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Weak Solutions of Cahn-Hilliard Equations having

- Forcing Terms and Optimal Control Problems

WERZARBEMER £ 2% (Quan-Fang Wang)
MWFERELEE  PHfE— (Shin-ichi Nakagiri)

1 Mathematical setting of Cahn-Hilliard equations

Let Q be an open bounded set of R", n = 1,2,3, with a smooth boundary I' = o0 We
denote Q = (0,T) x Q,T > 0. We consider an initial-boundary value problem involving a scalar

function u = u(t, z), (t,z) € Q, and u satisfies

_ %+7A2u—Af(u)=g in Q
(CH) { u(@,0) =ule) ze (L1)
| in = __BAu =0 onl
on ~ on ’

where v > 0,up € HY(Q) N L?(Q),g € L?(0,T; L*(Q)) and f(u) is a polynomial given by

2p—1
fs)=Y a;s’, peN, p>1 (1.2)
j=1
The equation in (C-H) was called the generalized Cahn-Hilliard equation and was proposed as a
continuum model for the description of the dynamics of pattern formation in phase transition.
Strictly speaking, the Cahn-Hilliard equation corresponds to the case where p = 2, f (u) =
—au+ Bud,a, 3 > 0. We denote by F(s) the primitive of f(s) vanishing at u = 0,

2p :
F(S) = ijsja ij = 0j-=1, 2 S] < 2p, (13)
i=2

and we assume that the leading coefficient of f (and F) is positive agy_1 = 2pbey > 0.
For the mathematical setting of the problem (C-H), we introduce H = L?(Q) with nomal scalar
product (-,-) and norm |- | and V defined by

V ={¢]| ¢ H*Q), % =0onT}. (1.4)

Then V is a closed subspace of H2() and is equipped with the norm ||¢|ly = |Ad|12(0)- |

The weak formulation of (C-H) is obtained by multiplying (1.1) by a test function v € V,
integrating over (2, and using the Green formula and the boundary condition. Thus we give
a definition of a weak solution of (C-H) as follows. A scalar function u is said to be a weak
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solution of (C-H) if and only if u € {¢ | ¢ € L%(0,T;V) hLzP(O,T;LQP(Q)), ¢' € L?(0,T;V")}
and u satisfies ‘

dit

{ £ (u,0) +7(Au, Av) — (), Av) = (g,v), Vo € VN LIR) )
u(O) = U

in the sense of D'(0,T), where 2i + ! =1. , ‘
p
The bilinear form a associated with (C-H) is defined by a(v, ¢) = v(Av, A¢), Vb, ¢ € V.

This form is continuous on V' but not coercive, and this difficulty will be overcome by using
further properties of the equation. The operator A € L(V,V’) is defined through (Av,¢) =
a(, d), Vé,v € V. It’s domain is given by

D(A) = {v | v € HY(Q), % = -8% =0 on I}. (1.6)

The existence and uniqueness result for (C-H) is proved in Temam [1] under the condition g = 0.
In this paper, we give an improved proof of (C-H) having nonzero forcing functions g # 0. Based
on the result we establish the existence of optimal controls for the associated the quadratic cost

problem. For the cost problem, we derive the necessary conditions of optimality for the two
types of obsevations.

2 Lemmas and a priori estimates

Lemma 1 Assume that ug € H'(Q) N L%(Q) and g € L?(0,T; L?(Q)). Then the weak solution
u of (C-H) satisfies

1
J(u(t) < J(uo) + 5Clgll 20,20y, Y €[0,T],
where J(u) is a Lyapunov function given by
Tw) = 2Vl + / F(u)ds. | 2.7)
Q

Proof: We can prove this lemma by introducing a solution G of the following Neumann problem

-AG=g inQ
9G _ 0 onT, v (2:8)
on

and calculating the derivative of J(u) with respect to t.

Lemma 2 For‘eve'ry n >0, {|Au|? + n|u|2}% is a norm on V which is equivalent to the H?()
norm. Similarly, {|A%ul? +n|u[2}'§' is a norm on D(A) which is equivalent to the H*(Q) norm.

Lemma 3 Assume that p = 2 when n = 3 and that p is arbitrary when n = 1 or 2. Then we
have
[Af(W)? < k(L +]A%[¥), 0<o<],

for some o and k independent of u € H%(Q).
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For proofs of Lemma 2 and Lemma 3, we refer to Temam [1; p.154, p.161].

A priori estimates on L*®(0,T; L%(Q)), L*(0,T; H*(Q)) and L*(0,T; L%(Q)).
First we give some useful inequalities. Note that the leading term of f(s) is 2pbops? 1, that of
f(s)s is 2pboys?P, that of F(s) is bops? and that of f'(s) is 2p(2p — 1)bops?P~2. Since by, > 0, it
is verified that there exist a constants ci, co = ca(€), c3,ca such that

f(s)s > pb2p52p —-c, Vs€eR (2.9)

|£(8)] < ebops® +ca(e), VseR (2.10)
3 .

%bz,,s?f’ —c3 < F(s) < §b2p52p +¢c3, VsER (2.11)

f'(s) > bgp$2p—2 —c4, VYs€ER, (2.12)

~where ¢ > 0 is arbitrary. By substituting v = u(t) to the equation in (1.5), we obtain

2017:I“|2+7|A“‘2 (Vf(u), Vu) = (g, ). ' (2.13)

From (2.13) it follows by (2.12) that for ¢ > 0,

1d

. |
5 g Ul + v AUl + by / P 2|VulPdz < ca| Vul? + gl + eful. (2.14)
Q

By the interpolation inequality [Vu|* < ¢} |ull|ull g2y and taking n = 1 in Lemma 2, we can
see ||uHHZ(Q < C(|Aul? + |uf?) < C(JAu| + |u])?, so that |jul| g2(q) < ca(|Au| + |u|) if we take
¢y, =+/C. Set ¢ = cch. Then we have

Vul? < cful((al + fu < e(ul + fu? + 2e?ult < (B8 4 2e)ul? + 2eaul?

If we take ¢ such that 2¢c4e = %, then we obtain from (2.14) that

1d 4
e Dl + by [ 0219 < o5 4 2 + Ll e
2 dt Q
| @
Since bzp/ u?|Vu|?dz > 0, by setting c5 = 2¢q(—2— s -|— 2¢) + 2¢, and ¢ = Z, we have
Q
d, o 2 2 2
Zlul” +1Aul” < eslul” + cslgl" (2.15)

By applying Bellman-Gronwall inequality, we derive from (2.15)
lu()|? < |uol®exp(csT) + csexp(csT)llgllrzomr2)) Yt € [0, T]
Therefore v € L*(0,T; L*()). Similarly, by integrating both sides of (2.15), we have
T 2 2 | 2 2
v [ 18uPde < ol + callullaorim + eolll o izaieny
This implies u € L2(0,T; H*(Q)). On the other hand, by Lemma 1 and (2.11), we obtain

1 1 .
§b2p/9u2pdm S C3|QI + J(UO) + _2_C|lg“LZ(0,T;L2(Q))a Vt E [O,T] (216)



175

Note that J(ug) is finite by ug € H*(Q)NL?*(£2). Then,from (2.16) we have u € L>(0,T’; L?(f)).
A priori estimates on L®(0,T; H2(Q)) and L%(0, T; H()).
Assume that up € H?(Q). Substituting v = A2u € D(A) C H4(Q) to (1.5), this yields

du

(= A?u) + (A%, A%u) = (Af (), M%) + (g, A%u).

Then by using Schwartz inequality we can derive
1d

2, Va2 2. 1 2, 3, 12 :
= < — —|g|°. :
3 il Sl + 1A% < A )P + 5l e

By Lemma 3 and using Young inequality, we can deduce |Af(u)|? < 1;|A2u|2 + Kk for some
!

k
k! > 0. Set ks = —%. Then it follows from (2.17) that
1 : 2,),

d v 3
Liau + LIAZu)? < ky + —|g|2. .
N I )
Now we integrate the both sides of (2.18) to obtain
2, Y [T a2 e 2 3 2
{Au(t)]® + 1‘2’/0 |A%u|*dt < |Augl® + k2T + EHQHLZ(O,T;L%Q))‘

Since up € H?(Q2), this implies u € L>®(0,T; H2(Q)) N L2(0, T; H4(Q)).

Lemma 4 The following two statements hold true:

n=1 p<5H
(A): Ifuo € H}(Q) N L*(Q), then f(u) € L*(0,T; L3(Q)) for{ n =2, p<3
n=3, p<2

(B): Ifug €V C H%(Q), then f(u) € L2(0,T; L*(Q)) for allp > 1 and n = 1,2, 3.
Proof of (A). Since ug € H(Q) N L?(Q), we have by the above a priori estimates
u € L®(0,T; L*(Q)) N L2(0,T; H*(Q)) N L>®(0, T'; L*(Q)).

Now we recall the Gagliardo-Nirenberg inequality:

([ 101az)

Since u € L*®(0,T; L?(2)), then (/ [u(t)|?dz)® < 400, Vt € [0,T], so that by (2.19), we have
. )

4(¢—1)

<C (/Q |¢|2dm)s |Ag|, s= %q —-1. (2.19)

[ @) ds < Clu@IFET,  vee 1. (2.20)
Q

T
Since u € L2(0,T; H%()), then / / |Au|?dzxdt < +o00. Hence if n < 8(q — 1), then

0 Jo

T P T
/ / lu| = dedt < C' / ]2 dt < +oo . (2.21)
0 Q 0
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1 . .
And if we take ¢ =1+ 7, the inequlity (2.21) implies

T
[ [ 1622 dadt < Clelso < +oo- (2.22)
Since | f(w)[? & u®~2, we have :

n=1= [<8= ”u“Lls(O,T;Lls(Q)) <+oo =4p-2<18=p< 5;
n=2= [<4= HuHLm(O,T;Lm(Q)) <400 =4p-2<10=p<3;
n=3= lS2:$”/U'HL6(O,T;L6(Q))<+OO =>4p—2§6 $p32

Thus we can prove the assertion f(u) € L%(0,T; L?(?)) under the condition on n and p.
Proof of (B). Since ug € V C H?(Q2), we have u € L°(0,T; V) by the second a priori estimates.

T
Since f(u) ~ u®~1, it is sufficient to prove / / (u?*~1)2dzdt < +oo for the assertion f(u) €
0 J0 ’
L?(0,T; L*(2)). By Sobolve embedding theorem, we have :

H2(Q) = Ch3(Q), n=1; (2.23)
H2(Q) = CY(Q), n=2; | (2.24)
H2(Q) — C%2(Q), n=3. (2.25)

This implies ||¢||co < Clléllv, V¢ € H*(Q). Hence using this inequality we reach
T 2 T 2 1, 14p—2 2 2 11,114P—2 2
/0 /Q | (w)|2dzdt < /0 /Q (268, ul9~2 + 23)dadt < 263, |l B2 1. oy + 20 < +o0.

This means that f(u) € L2(0,T; L3()).

3 Uniqueness and existence of weak solutions

Theorem 1 Assume that g € L?(0,T; L?(2)).

p<5, n=1
1. For the initial value ug € HY(Q) N L?P(), suppose that { p<3, n=2 . Then the
o\ p<2, =3

problem (C-H) possesses a unique weak solution u which belongs to

C([0,T); H) N L2(0,T; V) N L®(0, T; L*()), VI >0. (3.1)

p=2,n=3

2. Forug €V, suppose that { . Then the problem (C-H) possesses a

p arbitrary,n =1,2
unique weak solution u satisfying

ueC([0,T], V)N L%0,T; D(4)), YT >0 (3.2)



177

Proof: We use the orthonormal basis of H consisting of the eigenvectors of A, which is denoted
by {w;}32;. Then we have Aw; = Ajw;, Vj and we implement the Faedo-Galerkin method

with these functions. For each integer m, we look for an approximate solution u,, of the form
m

Cup(t) = Z gim(t)w; satisfying the following m-th order equation of a vector gjm (t):

i=1

du .
{ (g 3) + (BPum(t) wg) = (A (um(®), ) = (g,03), 1€ 0.T] =1, 20m g
um(o) = UQm,
m
where ug, = Z(’lbo,’wj)’U)j is the orthogonal projection in H of ugy onto the space spanned by
J=1

W1, W3, ...Wm. The existence of u,, on some interval [0,7;,] follows from the standard theorem
on the existence of solutions of ordinary differential equations. That T,, = T is a consequence
of the following a priori estimates. Applying the above priori estimates to uy,(t), we have that
Um 1s bounded independently of m in the spaces

L*(0,T; H) N L*(0,T; V) N L™(0, T; L* (). (3.4)

By the weak compactness of these spaces, we find a subsequence {umk} of {un} and a u in
L0, T; H) N L2(0, T; V) N L®(0, T; L?P(€))) such that
Umk = u in L2(0,T; V) N L?(0,T; L?*()) weakly (3.5)
Umk = u in L°°(0,T; H) weakly * . (3.6)
For simplity of notations we rewrite um by um. By Lemma 4, we know f(un,) € L2(0,T; L*(Q))
for some n and p in Lemma 4. So we can deduce Af(un) € L2(0,T;V"). By ul, = g — A2u,, +

Af(um), we use that {u;,} is bounded in L?(0,T;V’). Therefore u, € W(0,T;V,V'). Since
the embedding V' < H is compact, by the Aubin compactness theorem, we can have

Um, — u in L2(0,T; L*(Q)) strongly. (3.7)

Hence we can deduce up, — u a.e. in Q by taking a subsquence of {u,,} if necessary. Since
f(um) is a polynomial, it is easy to see that

flum) = f(u) a.e. in Q. (3.8)

From Lemma 4, we have

T
/0 /Q | (um) — ()l dedt < 20f (um) 320 zizm(eyy + 21 F @220 rzay <+ (3.9)

By the Lebesgue dominated convergence theorem, we have from (3.8) and (3.9)

T T

lim / / 1 (um) — £ (w)|?dwdt < / lim |f(um) — f(u)|Pdedt = 0 (3.10)
0o Ja 0 Jam—oo

m—r00

That is,
fum) = f(u) in L?(0,T; H) strongly. (3.11)
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This implies
[ [ tm) — gzt < ([ [ 1$tum) = ft0) i) [l o0 =0
for all ¢ € L2(0,T; H). Set ¢ = 9 (t) ® Av,9(t) € L2(0,T),Yv € V C H?(R), then we have
/ / 1 () — f(w)|Avip(t)dzdt — 0, Vv € V 0 LY(Q). (3.12)

We can rewrite (3.3) as

duy,
)
We pass to the limit in (3.13) and use (3.12) to find that

+ (Aup(t), Av) — (f(um(t)), Av) = (g,v), Vv €V NLIQ) (3.13)

d
(2,0) + (Bu(t), Av) - (F(u(D)), Ao) = (g,0), Yo €V NLIR). (3.14)
That u(0) = uo follows from uy, (0) = ug in H 2(Q). This proves the existence of a weak solution
u to (C-H). We omit the proof of uniqueness. The regularity results for the solution u are proved

by a priori estimates given above.

4 Optimal control problems

In this section we study the optimal control problems associated with (C-H) (cf. Yong and
Zheng [2]). Let U be a Hilbert space of control variables. B € L(U, L*(0,T; L2(R))) is called
the controller. We consider the following control system.

0

—é%JrvA?y—Af(y) —Bv in Q

ya(w,O);Ayo(m) z €8 (4.1)
oy _ 902y _

n — on 0 onT

Here in (4.1), it is assume that v € U and yo € H(Q) N L?(2). We define the space Y =
L2(0,T; V) N L?(0,T; L?(Q)) and its dual space Y/ = L%(0,T;V’) N L4(0,T; L4(Q)), where
% + p = 1. By virtue of Theorem 1, we can define the solution map v — y(v) of U into
W(0,T;Y,Y"). The solution y(v) is called the state of the control system (4.1). The observation
of the state is assumed to be given by z(v) = Cy(v), where C € L(W(0,T;Y,Y"), M) is an
operator called the observer, and M is a Hilbert space of observations. The cost function

associated with the control system (4.1) is given by
J(v) = ||Cy(v) — z4ll3; + (Nv,v)y forall v el, - (4.2)
where zg € M is a desired value of z(v) and N € L(I/) is symmetric and non-negative, i.e.,

(Nv,v)u = (v, No)u > &lwll?, . (43)
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for some x > 0. Let U,q4 be a closed convex subset of I/, which is called the admissible set. The
quadratic cost optimal control problem subject to (4.1) and (4.2) is:
(i) Find an element u € U,q such that
inf J(v) = J(u); (4.4)

€U
(i) Give a characterization of such u.

We shall call u the optimal control for the optimal control problem: We can prove the following
existence theorem on the optimal control for the system (4.1).

Theorem 2 Suppose that Uy,q is bounded or & > 0. Then there ezists at least one optimal
control u € Upg for (4.1) with (4.2).

Next we consider the problem (ii). It is well known that the optimality condition for u is given
by the variational inequality

J'(u)(v—u) >0 forall v €Uy, (4.5)

where J'(u) denotes the Gateaux derivative of J(v) in (4.2) at v = u.
The following theorem is essential in deriving necessary optimality conditions.

Theorem 3 Assume that all the conditions of Theorem 1 hold. Then the map v — y(v) of U
into W(0,T;Y,Y") is weakly Gateauz differentiable at v = u and such the Gateauz derivative of
y(v) at v =u in the direction v —u € U, say z = Dy(u)(v — u), is a unique weak solution of the
following equation

& A% = A(f (y())2) + Blo—u) in Q

2(0)=0 z€Q (4.6)
0z 0Az

% = —3—7—]— =0 on T

By calculating the Gateaux derivative of (4.2) via Theorem 3, we see that the cost J(v) is weakly
Gateaux differentiable at v in the direction v — u. Then the optimality condition (4.5) can be

rewritten as

(C*" A (Cy(u) — za), Dy(uw) (v — u))wioryvyywo,ryy) + (Nu,v —u)y 20, Vo € Uag, (4.7)

where Ajs is the cannonical isomorphism from M to M'.

Now we study the necessary conditions of optimality. To avoid the complexity of observation
states, we consider the two types of distributive and terminal value observations.

1. Case of C € L(L*(0,T;V),M). In this case, the cost function is given by

J() = [ICy(v) = zall3s + (N, v)u, Yo €U. (4.8)
Then it is easily verified that the optimality condition (4.7) is written as
T .
/ (C*Am(Cylust) = za(t)), 2)vr,vdt + (Nu,v —u)y 20, Yo € Uag, (4.9)
0

where u is the optimal control for (4.8), z is the solution of (4.6), Aps is isomorphism map from
M to M'.
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Theorem 4 Assume that all conditions of Theorem 1 hold. Assume further that C' satisfy
C € L(L2(0,T;V),M). Then the optimal control u € Uyq for (4.1) with (4.8) is characterized
by the following system of equations and inequality: '

’

% +7A% — Af(y) =Bu in Q
{ ¥(z,0) =y(z) z€N (4.10)
oy O0Ay ‘
L on  on 0 onl
(0 . :
2+ yA%(w) = f(y() Ap(w) + C"Ar(Cy(u) - z4) -in Q
$ plu;Tyz) =0 z€Q (4.11)
9 _9ap _
\ 8—77 = =0 onTl
T .
/ / B*p(t,z)(v — u)dzdt + (Nu,v —u)y >0, Vv € Uyg. (4.12)
0o Jo :

2. Case of C € L(H,M). In this case, we observe z(v) = Cy(v;T). The associsted cost

function is expressed as
J(@) = |Cy(v; T) - 24)3s + (Nv,v)u, v € Uag- ' (4.13)
Then the optimal control  for (4.13) is characterized by
(C*Ap(Cy(u; T) — 24), C2(T)) v v + (Nu,v —u)y 20, Yo € Uy, (4.14)
- where 7 is the solution of equation (4.6).

Theorem 5 Assume that all conditions in Theorem 1 hold. Then the optimal control u for

(4.1) with (4.13) is characterized by the following system of equations and inequality:

r o
53:— +yA% - Af(y)=Bu in Q
U0 = i) =0 (4.15)
y _ 0Ay _
3 = an 0 onT
( ap 2 _ 12 .
—5 TIA p(u) = f'(y(u)Ap(u) in Q
< p(u; T, 1") = O*AM(Cy(Ta u) - Zd) ze Q (416)
_8_;9 = @ =0 onT |
L dn~ On
T ,
/ /QB*p(t, z)(v — u)dzdt + (Nu,v —u)y 20, Vv € Uyg. (4.17)
0
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