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randomly
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Abstract

In the paper a construction of Nash equilibria for a random priority finite horizon
N-person stopping game is given. The normal form of the game is formulated. The
random priority scheme for the players is modeled by division of the unit interval
and a sequence of random variables with uniform distribution on it. The strategies
of the players are triples of randomized stopping times. A recursive procedure is

developed to calculate the Nash value and the equilibrium strategies.

1 Introduction

In the paper the following N person stopping game is considered. At each moment ¢ =
1,2,...,T the decision makers (henceforth called players) are able to observe sequentially
the homogeneous Markov process (X;, F;,P,)L, defined on (Q2, F,P) with state space
(E,B). The players have utility functions ¢; : E — R, ¢ = 1,2,...,N and at each
moment ¢ each decides separately whether to accept the realization z, of X; or not. If it
happens that more than one player has selected the same moment t to accept the state,
then a lottery decides which player gets the right (priority) of acceptance. According to
the lottery, at moment 7, if players {i;,4s,...,4} would like to accept z, then Player r

is chosen with probability proportional to p, ., r € {i1,%2,...,%4}. The players rejected

*Institute of Mathematics, Technical University of Wroclaw, Wybrzeze Wyspiariskiego 27, PL-50-
370 Wroctaw, Poland



70

by the lottery may select any other realization z; at a later moment ¢, 7 <t < T. Once
accepted a realization cannot be rejected, once rejected it cannot be reconsidered. If a
player has not chosen any realization of the Markov process, he gets g = inf,eg gi(z). The
aim of each player is to choose the realization which maximizes his utility function. A non-
zero-sum game approach is used. A formalization of the model is given and a construction
of Nash equilibria for a finite horizon game is given. The model is a generalization of the
two person games considered by Szajowski [14] and N person game with fixed priority
scheme solved by Enns and Ferenstein in [1]. Such games are also strictly connected with
the optimal stopping of stochastic processes. The ideas of Kuhn [4] and Rieder [8] as well
as Yasuda [15] and Ohtsubo [6] are adopted to this random priority game model. The
inspiration for these game models is the secretary problem. For the original secretary
problem and its extension the reader is referred to Gilbert & Mosteller [3], Freeman [2] or
Rose [9]. Related games can be found in the papers by Majumdar [5], Sakaguchi [10, 11],
Ravindran and Szajowski [7] and Szajowski [12], where non-zero sum versions of the
games have been investigated. A review of these problems can be found in Ravindran

and Szajowski [7].

2 Normal form of the game

The basic class of strategies 77 in optimal stopping problems are Markov stopping times

with respect to o-fields {Z;}.,. We permit P(r < T) < 1 for some 7 € T7.

Definition 1 (see Yasuda [15]) A random stopping time is a sequence p = (p;)T_, such
that, for each t: (i) p; is adapted to F; and () 0 < p; <1 a.s..

The set of all such strategies will be denoted PT. Let Af, AL, ..., Al be iidr.v. from
the uniform distribution on [0,1] and independent of the observed Markov process. A
randomized Markov time 7(p") for strategy 7 = (pt) € PT* is defined by 7(p*) = inf{T >
t>1:A; <pt}. We denote by M7, i =1,2,...,N, the sets of all randomized strategies
of the i-th Player. '

The random assignment of priority to a player requires us to consider modified strate-

gies. Denote 7l ={r € TT:7 >k} and P ={pePT :py=0fori=1,2,... ,k—1}.
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One can define the sets of strategies M = {(7, {pv" '}, {pi" el S Y, {7} -
P e P gy e PI 7 e TE forevery t, j=2,... ,N — 1} for Player i.

Let £1,2, ... be Lidr.v. uniformly distributed on [0, 1] and independent of VY_; H,,,
where H, = 0{F,, A1, 4s,... ,As} and the lottery be given by ¥ = (v,%,...,7%),
j=012,...,N. We assume 7{ = 0 and 7’ = 1 for every i = 1,2,...,T. Denote
Hp = 0{Hn, &1,&s, ... ,€n} and let 77 be the set of Markov times with respect to (Hn)Y_,.
- For the lottery given {7/}}_, we assume that 6] = v/ ~ /™' > 0,4 = 1,2,...,T and
j=12...,N. Let A = miner{\(p")}, where I = {1,2,...,N}. For every N-tuple 3
such that s € M™#, we define

7i(8) = (0 o) <minizs e}

N-1
+ >, > XL, R —
1=1 {iigiz,... i }cl ( {gx"(pz)s“ﬁzr:l“' !

N} =I\{i
+ T \{fl}(s \{“})I[ 5t l;l 5, - St l_ 5, ]I{)\i(p’:)=o\i1(z)i1)=u-='\q (p"'l)=5\}
{ 6i+zr=~;l b4 ’"E)‘(pi) <6i+2r=:.1 i }
= i} I\{i1}
+ Z T; ] (§ i )]I El_l 5 El 5 ]I{)\z (0*1)=..=) (p"l)——-;\}
I=1 {i1,59,...,y}cl {5 r—<an |, <EFE) ! K
{ii,ig,...,ill};i NS AR O R S «

The random variables 7;(3) € 77 for i = 1,2,... , N and every 5 € [T, M7, .

For each 5 € [V, MT% and given lottery the payoff function for the i-th player is
defined as fi(8) = gi(Xn(s) Let Ri(z,8) = Eofi(8) = Eugi(Xrs) be the expected
gain of the Player i-th, if the pla&ers use 5. We have defined the game in normal form
(MT, MT2, ... MY Ry, Ry, ..., Ry). This random priority game will be denoted G,,.
Let 3%} = (3¥,...,3""), R¥(z,§") = RV(z,3",...,5,...,5"*) and RN(z,5*) =

DN 1 i Nx*
RY(z,s™,...,8",...,8"%).

Definition 2 A strategy 5 such that 3 € MT#, i =1,2,...,N is called a Nash equilib-
rium in Gpp, if forallz e E andi=1,2,... ,N

vi(z) = RN(z,5") > RN(z,5) for every st € MT

The N-tuple (v1(z),va(x), ... ,un(z)) will be called the Nash value.
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In Szajowski [13] the two person non zero sum game has been solved. After the first
successful acceptance of a state in the N person game the players who have not accepted
a state, are playing as N — 1 person game. Taking into account the above definition of
G,p one can conclude that the Nash values of this game are the same as in the auxiliary

game G, with the sets of strategies [T, PT.

0i®@) = 9i( X)) pr @) <minis N@H)

I\ .

+ Z R; M }(XAz(pz):pl)]I{f\z(p‘)<minj;éz A (p9)}

I

s oy *
+ 9:( X %))

=1 {i,i1,ia,...,i1}CT & + Zre{ilﬂiz,--uil} oy

)
R.I\{T}X,i,~r . Te s (Ve (i1 ). = (1 Y

+ 2 B e Mg [ et e o =3

r&fis,... it}

N-1 )
I\{r ~r 7
+ 2 X Y RN )5 5 ] T o= =2 =3
I=1 {igsig,.. ig}CI \r€{i1,.. it} refis iz, i} U1
{i1,82, i1} P

3 Solution of the game

After the first successful acceptance of a state in the N—person game the players, who
have not accepted state, play a similar N — 1-person game. Taking into account the
definition of G,,, one can conclude that the Nash values of this game are the same as in
the auxiliary game G,,, with the sets of strategies [T, ’Pii and the gain function ¢;(p),
= (p',p% ... ,p"), defined in an apropriate way.

Let P ={p=@@)eP:p=..=p_,=0,ph=1},i=1,2,... ,N. If p € PT#,
then (pi,p') is the strategy belonging to P%¢ in which the t-th coordinate is changed to
pi. |
Definition 3 A N -tuple p € [IY, T4 s called an equilibrium point of Gup at t, if for
ie{1,2,...,N} | |

vu(t, X)) = Ex,0:i(0") > Ex,@i(#) for every o € PP, Py-a.s.
A Nash equilibrium point at t = 0 is a solution of G,,,. The N-tuple

(11(0, ), v2(0,2), . .. ,uNn(0, 2))
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is the Nash value corresponding to p € T, PT+.

In the construction of the solution of the game a sequence of matrix games are solved.
Assume that up to moment n the players have not accepted any state and X, = z. In

this case the gain matrix V(n,z) = [(vfoF»-F NN ] k=01 , is of the form:

j=1,2..,N
,
gi(n, z) ki=1,k; =0,
J#4,j=L12,... ,N
gi(n, z) - 52 P k. =1 for r € {i,i1,i2,... it}
’I‘E{il,ig,... ,’l:l} 6
+ Z R;r\{r}((n, z),p" )5 . 5 and k, = 0 otherwise,
v(clkz...kN = { r€{i1,.. i1} i+ et Z 23 T
1 r&{i1,iz,...,i
1)
) o .
> R0 —— ke =1forr € {in,,... it}
el i) 2 &
r€fi,ia,... i1}
“ and k, = 0 otherwise,
| Tvi(n, z) ki=0,4,j=1,2,...,N

Recursive solution of these matrix games (1) gives the following result.

Theorem 1 There ezists a Nash equilibrium p in the game G,,. The Nash value and

equilibrium point can be calculated recursively.

The solution of the game G,,, can be constructed from the solution p of the corresponding
game G,p.

As examples of such games one can consider the related secretary problem.
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