRONG n-SHAPE CATEGORY Shyg

Let H™ be the n-homotopy category of compacta and Sh™ the n-shape category
of compacta. In this section, we define the strong n-shape category Sh’ of compacta
and show that the n-shape functor from H™ to Sh™ is factorized into two functors
through the category Shy.

Every compactum X is the limit of an inverse sequence K = (Kj,¢;)ien of
finite simplicial complexes such that each ¢; ;+1: K;+1 — Sd K; is simplicial for the
barycentric subdivision Sd K; of K; and dim K; < dim X for all ¢ € N [Isb, Lemma
33] (cf. Proof of [Koy, Theorem 1]). We call K a barycentric sequence associated
with X. It should be noted that ¢; ;41: K;11 — K; is not simplicial in general. In
fact, there exists a 1-dimensional compact AR which is not the limit of any inverse
sequence of simplicial complexes and simplicial maps [Koj, Theorem 1(2)] (cf. Ko,
p.536]). It should be also noted that a barycentric sequence associated with X is
an LC™(n + 1)-sequence associated with X (cf. [Chis]).

Theorem 1. Let X and Y be compacta and K, L be barycentric sequences asso-

ciated with X and Y, respectively.
(1) Every map f: X — Y extends to a map f: Tel{g,00] (K) — Teljg o0} (L) such
that f(Telf“o’oo)(K)) C Telfcoyoo)(L) for each k € N. ‘
(2) For two maps f, g: Telﬁ)“](K) - Telﬁfoi (L) with f~Y(Y)=¢g"1(YV) =
if fIX ™ g|X inY then f| Te1”+1)(K) i ngel%“L;)(K) in Tel"H)(L)

In Theorem 1(1) above, a proper map f| Telﬁfoi)(K) Tel”+1 )(K) —s Telﬁ;roi)(L)
is said to be induced by f. By Theorem 1(2), the proper h_omotopy class of such a
map is unique. The following is a direct consequence of Theorem 1.

. 1A space Y is an AE(n+1) (or an ANE(n+ 1)) if every map of any closed set A in an arbitrary
metrizable space X with dim X < n + 1 extends over X (or a neighborhood of A). A space Y is
an AE(n + 1) if and only if Y is an n-connected ANE(n), and Y is an ANE(n + 1) if and only if
Y is LC™.
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Corollary 1. Let K and L be barycentric sequences associated with the same com-
pactum X. Then a proper map h: Telra“L;)(K) — Tel”Jrl y(L) induced by idx is a
proper n-homotopy equivalence.

Definition of Sh%. Let X andY be compacta. Let K, K’ be barycentric sequences

associated with X and L, L’ barycentric sequences assomated with Y. Two proper

maps F: Tel?“;)(K) — Telfg“;lo)(L) and F”: Telﬁfoi)(K’ ) — Tel%“L;)(L’ ) are n-
fundamentally equivalent (written by F' =% F') if h'F ~} F'h for some proper

n-homotopy equivalences h: Telf“r1 (K) — Tel”+1 y(K') and h': Tel%Jr;)(L’ ) —
Tel%ii) (L) induced by idx and idy, respectively. A strong n-shape morphism from
X toY is the n-fundamentally equivalence class of a proper map F': Telf'(')ﬂ)) (K) —
Telf('; 010)(L) where K and L are barycentric sequences associated with X and Y

respectively. Thus, the strong n-shape category Shg of compacta can be defined.
The following follows immediately from Theorem 1 and the definition above.
Corollary 2. There exists a functor 2: H™ — Shlg which maps objects identically.

For simplicity, let us assign each compactum X to a barycentric sequence KX =
(KZ-X , q,fz- +1)ien associated with X and denote as follows:

TelbtL (X) = Telfy L) (KX), Tel 3 (X) = el (KX),

[0,00) [4:k] [4.K]
" - - KX n
Ci}\,i—kl G z—l—ll Tel%tl*_l] (KA )7 Cz“x = Ci I Tel[0+olc;] (KX )7

d¥ = d7 | Tl L (KY), ete

Thus, X is assigned to the following commutative diagram of inverse sequences:

e cX3
Tel?tH(X) 22— Tl (X) «—2— TelhH(X) «—2—
C -

[0,1] [0,2] [0,3]
U U U
K| —— K| — K| =
as a3s ay

Now, we prove the following:

Theorem 2. There erists a full® functor ©: Shg — Sh™ such that ©o=: H™ —
Sh™ is the n-shape functor.

Remarks. The following proposition can be proved similarly to Theorem 1(1).

Proposition. Let K and L be barycentric sequences associated with compacta X
andY , respectively. Every proper map f: Telj o) (K) — Teljp,c0) (L) is properly ho-
motopic to a proper map f: Teljp o0)(K) — Teljg ) (L) such that f(Telf“O’oo)(K)) C
Telf“o o0) (L) for each k € N. ‘

By the same proof, Theorem 1(2) is valid even if Tel[o o] 18 replaced with Tel[o oo]-
Then, in the definition of Shg, replacing Tell0 00) by Teljg ), We can deﬁne the

2The functor is full if the induced maps of the sets of morphisms are surjective.



category @g which factorizes the n-shape functor into two functors through ‘:ﬁig
In fact, the functor Z in Corollary 2 is factorized into two natural functors through
She g, where the natural functor from Shg g to Shi can be obtained by the proposition
above. As is easily observed, the functor from Shg to Shg is injective, but it is a
problem whether it is surjective or not.

M* ——— Sh™

! T

Shg —— Sh?

- In the definition of Shg, replacing Tel%f;) and ~2 by Teljp o) and =2, we can

obtain the strong shape category Shg (cf.’ [DS]). Then, we can easily obtain the
natural functor from Shg to E’HZ Let 'H be the homotopy category of compacta.
We have the following diagram of categories and functors:

H —— Shg Shg —— Sh

I

H"» —— Shy

- Shg —— Sh"

Restricting the objects to compacta with dim < k, we have the subcategories
Sh(k), Sh™(k), Shg(k), Sh?%(k) and Shg(k) of Sh, Sh"’ Shg, Sh% and Shyg, respec-

tively. Then, Shg(n) = S_hg(n) because Telﬁ;roi)(X ) = Teljp o) (X) if dim X < n.

Moreover, Sh(n — 1) = Shg(n — 1) = Shg(n — 1) because dim Teljp,00)(X) <
if dim X < n — 1. Although Sh™(n) = Sh(n), it is not known whether Sh¥ (n)
Shg(n) or not.

3. AN ISOMORPHISM BETWEEN Sh$(Z(u"*1)) AND HE(Mpi1)

Let Z(u™*1) be the class of Z-sets in p"t! and M,, ;1 the class of u+1-manifolds
pt\ X, X € Z(u™*1). In this section, we prove that the strong n-shape category
Shg(Z(u™*1)) of Z(u™) is categorically isomorphic to the proper n-homotopy
category Hp (M, 1) of Myiq.

Lemma 1. Let f: X — Y be a map from a locally compact separable metrizable
space X with dim X < n +1 to a completely metrizable ANE(n +1) Y. For any
closed set A C X and a Z-set B C Y, f is approzimated by maps g: X — Y such
that g|A = f|A and g(X \ A) CY \ B.

As in §2, we assign each X € Z (™ *1) to the following diagram: -

st 3,4
TelH1(X) <——-——- Telg', (X) *“‘25““ Telﬁ)*?j(X) —t

0.1]

U U u

KX e—— K| e—— K| — .,
X
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where the lower sequence is a barycentric sequence associated with X. To prove
Theorem 3, we apply the construction in [Sa| to this diagram.

Let M = C(K{)+D). Then |M{*| = Tel%'”lll (X). We inductively define a
simplicial complex

M+1 = (SszX % I)(n—H) UM(qu(’é+1)(7'z+1)7

]

where we identify Sd MX = Sd MX x {0}. So we have
M(g¥ )™ N (SAME x 1) = M(g, )™ NSA MY = Sd K.
Observe that Tel"! (X)) = Tel”“(X)U |M (g% 1) (n+1)| ¢ |MX,|. The simplicial

[0,a+1
collapsing map CoX,, M (qz,z +1) — Sd KX extends to the simplicial retraction

Cigtl: MiX = (SdMi)il X I)(n+1) U M( “+1)(n+1) N (SdMi)Sl . I)(n+l)'

We define T£+1 = pr; Giip1: MY, — M;X, where pr;: (Sd M x Nt o pX

1
is the projection. Let 7f = id: |M{‘| — Telﬁfl1 (X) (= |M{*|) and inductively

define the retraction 7%, : |M7,| — Tel{?%irl] (X) by WﬁIHM(qfiH)(”H)] = id

and 77" ||(Sd MX x 1»*+D| = 7X pr;. Thus, we obtain the following commutative
diagram of the inverse sequences:

e i o3 X T34

e

2

b g X
Tel ST (X) 2 TelHH(X) 2 Telt(X) «—*—
C . C

{0,1] [0,2] 0,3]
U U U
KX e KE| e KF] e
qf(,z qgfs 434

Recall that Telftt! (X) = Usen el (X), Te e (X) = Telpln)(X) U X
is the inverse llrmt of the middle sequence and X 1s the 111verse hmlt of the
bottom sequence. Let MX be the inverse limit of the upper sequence. Then
X C Telrbt; (X) ¢ MX but MX # X U,y |M;*|. Applying Bestvina’s charac-
terization of x™*! [Be], one can see that M* ~ p™*1 (cf. [Sa] and [Iwa, Prop031t10n
2.1]). It is easily seen that X is a Z-set in MX (it is also a Z-set in Tel0 oo (X)
[Sa]). Since (MX, X) = (4™, X) by the Z-set unknotting theorem [Be], we have
a homeomorphism hx: MX \ X — p""*\ X. On the other hand, we have the
retraction of 7% : MX — Tel%ti] (X) induced by 7X. Observe that 7% |X = id and

X(MXN\ X) = Telff 5 (X).
Lemma 2. 7% |[M¥*\ X =7 id in MX\ X.
Now we have the following:

Theorem 3. There is a categorical isomorphism ®: Shg(Z(1")) — Hp(Mpt1)
such that ®(X) = p**t1\ X for X € Z(p™t).
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