STRONG *n*-SHAPE THEORY

YUTAKA IWAMOTO AND KATSURO SAKAI

Introduction

Let μ^{n+1} be the (n+1)-dimensional universal Menger compactum. In [Chi₁], A. Chigogidze introduced the concept of n-shape and established the (n + 1)dimensional analogue of Chapman's complement theorem [Cha, Theorem 2], that is, two Z-sets X and Y in μ^{n+1} have the same n-shape type if and only if their complements $\mu^{n+1} \setminus X$ and $\mu^{n+1} \setminus Y$ are homeomorphic (\approx) , where $X \subset M$ is a Z-set in M if there are maps $f: M \to M \setminus X$ arbitrarily close to id_M . The n-shape category of compacta was discussed in [Chi₂] (cf. [Chi₃]). Later, corresponding to [Cha, Theorem 1], Y. Akaike [Aka] defined the weak proper n-homotopy category of complements of Z-sets in μ^{n+1} which is isomorphic to the n-shape category of Z-sets in μ^{n+1} . Then, as Strong Shape Theory ([EH], [DS], [KO], etc.), it is a natural attempt to define the strong n-shape category which corresponds to the proper n-homotopy category of complements of Z-sets in μ^{n+1} . Properly, one require this category to factorize the natural functor (called the *n-shape functor*) from the *n*homotopy category to the n-shape category into two functors through it. In this paper, we introduce the (n+1)-skeletal conic telescope to define the strong n-shape category of compacta.

Throughout the paper, spaces are separable metrizable and maps are continuous. It is said that two (proper) maps $f, g: X \to Y$ are (properly) n-homotopic relative to $A \subset X$ and denoted by $f \simeq^n g$ rel. A ($f \simeq_p^n g$ rel. A) if, for any (proper) map $\varphi: Z \to X$, there is a (proper) homotopy $h: Z \times \mathbf{I} \to Y$ such that $h_0 = f\varphi$, $h_1 = g\varphi h_t | \varphi^{-1}(A) = f\varphi | \varphi^{-1}(A)$ for each $t \in \mathbf{I}$. When $A = \emptyset$, we say that f and g are (properly) n-homotopic and denote $f \simeq g$ ($f \simeq_p g$).

A map $\varphi \colon M \to X$ is said to be n-invertible if any map $\psi \colon Z \to X$ of a space Z with $\dim Z \leqslant n$ lifts to M, that is, there exists a map $\tilde{\psi} \colon Z \to M$ such that $\varphi \tilde{\psi} = \psi$. In case φ is a proper map, if ψ is proper then $\tilde{\psi}$ is also proper. For an n-invertible map $\varphi \colon M \to X$ and $A \subset X$, $\varphi | \varphi^{-1}(A) \colon \varphi^{-1}(A) \to A$ is also n-invertible. By the result of Dranishnikov [Dra, Theorem 1], for any compactum X, there exists an n-invertible map $\varphi \colon M \to X$ of a compactum M with $\dim M \leqslant n$. Then, for two (proper) maps $f, g \colon X \to Y$, $f \simeq^n g$ rel. A ($f \simeq^n_p g$ rel. A) if and only if $f \varphi \simeq g \varphi$ rel. $\varphi^{-1}(A)$ ($f \varphi \simeq_p g \varphi$ rel. $\varphi^{-1}(A)$) for an invertible (proper) map $\varphi \colon M \to X$.

¹⁹⁹¹ Mathematics Subject Classification. 54C56, 57N25.

Key words and phrases. The universal Menger compactum, Z-sets, n-homotopy, the proper n-homotopy category, the strong n-shape category.

This research was supported by Grant-in-Aid for Scientific Research (No. 10640060), Ministry of Education, Science and Culture, Japan.

1. The polyhedral telescope

The *n*-skeleton of a simplicial complex K is denoted by $K^{(n)}$, whence $K^{(0)}$ is the set of vertices of K. The polyhedron of K is denoted by |K| (i.e., $|K| = \bigcup_{\sigma \in K} \sigma$). By $\langle v_1, \ldots, v_n \rangle$, we denote the simplex with vertices v_1, \ldots, v_n . A subdivision δK of K induces the subdivision $\delta K^{(n)}$ of $K^{(n)}$. It should be remarked that $\delta K^{(n)} \subset (\delta K)^{(n)}$ but $\delta K^{(n)} \neq (\delta K)^{(n)}$ in general. The following is well known:

Fact 1. Let L be a subcomplex of K and Z a space with dim $Z \leq n$. Then, for any map $\varphi: Z \to |K|$, there is a map $\psi: Z \to |K^{(n)} \cup L|$ such that $\varphi \simeq \psi$ rel. $\varphi^{-1}(|K^{(n)} \cup L|)$.

An ordered simplicial complex is a simplicial complex with an order of vertices such that the set of vertices of each simplex is totally ordered. The barycentric subdivision $\operatorname{Sd} K$ of a simplicial complex K is an ordered simplicial complex with the following order:

$$\hat{\sigma} \leqslant \hat{\tau} \quad \Longleftrightarrow_{\text{def}} \quad \sigma \text{ is a face of } \tau,$$

where $\hat{\sigma}$ is the barycenter of σ .

Let $I = \{0, 1, \mathbf{I}\}$ be the natural triangulation of the unit interval $\mathbf{I} = [0, 1]$. Then, I is an ordered simplicial complex with the natural order 0 < 1. For an ordered simplicial complex K, the product simplicial complex $K \times I$ is defined as follows:

$$K \times I = \left\{ \sigma \times \{0\}, \ \sigma \times \{1\} \mid \sigma \in K \right\}$$

$$\cup \left\{ \langle (v_1, 0), \dots, (v_i, 0), (v_j, 1), \dots, (v_k, 1) \rangle \mid \langle v_1, \dots, v_k \rangle \in K \right.$$

$$v_1 < \dots < v_k \in K^{(0)}, \ 1 \leq i \leq j \leq k \right\}.$$

Then $K \times I$ is an ordered simplicial complex with the following order on $(K \times I)^{(0)} = K^{(0)} \times \{0,1\}$:

$$(v,i) \leqslant (v',i') \quad \Longleftrightarrow_{\operatorname{def}} \quad v \leqslant v' \text{ and } i \leqslant i'.$$

Let K and L be ordered simplicial complexes and $f: K \to L$ a simplicial map. The simplicial mapping cylinder M(f) is defined as follows:

$$M(f) = K \cup L \cup \{ \langle f(v_1), \dots, f(v_i), v_j, \dots, v_k \rangle \mid \langle v_1, \dots, v_k \rangle \in K, \ v_1 < \dots < v_k, \ 1 \le i \le j \le k \}.$$

When L is degenerate (i.e., a singleton), M(f) is the simplicial cone C(K) over K. We have the natural simplicial map $q_f \colon K \times I \to M(f)$ which is naturally defined by $q_f(v,0) = f(v)$ and $q_f(v,1) = v$ for $v \in K^{(0)}$. The simplicial collapsing map $c_f \colon M(f) \to L$ is defined by $c_f(v) = f(v)$ for $v \in K^{(0)}$ and $c_f(u) = u$ for $u \in L^{(0)}$. Then $c_f q_f = f \operatorname{pr}_X$ and $c_f \simeq \operatorname{id} \operatorname{rel}.$ |L| in |M(f)|. Extending the orders on $K^{(0)}$ and $L^{(0)}$ to $M(f)^{(0)} = K^{(0)} \cup L^{(0)}$ so that u < v for each $u \in L^{(0)}$ and $v \in K^{(0)}$, M(f) is an ordered simplicial complex. Let $f^{(n)} = f|K^{(n)} \colon K^{(n)} \to L^{(n)}$ be the restriction of f. Observe that

$$M(f)^{(n)} \subset M(f^{(n)}) \subset M(f)^{(n+1)} \subset M(f^{(n)}) \cup K \cup L$$

and
$$c_f|M(f^{(n)}) = c_{f^{(n)}} \simeq id rel. |L^{(n)}| in |M(f^{(n)})|.$$

Fact 2. For a simplicial map $f: K \to L$, $c_f||M(f)^{(n+1)} \cup K \cup L| \simeq^n \text{ id rel. } |L|$ in $|M(f)^{(n+1)} \cup K \cup L|$, hence $f = c_f|K \simeq^n \text{ id}_K$ in $|M(f)^{(n+1)} \cup K \cup L|$.

Since $K \times I$ can be regarded as $M(id_K)$, we have the following:

Fact 3. Let $p: |(K^{(n)} \times I) \cup (K \times \{0,1\})| \to |K \times \{0\}|$ be the retraction defined by p(x,t) = (x,0). Then, $p \simeq^n$ id rel. $|K \times \{0\}|$ in $|(K^{(n)} \times I) \cup (K \times \{0,1\})|$, where we identify $K = K \times \{0\}$.

Let $\mathbf{K} = (|K_i|, q_{i,i+1})_{i \in \mathbb{N}}$ be an inverse sequence of ordered simplicial complexes such that each $q_{i,i+1} \colon K_{i+1} \to \delta K_i$ is simplicial, where δK_i is some subdivision of K_i . Let $q_i \colon \varprojlim \mathbf{K} \to |K_i|$ be the projection of the inverse limit of \mathbf{K} to $|K_i|$ and denote

$$q_{i,j} = q_{i,i+1} \circ \cdots \circ q_{j-1,j} : |K_j| \to |K_i|, \ i < j.$$

We define

$$\operatorname{Tel}_{[j,\infty)}(\mathbf{K}) = \bigcup_{i=j}^{\infty} |M(q_{i,i+1})| \quad \text{and} \quad \operatorname{Tel}_{[j,k]}(\mathbf{K}) = \bigcup_{i=j}^{k-1} |M(q_{i,i+1})|, \ j < k,$$

where $|M(q_{i,i+1})| \cap |M(q_{i+1,i+2})| = |K_{i+1}|$ and $|M(q_{i,i+1})| \cap |M(q_{j,j+1})| = \emptyset$ for |i-j| > 1. The polyhedron $\mathrm{Tel}_{[1,\infty)}(\mathbf{K})$ is called the *polyhedral telescope* for \mathbf{K} . One should note that $\bigcup_{i=1}^{\infty} M(q_i)$ is not a simplicial complex unless $\delta K_i = K_i$ for every $i \in \mathbb{N}$. Let

$$\operatorname{Tel}_{[0,\infty)}(\mathbf{K}) = |C(K_1)| \cup \operatorname{Tel}_{[1,\infty)}(\mathbf{K}) \quad \text{and} \quad \operatorname{Tel}_{[0,k]}(\mathbf{K}) = |C(K_1)| \cup \operatorname{Tel}_{[1,k]}(\mathbf{K}),$$

where $|C(K_1)| \cap \operatorname{Tel}_{[1,\infty)}(\mathbf{K}) = |K_1|$. We call $\operatorname{Tel}_{[0,\infty)}(\mathbf{K})$ the polyhedral conic telescope.

The simplicial collapsing map $c_{q_{i,i+1}} : M(q_{i,i+1}) \to \delta K_i$ extends to the deformation retraction

$$c_{i,i+1}^{\mathbf{K}} \colon \operatorname{Tel}_{[0,i+1]}(\mathbf{K}) = \operatorname{Tel}_{[0,i]}(\mathbf{K}) \cup |M(q_{i,i+1})| \to T_{[0,i]}(\mathbf{K}).$$

The following diagram is commutative:

$$\operatorname{Tel}_{[0,1]}(\mathbf{K}) \xleftarrow{c_{1,2}^{\mathbf{K}}} \operatorname{Tel}_{[0,2]}(\mathbf{K}) \xleftarrow{c_{2,3}^{\mathbf{K}}} \operatorname{Tel}_{[0,3]}(\mathbf{K}) \xleftarrow{c_{3,4}^{\mathbf{K}}} \cdots \\
\cup \qquad \qquad \cup \qquad \qquad \cup \qquad \cdots \\
|K_1| \xleftarrow{q_{1,2}} |K_2| \xleftarrow{q_{2,3}} |K_3| \xleftarrow{q_{3,4}} \cdots .$$

The inverse limit of the upper sequence is denoted by $\mathrm{Tel}_{[0,\infty]}(\mathbf{K})$ with the projection $c_i^{\mathbf{K}} \colon \mathrm{Tel}_{[0,\infty]}(\mathbf{K}) \to \mathrm{Tel}_{[0,i]}(\mathbf{K})$. We denote

$$c_{i,j}^{\mathbf{K}} = c_{i,i+1}^{\mathbf{K}} \circ \cdots \circ c_{j-1,j}^{\mathbf{K}} \colon \operatorname{Tel}_{[0,j]}(\mathbf{K}) \to \operatorname{Tel}_{[0,i]}(\mathbf{K}), \ i < j.$$

Regarding $Tel_{[0,\infty)}(\mathbf{K})$ as an open subspace of $Tel_{[0,\infty]}(\mathbf{K})$, we have

$$\operatorname{Tel}_{[0,\infty]}(\mathbf{K}) \setminus \operatorname{Tel}_{[0,\infty)}(\mathbf{K}) = \varprojlim \mathbf{K} \quad \text{and} \quad c_i^{\mathbf{K}} | \varprojlim \mathbf{K} = q_i, \ i \in \mathbb{N}.$$

It is easy to see that each $c_i^{\mathbf{K}}$ is a strong deformation retraction. Hence, it follows that $\mathrm{Tel}_{[0,\infty)}(\mathbf{K})$ is homotopy dense in $\mathrm{Tel}_{[0,\infty]}(\mathbf{K})$, that is, there is a homotopy $h\colon \mathrm{Tel}_{[0,\infty]}(\mathbf{K})\times \mathbf{I}\to \mathrm{Tel}_{[0,\infty]}(\mathbf{K})$ such that $h_0=\mathrm{id}$ and $h_t(\mathrm{Tel}_{[0,\infty]}(\mathbf{K}))\subset \mathrm{Tel}_{[0,\infty)}(\mathbf{K})$ for t>0. Since $\mathrm{Tel}_{[0,\infty)}(\mathbf{K})$ is a polyhedron, $\mathrm{Tel}_{[0,\infty]}(\mathbf{K})$ is an ANR by Hanner's characterization of ANR's (cf. [Hu]). Since $\mathrm{Tel}_{[0,\infty]}(\mathbf{K})$ is contractible, it is an AR. The above construction was founded in [Ko, Theorem 1 and Corollary 1]. For each $j\in\mathbb{N}$, we can similarly define $\mathrm{Tel}_{[j,\infty]}(\mathbf{K})$, which is an ANR and a closed subspace of $\mathrm{Tel}_{[0,\infty]}(\mathbf{K})$. Clearly,

$$\operatorname{Tel}_{[j,\infty]}(\mathbf{K})\setminus\operatorname{Tel}_{[j,\infty)}(\mathbf{K})=\operatorname{Tel}_{[0,\infty]}(\mathbf{K})\setminus\operatorname{Tel}_{[0,\infty)}(\mathbf{K})=\varprojlim\mathbf{K}.$$

Each $d_j^{\mathbf{K}} = c_j^{\mathbf{K}} | \operatorname{Tel}_{[j,\infty]}(\mathbf{K})$: $\operatorname{Tel}_{[j,\infty]}(\mathbf{K}) \to |K_j|$ is a strong deformation retraction and $q_{i,j}d_j^{\mathbf{K}} = d_i^{\mathbf{K}} | \operatorname{Tel}_{[j,\infty]}(\mathbf{K})$.

Now, we define

$$\operatorname{Tel}_{[j,\infty)}^{n+1}(\mathbf{K}) = \bigcup_{i=j}^{\infty} |K_i| \cup \bigcup_{i=j}^{\infty} |M(q_{i,i+1})^{(n+1)}| \quad \text{and}$$

$$\operatorname{Tel}_{[j,k]}^{n+1}(\mathbf{K}) = \bigcup_{i=j}^{k} |K_i| \cup \bigcup_{i=j}^{k-1} |M(q_{i,i+1})^{(n+1)}|, \ j < k.$$

These are subpolyhedra of $\mathrm{Tel}_{[1,\infty)}(\mathbf{K})$. Recall that $\bigcup_{i=1}^{\infty} M(q_i)$ is not a simplicial complex in general. We call $\mathrm{Tel}_{[1,\infty)}^{n+1}(\mathbf{K})$ the (n+1)-skeletal telescope for \mathbf{K} . Let

$$\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K}) = \left| C(K_1)^{(n+1)} \right| \cup \operatorname{Tel}_{[1,\infty)}^{n+1}(\mathbf{K}) \quad \text{and}$$

$$\operatorname{Tel}_{[0,k]}^{n+1}(\mathbf{K}) = \left| C(K_1)^{(n+1)} \right| \cup \operatorname{Tel}_{[1,k]}^{n+1}(\mathbf{K}).$$

These are *n*-connected. The polyhedron $\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K})$ is called the (n+1)-skeletal conic telescope for \mathbf{K} .

Observe that $c_i^{\mathbf{K}}(\mathrm{Tel}_{[0,i+1]}^{n+1}(\mathbf{K})) = \mathrm{Tel}_{[0,i]}^{n+1}(\mathbf{K})$. The following diagram is commutative:

$$\operatorname{Tel}_{[0,1]}^{n+1}(\mathbf{K}) \xleftarrow{c_{1,2}^{\mathbf{K}}|} \operatorname{Tel}_{[0,2]}^{n+1}(\mathbf{K}) \xleftarrow{c_{2,3}^{\mathbf{K}}|} \operatorname{Tel}_{[0,3]}^{n+1}(\mathbf{K}) \xleftarrow{c_{3,4}^{\mathbf{K}}|} \cdots$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup \qquad \qquad \cup$$

$$|K_{1}| \xleftarrow{q_{1,2}} |K_{2}| \xleftarrow{q_{2,3}} |K_{3}| \xleftarrow{q_{3,4}} \cdots$$

Then the inverse limit of the upper sequence is the closed subspace

$$\operatorname{Tel}_{[0,\infty]}^{n+1}(\mathbf{K}) = \operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K}) \cup \varprojlim \mathbf{K} \subset \operatorname{Tel}_{[0,\infty]}(\mathbf{K}).$$

For each $j \in \mathbb{N}$, let $\operatorname{Tel}_{[j,\infty]}^{n+1}(\mathbf{K}) = \operatorname{Tel}_{[j,\infty)}^{n+1}(\mathbf{K}) \cup \varprojlim \mathbf{K}$.

Fact 4. For each $j \in \mathbb{N} \cup \{0\}$, $\operatorname{Tel}_{[j,\infty]}^{n+1}(\mathbf{K}) \setminus \operatorname{Tel}_{[j,\infty)}^{n+1}(\mathbf{K}) = \varprojlim \mathbf{K}$ is a Z-set in $\operatorname{Tel}_{[j,\infty]}^{n+1}(\mathbf{K}).$

Let $\psi \colon Z \to \mathrm{Tel}_{[j,\infty]}^{n+1}(\mathbf{K})$ be a map of a space Z with $\dim Z \leqslant n$. Then it is easy to construct a homotopy $h: Z \times \mathbf{I} \to \mathrm{Tel}_{[j,\infty]}^{n+1}(\mathbf{K})$ such that $h_0 = \psi$ and $h_t(Z) \subset \mathrm{Tel}_{[j,\infty)}^{n+1}(\mathbf{K})$ for t > 0. In general, $\mathrm{Tel}_{[0,\infty]}^{n+1}(\mathbf{K})$ is not an ANR, but we have the following:

Fact 5. Each $\operatorname{Tel}_{[j,\infty]}^{n+1}(\mathbf{K})$ is LC^n , hence it is an ANE(n+1). Moreover, the space $\operatorname{Tel}_{[0,\infty]}^{n+1}(\mathbf{K})$ is n-connected, so it is an AE(n+1).

The following follows from Fact 2:

Fact 6. For $i < j \in \mathbb{N} \cup \{0\}$, $d_{i,j}^{\mathbf{K}} | \operatorname{Tel}_{[i,j]}^{n+1}(\mathbf{K}) \simeq^n \operatorname{id} \operatorname{in} \operatorname{Tel}_{[i,j]}^{n+1}(\mathbf{K})$, hence $q_{i,j} \simeq^n \operatorname{id}_{K_j} \operatorname{in} \operatorname{Tel}_{[i,j]}^{n+1}(\mathbf{K})$. Moreover, $d_i^{\mathbf{K}} | \operatorname{Tel}_{[i,\infty]}^{n+1}(\mathbf{K}) \simeq^n \operatorname{id} \operatorname{in} \operatorname{Tel}_{[i,\infty]}^{n+1}(\mathbf{K})$, so $q_i \simeq^n \operatorname{id}_{K_j}$ in $\operatorname{Tel}_{[i,j]}^{n+1}(\mathbf{K})$.

2. The strong n-shape category Sh_S^n

Let \mathcal{H}^n be the *n*-homotopy category of compacta and Sh^n the *n*-shape category of compacta. In this section, we define the strong n-shape category Sh_S^n of compacta and show that the n-shape functor from \mathcal{H}^n to Sh^n is factorized into two functors through the category Sh_S^n .

Every compactum X is the limit of an inverse sequence $\mathbf{K} = (K_i, q_i)_{i \in \mathbb{N}}$ of finite simplicial complexes such that each $q_{i,i+1}: K_{i+1} \to \operatorname{Sd} K_i$ is simplicial for the barycentric subdivision $\operatorname{Sd} K_i$ of K_i and $\dim K_i \leq \dim X$ for all $i \in \mathbb{N}$ [Isb, Lemma 33] (cf. Proof of [Ko₂, Theorem 1]). We call **K** a barycentric sequence associated with X. It should be noted that $q_{i,i+1}: K_{i+1} \to K_i$ is not simplicial in general. In fact, there exists a 1-dimensional compact AR which is not the limit of any inverse sequence of simplicial complexes and simplicial maps $[Ko_1, Theorem 1(2)]$ (cf. $[Ko_2, Theorem 1(2)]$) p.536). It should be also noted that a barycentric sequence associated with X is an $LC^n(n+1)$ -sequence associated with X (cf. [Chi₂]).

Theorem 1. Let X and Y be compacta and K, L be barycentric sequences associated with X and Y, respectively.

- (1) Every map $f: X \to Y$ extends to a map $\bar{f}: \operatorname{Tel}_{[0,\infty]}(\mathbf{K}) \to \operatorname{Tel}_{[0,\infty]}(\mathbf{L})$ such
- that $\bar{f}(\operatorname{Tel}_{[0,\infty)}^{k}(\mathbf{K})) \subset \operatorname{Tel}_{[0,\infty)}^{k}(\mathbf{L})$ for each $k \in \mathbb{N}$. (2) For two maps $f, g \colon \operatorname{Tel}_{[0,\infty]}^{n+1}(\mathbf{K}) \to \operatorname{Tel}_{[0,\infty]}^{n+1}(\mathbf{L})$ with $f^{-1}(Y) = g^{-1}(Y) = X$, if $f|X \simeq^{n} g|X$ in Y then $f|\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K}) \simeq_{p}^{n} g|\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K})$ in $\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{L})$.

In Theorem 1(1) above, a proper map $\bar{f}|\operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K})\colon \operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K}) \to \operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{L})$ is said to be *induced* by f. By Theorem 1(2), the proper homotopy class of such a map is unique. The following is a direct consequence of Theorem 1.

¹A space Y is an AE(n+1) (or an ANE(n+1)) if every map of any closed set A in an arbitrary metrizable space X with dim $X \leq n+1$ extends over X (or a neighborhood of A). A space Y is an AE(n+1) if and only if Y is an n-connected ANE(n), and Y is an ANE(n+1) if and only if Y is LC^n .

Corollary 1. Let K and L be barycentric sequences associated with the same compactum X. Then a proper map $h \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(K) \to \operatorname{Tel}_{[0,\infty)}^{n+1}(L)$ induced by id_X is a proper n-homotopy equivalence.

Definition of Sh_S^n . Let X and Y be compacta. Let K, K' be barycentric sequences associated with Y. Two proper maps $F \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(K) \to \operatorname{Tel}_{[0,\infty)}^{n+1}(L)$ and $F' \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(K') \to \operatorname{Tel}_{[0,\infty)}^{n+1}(L')$ are n-fundamentally equivalent (written by $F \simeq_f^n F'$) if $h'F \simeq_p^n F'h$ for some proper n-homotopy equivalences $h \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(K) \to \operatorname{Tel}_{[0,\infty)}^{n+1}(K')$ and $h' \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(L') \to \operatorname{Tel}_{[0,\infty)}^{n+1}(L)$ induced by id_X and id_Y , respectively. A strong n-shape morphism from X to Y is the n-fundamentally equivalence class of a proper map $F \colon \operatorname{Tel}_{[0,\infty)}^{n+1}(K) \to \operatorname{Tel}_{[0,\infty)}^{n+1}(L)$, where K and L are barycentric sequences associated with X and Y respectively. Thus, the strong n-shape category Sh_S^n of compacta can be defined.

The following follows immediately from Theorem 1 and the definition above.

Corollary 2. There exists a functor $\Xi \colon \mathcal{H}^n \to \operatorname{Sh}^n_S$ which maps objects identically.

For simplicity, let us assign each compactum X to a barycentric sequence $\mathbf{K}^X = (K_i^X, q_{i,i+1}^X)_{i \in \mathbb{N}}$ associated with X and denote as follows:

$$\begin{split} \operatorname{Tel}_{[0,\infty)}^{n+1}(X) &= \operatorname{Tel}_{[0,\infty)}^{n+1}(\mathbf{K}^X), \ \operatorname{Tel}_{[j,k]}^{n+1}(X) = \operatorname{Tel}_{[j,k]}^{n+1}(\mathbf{K}^X), \\ c_{i,i+1}^X &= c_{i,i+1}^{\mathbf{K}^X} | \operatorname{Tel}_{[0,i+1]}^{n+1}(\mathbf{K}^X), \ c_i^X = c_i^{\mathbf{K}^X} | \operatorname{Tel}_{[0,\infty]}^{n+1}(\mathbf{K}^X), \\ d_i^X &= d_i^{\mathbf{K}^X} | \operatorname{Tel}_{[i,\infty]}^{n+1}(\mathbf{K}^X), \ \text{etc.} \end{split}$$

Thus, X is assigned to the following commutative diagram of inverse sequences:

$$\operatorname{Tel}_{[0,1]}^{n+1}(X) \xleftarrow{c_{1,2}^{X}} \operatorname{Tel}_{[0,2]}^{n+1}(X) \xleftarrow{c_{2,3}^{X}} \operatorname{Tel}_{[0,3]}^{n+1}(X) \xleftarrow{c_{3,4}^{X}} \cdots$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup \qquad \qquad \cup$$

$$|K_{1}^{X}| \xleftarrow{q_{1,2}^{X}} |K_{2}^{X}| \xleftarrow{q_{2,3}^{X}} |K_{3}^{X}| \xleftarrow{q_{3,4}^{X}} \cdots$$

Now, we prove the following:

Theorem 2. There exists a full² functor $\Theta \colon \operatorname{Sh}_S^n \to \operatorname{Sh}^n$ such that $\Theta \circ \Xi \colon \mathcal{H}^n \to \operatorname{Sh}^n$ is the n-shape functor.

Remarks. The following proposition can be proved similarly to Theorem 1(1).

Proposition. Let **K** and **L** be barycentric sequences associated with compacta X and Y, respectively. Every proper map $f: \operatorname{Tel}_{[0,\infty)}(\mathbf{K}) \to \operatorname{Tel}_{[0,\infty)}(\mathbf{L})$ is properly homotopic to a proper map $\bar{f}: \operatorname{Tel}_{[0,\infty)}(\mathbf{K}) \to \operatorname{Tel}_{[0,\infty)}(\mathbf{L})$ such that $\bar{f}(\operatorname{Tel}_{[0,\infty)}^k(\mathbf{K})) \subset \operatorname{Tel}_{[0,\infty)}^k(\mathbf{L})$ for each $k \in \mathbb{N}$.

By the same proof, Theorem 1(2) is valid even if $\operatorname{Tel}_{[0,\infty]}^{n+1}$ is replaced with $\operatorname{Tel}_{[0,\infty]}$. Then, in the definition of Sh_S^n , replacing $\operatorname{Tel}_{[0,\infty)}^{n+1}$ by $\operatorname{Tel}_{[0,\infty)}$, we can define the

²The functor is *full* if the induced maps of the sets of morphisms are surjective.

category $\overline{\operatorname{Sh}}_S^n$ which factorizes the n-shape functor into two functors through $\overline{\operatorname{Sh}}_S^n$. In fact, the functor Ξ in Corollary 2 is factorized into two natural functors through $\overline{\operatorname{Sh}}_S^n$, where the natural functor from $\overline{\operatorname{Sh}}_S^n$ to Sh_S^n can be obtained by the proposition above. As is easily observed, the functor from $\overline{\operatorname{Sh}}_S^n$ to Sh_S^n is injective, but it is a problem whether it is surjective or not.

$$\mathcal{H}^n \longrightarrow \operatorname{Sh}^n$$

$$\downarrow \qquad \qquad \uparrow$$

$$\overline{\operatorname{Sh}}_S^n \longrightarrow \operatorname{Sh}_S^n$$

In the definition of Sh_S^n , replacing $\operatorname{Tel}_{[0,\infty)}^{n+1}$ and \simeq_p^n by $\operatorname{Tel}_{[0,\infty)}$ and \simeq_p , we can obtain the strong shape category Sh_S (cf. [DS]). Then, we can easily obtain the natural functor from Sh_S to $\overline{\operatorname{Sh}}_S^n$. Let $\mathcal H$ be the homotopy category of compacta. We have the following diagram of categories and functors:

$$\mathcal{H} \longrightarrow \operatorname{Sh}_S = = \operatorname{Sh}_S \longrightarrow \operatorname{Sh}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{H}^n \longrightarrow \overline{\operatorname{Sh}}_S^n \longrightarrow \operatorname{Sh}_S^n \longrightarrow \operatorname{Sh}^n$$

Restricting the objects to compacta with dim $\leq k$, we have the subcategories $\operatorname{Sh}(k)$, $\operatorname{Sh}^n(k)$, $\operatorname{Sh}_S(k)$, $\operatorname{Sh}_S^n(k)$ and $\overline{\operatorname{Sh}}_S^n(k)$ of Sh , Sh^n , Sh_S , Sh_S^n and $\overline{\operatorname{Sh}}_S^n$, respectively. Then, $\operatorname{Sh}_S^n(n) = \overline{\operatorname{Sh}}_S^n(n)$ because $\operatorname{Tel}_{[0,\infty)}^{n+1}(X) = \operatorname{Tel}_{[0,\infty)}(X)$ if $\dim X \leq n$. Moreover, $\operatorname{Sh}_S^n(n-1) = \overline{\operatorname{Sh}}_S^n(n-1) = \operatorname{Sh}_S(n-1)$ because $\dim \operatorname{Tel}_{[0,\infty)}(X) \leq n$ if $\dim X \leq n-1$. Although $\operatorname{Sh}^n(n) = \operatorname{Sh}(n)$, it is not known whether $\operatorname{Sh}_S^n(n) = \operatorname{Sh}_S(n)$ or not.

3. An isomorphism between $\mathrm{Sh}^n_S(\mathcal{Z}(\mu^{n+1}))$ and $\mathcal{H}^n_P(\mathcal{M}_{n+1})$

Let $\mathcal{Z}(\mu^{n+1})$ be the class of Z-sets in μ^{n+1} and \mathcal{M}_{n+1} the class of μ^{n+1} -manifolds $\mu^{n+1} \setminus X$, $X \in \mathcal{Z}(\mu^{n+1})$. In this section, we prove that the strong n-shape category $\mathrm{Sh}^n_S(\mathcal{Z}(\mu^{n+1}))$ of $\mathcal{Z}(\mu^{n+1})$ is categorically isomorphic to the proper n-homotopy category $\mathcal{H}^n_P(\mathcal{M}_{n+1})$ of \mathcal{M}_{n+1} .

Lemma 1. Let $f: X \to Y$ be a map from a locally compact separable metrizable space X with dim $X \leq n+1$ to a completely metrizable ANE(n+1) Y. For any closed set $A \subset X$ and a Z-set $B \subset Y$, f is approximated by maps $g: X \to Y$ such that g|A = f|A and $g(X \setminus A) \subset Y \setminus B$.

As in §2, we assign each $X \in \mathcal{Z}(\mu^{n+1})$ to the following diagram:

$$\begin{split} \operatorname{Tel}_{[0,1]}^{n+1}(X) & \xleftarrow{c_{1,2}^{X}} & \operatorname{Tel}_{[0,2]}^{n+1}(X) & \xleftarrow{c_{2,3}^{X}} & \operatorname{Tel}_{[0,3]}^{n+1}(X) & \xleftarrow{c_{3,4}^{X}} & \cdots \\ & \cup & & \cup & & \cup & & \\ |K_{1}^{X}| & \xleftarrow{q_{1,2}^{X}} & |K_{2}^{X}| & \xleftarrow{q_{2,3}^{X}} & |K_{3}^{X}| & \xleftarrow{q_{3,4}^{X}} & \cdots, \end{split}$$

where the lower sequence is a barycentric sequence associated with X. To prove Theorem 3, we apply the construction in [Sa] to this diagram.

Let $M_1^X = C(K_1^X)^{(n+1)}$. Then $|M_1^X| = \text{Tel}_{[0,1]}^{n+1}(X)$. We inductively define a simplicial complex

$$M_{i+1}^X = \left(\operatorname{Sd} M_i^X \times I \right)^{(n+1)} \cup M(q_{i,i+1}^X)^{(n+1)},$$

where we identify $\operatorname{Sd} M_i^X = \operatorname{Sd} M_i^X \times \{0\}$. So we have

$$M(q_{i,i+1}^X)^{(n+1)} \cap (\operatorname{Sd} M_i^X \times I) = M(q_{i,i+1}^X)^{(n+1)} \cap \operatorname{Sd} M_i^X = \operatorname{Sd} K_i.$$

Observe that $\operatorname{Tel}_{[0,i+1]}^{n+1}(X) = \operatorname{Tel}_{[0,i]}^{n+1}(X) \cup |M(q_{i,i+1}^X)^{(n+1)}| \subset |M_{i+1}^X|$. The simplicial collapsing map $c_{q_{i,i+1}^X} : M(q_{i,i+1}^X) \to \operatorname{Sd} K_i^X$ extends to the simplicial retraction

$$\tilde{c}_{i,i+1} \colon M_i^X = \left(\operatorname{Sd} M_{i-1}^X \times I \right)^{(n+1)} \cup M(q_{i,i+1}^X)^{(n+1)} \to \left(\operatorname{Sd} M_{i-1}^X \times I \right)^{(n+1)}$$

We define $r_{i,i+1}^X = \operatorname{pr}_i \tilde{c}_{i,i+1} \colon M_{i+1}^X \to M_i^X$, where $\operatorname{pr}_i \colon (\operatorname{Sd} M_i^X \times I)^{(n+1)} \to M_i^X$ is the projection. Let $\pi_1^X = \operatorname{id} \colon |M_1^X| \to \operatorname{Tel}_{[0,1]}^{n+1}(X) \ (= |M_1^X|)$ and inductively define the retraction $\pi_{i+1}^X \colon |M_{i+1}^X| \to \operatorname{Tel}_{[0,i+1]}^{n+1}(X)$ by $\pi_{i+1}^X ||M(q_{i,i+1}^X)^{(n+1)}| = \operatorname{id}$ and $\pi_{i+1}^X ||(\operatorname{Sd} M_i^X \times I)^{(n+1)}| = \pi_i^X \operatorname{pr}_i$. Thus, we obtain the following commutative diagram of the inverse sequences:

Recall that $\operatorname{Tel}_{[0,\infty)}^{n+1}(X) = \bigcup_{i \in \mathbb{N}} \operatorname{Tel}_{[0,i]}^{n+1}(X)$, $\operatorname{Tel}_{[0,\infty]}^{n+1}(X) = \operatorname{Tel}_{[0,\infty)}^{n+1}(X) \cup X$ is the inverse limit of the middle sequence and X is the inverse limit of the bottom sequence. Let M^X be the inverse limit of the upper sequence. Then $X \subset \operatorname{Tel}_{[0,\infty]}^{n+1}(X) \subset M^X$ but $M^X \neq X \cup \bigcup_{i \in \mathbb{N}} |M_i^X|$. Applying Bestvina's characterization of μ^{n+1} [Be], one can see that $M^X \approx \mu^{n+1}$ (cf. [Sa] and [Iwa, Proposition 2.1]). It is easily seen that X is a Z-set in M^X (it is also a Z-set in $\operatorname{Tel}_{[0,\infty]}^{n+1}(X)$ [Sa]). Since $(M^X, X) \approx (\mu^{n+1}, X)$ by the Z-set unknotting theorem [Be], we have a homeomorphism $h_X \colon M^X \setminus X \to \mu^{n+1} \setminus X$. On the other hand, we have the retraction of $\pi^X \colon M^X \to \operatorname{Tel}_{[0,\infty]}^{n+1}(X)$ induced by π_i^X . Observe that $\pi^X \mid X = \operatorname{id}$ and $\pi^X(M^X \setminus X) = \operatorname{Tel}_{[0,\infty]}^{n+1}(X)$.

Lemma 2. $\pi^X | M^X \setminus X \simeq_p^n \text{id in } M^X \setminus X$.

Now we have the following:

Theorem 3. There is a categorical isomorphism $\Phi \colon \operatorname{Sh}_S^n(\mathcal{Z}(\mu^{n+1})) \to \mathcal{H}_P^n(\mathcal{M}_{n+1})$ such that $\Phi(X) = \mu^{n+1} \setminus X$ for $X \in \mathcal{Z}(\mu^{n+1})$.

REFERENCES

- [Aka] Akaike, Y., The n-shape of compact pairs and weak proper n-homotopy, Glasnik Mat. 31(51) (1996), 295–306.
- [AS] Akaike, Y. and Sakai, K., The complement theorem in n-shape theory for compact pairs, Glasnik Mat. 31(51) (1996), 307–319.
- [Be] Bestvina, M., Characterizing k-dimensional universal Menger compacta, Memoirs Amer. Math. Soc. (no.380) 71 (1988).
- [Cha] Chapman, T.A., On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181–193.
- [Chi₁] Chigogidze, A., Compacta lying in the n-dimensional universal Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481–496 (Russian); English transl. in: Math. USSR Sbornik 61 (1988), 471–484.
- [Chi₂] Chigogidze, A., n-shapes and n-cohomotopy groups of compacta, Mat. Sb. **189** (1989), 322–335 (Russian); English transl. in: Math. USSR Sbornik **66** (1990), 329–342.
- [Chi₃] Chigogidze, A., The theory of n-shapes, Uspekhi Mat. Nauk **44:5** (1989), 117–140 (Russian); English transl. in: Russian Math. Surveys **44:5** (1989), 145–174.
- [Dra] Dranishnikov, A.N., Universal Menger compacta and universal mappings, Mat. Sb. 129 (171) (1986), 121–139 (Russian); English transl. in: Math. USSR Sbornik 57 (1987), 131–149.
- [DS] Dydak, J. and Segal, J., Strong Shape Theory, Dissertationes Math. 192, Polish Acad. Sci., Warsaw, 1981.
- [EH] Edwards, D.A. and Hastings, H.M., Čech and Steenrod homotopy theories with applications to geometric topology, Lect. Notes in Math. 542, Springer-Verlag, Berlin, 1976.
- [Hu] Hu, S.-T., Theory of Retracts, Wayne State Univ. Press, Detroit, 1965.
- [Isb] Isbell, J.R., Uniform Spaces, Math. Surveys 12, Amer. Math. Soc., Providence, RI, 1964.
- [Iwa] Iwamoto, Y., Infinite deficiency in Menger manifolds, Glasnik Mat. 30(50) (1995), 311–322.
- [Ko₁] Kodama, Y., On Δ-spaces and fundamental dimension in the sense of Borsuk, Fund. Math. 89 (1975), 13–22.
- [Ko₂] Kodama, Y., On embeddings of spaces into ANR and shapes, J. Math. Soc. Japan 27 (1975), 533-544.
- [KO] Kodama, Y. and Ono, J., On fine shape theory, Fund. Math. 105 (1979), 29-39.
- [Sa] Sakai, K., Semi-free actions of zero-dimensional compact groups on Menger compacta, Proc. Amer. Math. Soc. 125 (1997), 2809-2813.
- Y. Iwamoto: Yuge National College of Maritime Technology, Yuge 794-2593, Japan

E-mail address: iwamoto@gen.yuge.ac.jp

K. Sakai: Institute of Mathematics, University of Tsukuba, Tsukuba 305-8571, Japan

E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp