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0.1 Introduction

In a continuous accumulation game on a continuous region (CAGCR), a HIDER dis-
tributes material over a continuous region at each moment of discrete time (turn), and a
SEEKER examines the region. If the SEEKER locates any of the material hidden, the SEEKER
conffiates it. The goal of the $\iota \mathrm{n}\mathrm{D}\mathrm{E}\mathrm{R}$ is to accumulate a certain amount of material before
a given time and the goal of the SEEKER is to prevent this. In this paper we shall describe
some results on continuous accumulation games that are treated in greater detail in the paper
Continuous accumulation games on continuous regions.

The issues $\mathrm{r}\dot{u}\mathrm{s}\mathrm{e}\mathrm{d}$ when the region is continuous are substantially fflerent ffom the
discrete case ae we illustrate in the following two examples.

$\mathrm{E}\mathrm{x}\mathrm{a}\iota \mathrm{n}\mathrm{p}\mathrm{l}\mathrm{e}1$ The HIDER hides $h$ units of material on the $\dot{\alpha}r\mathrm{c}umfennceC$ of a $\dot{\alpha}r\mathrm{c}\mathit{1}e$ having
lerigth one in such a way that the upper $boundar\dot{y}$ forms a continuous nonnegative function $f$

on $C$ urith
$\int_{C}f(t)dt=h$.

The SEBKER may searih one time and win if it fin&any part of the HVDER’s material. The

SEEKER may seanh a connected arc of the circumference having length $\epsilon<1$ . If the payoff is
to the HIDER then this game has value $s$ . For if the SBEKBR chooses the starting point for
the searrh arc aocotding ta a random distribution on the circle, then with probability at least $s$

this search $a\kappa$ urill contain a point $u$ on the circle urith $f(u)>0$ . If the search an: contains
such a point $u$ then the SEEKER enill find a positive amount of the HIDBR $r_{Smate\dot{n}al}$, due to
the natuoe of continuity. Thus the SBEKBR will win urith pmbability at leant $s$ . On the other
hand, if the HIDER chooses a point $x$ on the cioeumfennce at mndom and then concentmtes
its material over an arc of length $tb\dot{\wp}nning$ at $x$, for instanoe by using a function wilh gmph
an isoscdes triangle of height $2h/t$ then this $a’ \mathrm{c}$ urill intersect the arc of the SEEKER $\tau\dot{m}th$

pmbability at most $(t+s)$. $A\epsilon t$ converges to $0$ this quantity converges to $s$ . Thus the HIDBR
can $hou$ the $e\varphi e\epsilon ted$ payoff to the SEBKBR as close to $s$ as the HIDER desioes.

Example 2 We shall $shgh\# ymod\dot{\}k$ the modd of Example 1 and obtain a totally diffeoent
$r\epsilon\epsilon dt$ . The HIDBR can use the same stmtegies as in Example 1, but the SEEKER is allowed
to $?ue$ any open set. By a well known $exe$. rciae in $oe_{\mathrm{k}}alanalys\dot{w}\backslash$ there is a $den\epsilon e$ open set $S$ of
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$C$ such ffiat the measuoe of $S$ is equul to $s$ no mauer how smill $s\dot{\epsilon}s$. Ssppose the SEEKER

chooses the set S. If the maximum of the function $f$ on $C\dot{u}M$ then $S$ has a nonempty open

intersection urith the set
$D=\{x : f(x)>M/2\}$ .

Then we shall have
$\int_{s\mathrm{n}D}f(x)dx>(M/2\rangle m(S\cap D)>0$

wheoe $m$ denotes the Lebesgue $measu\tau\epsilon$ of the open set $S\cap D$ . Theoefari, the $e\varphi ected$ payoff to

the $F\Pi DER$ is $zem$ no matter what mixed stmtegy it uses.

0.2 The Interval Model

For the interval model we take as the continuous region the interval $I=[0, n]$ with

length $n$ and assume the SEEKER can examine an open subinterval of length $s$ . Without loss

of generahty we can replace replaoe $n$ with 1 and $\epsilon$ with $s/n$, and we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ usually assume that

$n=1$ . The HIDER can distribute $h$ units of material in any way such that its upper boundary

tffies the shape of a continuous function $f$ on $I$ with $\int_{0}^{1}f(t)dt=h$ . For simplicity we shall say

that the HIDER chooses the function $f$ . If at the beginning of a turn the HIDER chooses the

function $f$ and the SEEKER chooses the subinterval $A=[t,t+s]$ then at the end of the turn

the SEEKER $\mathrm{w}\mathrm{i}\mathrm{U}$ be left with $\int_{t\backslash A}f(t)dt$ units. The HIDER wins, $\mathrm{i}$. $\mathrm{e}$. receives payoff 1, if at

the end of any turn it has $N$ units of material remaining. The HIDER Ioses (payoff $0$) if afler
$T$ turns it hae failed to accumulate $N$ units. We can, without loss of generality, assume that

$N=1\Phi$ scaling the amount of material that the HIDER can conceal, and we shall usuaUy do

this.

0.2.1 Single Stage Search, Strategies

Before developing the solution of the CAGCR in which the there is only a single turn

describe some strategies that the SEEKER and fflDER can use.

The Parameter $\mathrm{p}$ and the Covering Stratep for the SEEKER

If the SEEKER can search an interval of length $s$ let $p(s)=p$ denote the $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{s}\mathrm{t}$

number of cloeed subintervals of length $s$ that are needed to cover $I$. Then $p=1/s$ if $1/s$ is an

integer and $p=[1fs]+1$ otherwise, where $[]$ denotes the greatest inteaer ffinction. If $s<1$

then $p\geq 2$ . As we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ illustrate the parameter $p$ is important to the analysis of the CAGCR

on the interval.
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Definition 3 The covering stratey of the SEBKER is to choose $\iota vith$ pmbability $1/p$ an in-

terval $cover\dot{\tau}ng$ one of the $p$ intemals $[k/\mathrm{p}, (k+1)/p],$ $k=0,1,2\ldots,p-1$ .

The SEEKER is capable of undertaking the covering $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}_{\mathfrak{B}^{r}}$ since the length of
$[k/p, (k+1)/p]$ is $1/p\leq s$ .

Point $\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}_{\mathfrak{B}^{r}}$ for the HIDER

Since the boundary of the HIDER’s material must be a continuous function it is not
possible for the HIDER to concentrate $M$ units of its material at a single point $t_{0}$ . However,

the HIDER can approximate such a distribution by using a hnction $f(t)$ that is $0$ when $t$ is
not in the interval $(t_{0}-\epsilon,t_{0}+\epsilon)$ and whose graph is an isosceles triangle over the interval with

dtitude $M/e$. If $t$ is one of the endpoints of $I$ we can adjust the function so that its graph is a
right triangle rather than an isosceles.

Definition 4 The point stratqy $P(t_{0}, M)$ is the stmtegy of concentruting $M$ units of materiaI

at the po\’int $t_{0}$ .

If we say that the HIDER uses the point stratey $P(t_{0},M)$ we actuffiy mean that

th.e HIDER approximates such a stratey using, for example, one of the triangular functions
described above. The HIDER cannot receive the full payoff $v$ obtained by a point stratey, but

only payoffi that converge to $v$ . By the stratey

$P(t_{0},M_{1})+P(t_{1},M_{2})+\ldots+P(t_{k},M_{k})$

we mean the HIDER concentrates $M_{1}$ units at the point $t_{0}$ and $M_{1}$ units at the point $t_{1},$
$\ldots$ ,

and $M_{k}$ units at $t_{k}$ .

Solulion of the One Staee Game on the Interval

By $I_{s}(h)$ we denote the value of the single $\mathrm{s}\mathrm{t}*\mathrm{e}$ CAGCR on the unit interval $I$ in which

the HIDER conceals $h$ units by choosing a function $f$ with $\int_{I}f(t$} $M=h$ and the SEEKER
chooses a subinterval $A$ with length $s$ . The HIDER wins if $\int_{t\backslash A}f(t)dt\geq 1$ and loses otherwise.

We aesume that $s<1$ because otherwise the SEEKER must find everything so $I_{\partial}(h)$ has to
be $0$ . The following proposition shows that the situation is&terministic except for a narrow
range of values of $h$ .
Proposition 5 If $h\geq\overline{p}\overline{1}\underline{l}$ then the HIDER can win with certainty by using the stmtegy
$\sum_{k=0}^{p-1}P(\frac{k}{p-1},$ $\frac{h}{p})\epsilon o$ that $I_{\epsilon}(h)=1$ .
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Proof. The SEEKER’s aearch interval can cover at moet one of the points $\frac{\mathrm{k}}{p-1}$ : $k=$

$0,1,$ $\ldots,p-1$ and the amount of material deposited at the remainling points is

$(p-1) \frac{h}{p}\geq(p-1)\frac{p}{(p-1)p}=1$

so that the HIDER will certainly win. $\mathrm{O}$

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\iota \mathrm{n}6$ If $1\leq h<\overline{p}\overline{1}\underline{R}$ then $I_{s}(h)= \frac{p-1}{p}.An$ optimd stmtegy for the SEEKER is $th\epsilon$

$cover\dot{\tau}ng$ strategy, and an optimal stmtegy for the HIDBR is to choose one of the point $stmte\dot{g}es$

$P(_{\overline{p}}\underline{\dot{L}}_{\overline{1}},$ $\frac{h}{p})$ : $j=1,2,$ $\ldots,p-1$ urith pmbabdity $\frac{1}{p}$ .

Proof. Suppoae the SEEKER adopts the covering $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}_{\mathfrak{B}^{r}}$ and the HIDER uses the pure
stratey $f$. Let $A_{k}$ denote the interval $[ \frac{k}{p},$ $\frac{\mathrm{k}+1}{p}]$ for $k=0,1,$ $\ldots,p-1$ . The sets $I\backslash A_{k}$ : $k=$

$0,1,$ $\ldots,p-1$ cover $I$ a total ofp-l times so we have

$\sum_{k=0}^{p-1}\int_{I\backslash A_{k}}f(t)dt=(p-1)h<\frac{(p-1)p}{p-1}=p$.

This means that $\int_{t\backslash A_{k}}f(t)dt<1$ for at least one $k$. Thus the HIDER can win with probability

no greater than $\mathrm{g}_{\frac{-1}{p}}$ because the SEEKER’s interval will cover one of the intervals $A_{k}$ .
The HIDER’s search interval can cover at most one of the points $\overline{p}\overline{1}\underline{i}$ : $j=0,1,$ $\ldots,p-1$

so that if the HIDER chooses one of these points with probabihty $\frac{1}{p}$ and concentrates its material
there, the HIDER will miae it with probability $L^{-\underline{1}}\mathrm{p}$ . Thus the HIDER can obtain at leaet this
amount. $\square$

0. $\cdot$2.2 Multistage CAGCR on an Interval with $\mathrm{R}\epsilon \mathrm{a}\iota \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$

. When we study games with more than one turn the following question ariaes: Can
the HIDER rearrange its material at the beginning of every turn, or is it prohibited from doing

so. If the HDER can rearrange its material this results in an essentialy new game for the
SEEKER on each turn. We shall analyze such games in this section.

Distributions of Material

If the HIDER conceals $h$ units of material on some given turn, we are concerned,

not only with the average amount of material that will remain afler the search, but with the
probability distribution of various amounts of that material. We shall say that the remaining
material has a rfold distribution if there are $w_{i}$ units of material remaining with $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{h}\Psi$

$\frac{1}{p}$ for $i=1,2,$ $\ldots,p$; and $\sum_{i}w_{i}\leq(p-1)h$. We do not require $\mathrm{a}\mathrm{U}$ of the amounts $w_{i}$ to be

distinct. We shall now show that no matter what the HIDER does the SEEKER can force it to
end the turn with a $r$-fold distribution and that no matter what the SEEKER does the HIDER
can obtain any p.fold distribution that it requires.
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Theorem 7 If the HIDER conceals $h$ unite of $mate7\dot{\mathrm{z}}al$ and the SEEKER uses the covering
strategy then at the end of the turn the HIDER will be lefl urith a $dist?\dot{\tau}b\mathrm{u}tion(v_{1},v_{2}, \ldots v_{p})$

wheoe HIDER $oetain\epsilon$ the amount $v_{i}$ with pwbability $\frac{1}{p}$ and $\sum_{\dot{\mathrm{c}}}v_{i}\leq(\mathrm{p}-1)h$ . If the HIDER
uses with pmbability $\mathrm{p}\urcorner 1$ one of the $stmt\dot{\varphi}\epsilon s$

$\sum_{j=0}^{p-1}.P(\frac{j}{p-1},u_{\pi(j\rangle})$ wheoe $\sum_{j=0}^{p-1}u_{j}=h$

as $\pi$ mnges over the permutations of $(0,1, \ldots,p-1)$ then for $j=0,1,$ $\ldots$ p-l the HIDER can
obtain urith pmbability $\frac{1}{\mathrm{p}}$ the amount

$w_{j}=(h-u_{j})$ ,

and the $dist\dot{n}but\grave{\iota}on(w_{j})$ is a $P$-fold distribution.

Proof. Suppoae the HIDER distributes its material with the function $f$ . If the SEEKER
uses the covering strategy it $\mathrm{w}\mathrm{i}\mathrm{U}$ cover the interval $[_{p}i,$ $i \frac{+1}{p}]$ , $j=0,$ $\ldots,p-1$ with its interval
$I$ of length $s> \frac{1}{p}$ with probability $\frac{\iota}{p}$ . Thus the HIDER wil be left with the amount

$v_{j}=h- \int_{I}f(x)dx\leq h-\int_{i}^{i\pm}pf(x)\mathrm{p}1dx$

with probability $\frac{1}{\mathrm{p}}$ . Since

$\sum_{j=0}^{p-1}v_{j}\leq ph-\sum_{j=0}^{p-1}\int_{p}^{i_{\frac{+1}{\mathrm{p}}}}if(x)dx=ph-\int_{0}^{1}f(x)dx=(p-1)h$

our first assertion is valid.

The second assertion follows since the SEEKER can cover at moet one of the $p$ points
at which the HIDER has placed its material and since the HIDER is choosing the order of the
amounts at random, no one $u_{j}$ is more likely to be covered than another. $\square$

Iteration $R\epsilon \mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$

Let us denote by $I(\mathrm{h},\mathrm{s})$ the value of the $T\mathrm{s}\mathrm{t}\mathrm{a}\Re$ CAGCR with $h=(\hslash_{1},$ $h_{2},$ $\ldots,h_{T}\rangle$

md $s=$ $(s_{1}, s_{2}, \ldots , s\mathrm{r})$ in which the HIDER conceals $h_{i}$ units on turn $i$ and the SEEKER
searches an interval of length $s_{i}$ . Denote by $f(u)$ the function

$f(u)=I((u+h_{2},h_{3}, \ldots h_{T}), (s_{2}, s_{3}, \ldots,s\tau))$ .

Theorem 8 The value of $I(\mathrm{h},\mathrm{s}\rangle$ is the solution to the following optimization pwblem wheoe
$p=p(s_{1})$ .

$Maximiz \epsilon M=\frac{1}{\mathrm{p}}\sum_{j=0}^{\mathrm{p}-1}f(u_{j})$

(0.1)
subject to $u_{j}\geq 0,$ $u_{j}\leq h,$ $\sum_{j=0}^{\mathrm{p}-1}u_{j}\leq(p-1)h_{1}$ .
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An optimal stmtegy for the SEBKER is the $cover\dot{\tau}ng$ stmtegy. An optimal stmtegy for the

HIDER is to choose urith pmbability $p\urcorner 1$. one of the $pe[] mutation(v_{j})$ of the numbers (h-uj) and

play the stmtegy $\sum_{j=0}^{p-1}P(_{p-\overline{1}}\lrcorner,v_{j})$ .

Proof. If the SEEKER uses the covering strate$y$ then the HIDER wit end the turn with a

p.fold distribution of values $(w_{j})$ . The expected payoff will tben be $\frac{1}{p}\sum_{J’}^{p-1}=0f(w_{j})\leq M$ . If the

HIDER chooees the suggested $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}_{\mathfrak{B}^{\Gamma}}$ then it will end the turn with the p–fold dlstribution of

values $(u_{\uparrow}.\cdot)$ so it will obtain $\frac{1}{p}\sum_{j=0}^{p-1}f(u_{j})=M$. $\square$

$C\mathrm{o}\mathrm{r}o\mathrm{U}\mathrm{a}\mathrm{r}\mathrm{y}9$ For every integer $T$ the fimction $I(h, s)$ wheoe $\mathrm{h}=(h_{1}, h_{2}, \ldots, h_{T})$ and $\mathrm{s}=$

$(\mathit{8}1,\mathit{8}2, \ldots,s\tau)$ assumes anly finitely many values.

Proof. We proove the result by induction on $T$. For $T=1$ the result is true by Theooem 6.

If it is true for $T-1$ then it is true for $T$ since if $I(\mathrm{h},\mathrm{s})$ takes on $p$ values when $\mathrm{h}$ and $\mathrm{s}$ have

length the number of possible sukums of $\sum_{i=0}^{p-1}f(u_{j})$ is at most $2^{\mathrm{p}}$ so the number of solutions

to the optimization problem is at most $2^{p}$ . $\mathrm{O}$

Suppose we let $\{0=M_{0}<M_{1}<\ldots<M_{k}=1\}$ denote the finite collection of values

that $I(\mathrm{h},\mathrm{s})$ assumes when $\mathrm{h}$ and $\mathrm{s}$ have length $T-1$ , md let $t_{j}$ denote the smallest value such

that $f(t_{j}\rangle$ $=I((t_{j}+h_{2}, h_{3}, \ldots h\tau), (s_{2},s_{3}, \ldots , \epsilon_{T}))\geq M_{j}$. It may happen that $t_{j}$ will be $0$ if $h_{2}$

is large enough. Then we transform the nonlinear optimization problem 0.1 into the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}i\mathrm{n}\mathrm{g}$

integer $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\iota \mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ problem.

Theorem 10 The value of $I(\mathrm{h},\mathrm{s})$ is the solution to the folloning $optim\tilde{\iota}zation$ pmblem wheoe

$p=p(s_{1})$ .

Maximize $M= \frac{1}{p}\sum_{j=0}^{k}\epsilon_{j}M_{j}$

(0.2)
subject to $\epsilon_{j}\dot{w}$ a positive integer; $\sum_{j=0}^{k}\epsilon_{j}\leq p,’\sum_{j=0}^{k}$ $ejtj\leq(p-1)h$ .

Proof. Suppose the solution for 0.1 is $M$ auained for the values $(u_{0}, u_{1}, \ldots u_{parrow 1})$ . Let $\epsilon_{j}$

equd the number of $value\epsilon$ of $i$ for which $f(u_{i})=M_{j}$ . Then since the$\mathit{7}\epsilon ar\epsilon p$ values of $u_{i}$ it

$follow\epsilon$ that $\sum_{j=0}^{k}\epsilon_{j}\leq p$ . Sinoe $t_{j}\leq u_{i}$ whenever $f(u_{i})=M_{j}$ it follows that

$\sum_{j\approx 0}^{k}\epsilon_{j}t_{j}\leq\sum_{j=0}^{\mathrm{p}-1}\mathrm{u}_{j}\leq(\mathrm{p}-1)h$.

Finally we have

$M= \frac{1}{p}\sum_{j=0}^{p-1}f(u_{j})=_{p}^{1}\sim\sum_{j=0}^{k}\epsilon_{j}M_{j}$. $\Pi$
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