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Renormalization and Asymptotics
Y. Oono, Physics, UITUC*

1 Introduction

My lectures consist of the following two parts:
(1) Introduction to renormalization group (RG) (esp., the Stiickelberg-Petermann style RG),
(2) Applications of the RG idea to the asymptotic analysis of differential equations (esp., the new proto-RG

approach)

Except for the introduction that prepares the audience to our mode of thinking, the main purpose
of the lectures is to report presumably interesting mathematical phenomena encountered by a field worker

in the land of nonlinearity. It is up to you to find mathematically meaningful topics buried in the field

notebook.

Section 2 corresponds to (1), and Section 3 corresponds to (2). Section 2 is similar to my other
introductory articles [1]. The main part of Section 3 is to explain our recént approach to streamline reductive

and singular perturbations. Section 4 is devoted to end remarks.

2 Introduction to Renormalization Group Approach

2.A Nonlinearity and dimensional analysis

Dimensional analysis is based on the principle that any objectively meaningful relation among observables
can be written as a relation among dimensionless quantities (= scaling invariants), because the units we use
(say, m or inch) have no special meaning (their choice is not imposed by Nature). Therefore, the general

form of a relation among observables is:

I = £(To, My, - -, ILa), 2.)
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where I and II; (¢ =0,1,---,n) are dimensionless quantities. According to the standard wisdom of dimen-
sional analysis, we may ignore from this relation the dimensionless quantities much larger or much smaller

than unity.

Assume that II; is very large. The standard instruction (wisdom) of dimensional analysis may be

expressed as follows, “Since the limit

I= lim f(I,Iy,--,1,) (2.2)

p—o0

‘exists,” we may asymptotically ignore the IIj effect on IL.”

Although the instruction sounds very natural, it forces us to ignore many interesting natural phenome-
na. We must note that the most typical nonlinear phenomena such as, chaos, turbulence, critical pheromena,
biological phenomena, etc., are solely due to the interference between disparate scales (e.g., length scales).
In other words, the limit (2.2) may not exist, and when there is no limit, we observe typically nonlinear

phenomena due to scale interference.
2.B Asymptotics and phenomenology

When we wish to study a nonlinear phenomenon, often we wish to describe iis aspects relevant to us.
Consequently, we wish to describe the phenomenon at our (time and space) scale. This scale is much larger
than the so-called microscopic scales of atoms and elementary particles. Let us write the ratio of our scale
Lo and the microscopic scale £ as { = Iy = Lg/f. We are interested in the ¢ — oo limit. Suppose an
observable f we are interested in depends on the scale of observation as f = f(¢ ) If the limit converges,
- limgeo f(¢) = ¢, then f has a definite value very insensitive to the microscopic details at our observation
scale. As mentioned above in many interesting cases this limit does not exist. This implies that at however
large a scale we may observe f, the result depends on the microscopic details. That is, f depends on
microscopic details sensitively (depends on the details of individual systems for which we observe f) éven

observed at our scale.

If we could isolate divergent quantities from the observable f, then the remaining part would be insen-

sitive to the microscopic details (= universal to a class of systems for which we observe f) by construction.



The isolated divergent quantities can be understood as phenomenological parameters sensitive to the micro-
scopic details. We should recall that a typical phenomenological law such as the Navier-Stokes equation has
the structure consisting of the universal form of the equation + phenomenological parameters (density and

shear viscosity).

We call the procedure to absorb divergences in the limit of ¢( — oo into adjustable parameters a
renormalization procedure. If we can remove divergences by this procedure, we say.that the system (problem
or phenomenon) is renormalizable. Although the usage of this word is much looser than that in high ene;rgy
physics (the reader may well say it is an abuse), the lecturer believes that this is the most practical ;'leﬁnition

of renormalizability.

An important point worth noticing is that the effects of microscopic details are very large (even di-
vergent), but they are confined to well-defined places (quantities) in many phenomena in Nature. This is a
reason why we can understand (can feel that we understant) Nature without paying much attention to Her
details. If a -phenvomenon is not renormalizable, then we cannot expect to understand it in general terms

(that is, we cannot have any general theory).

The above consideration tells us how to extract a phenomenological description (if any) of a giv-
en phenomenon. We look for structurally unstable aspects of the phenomenon and try to isolate them.
If we succeed in this program and if the remaining structure is non-trivial (such as the structure of the
Navier-Stokes equatidn‘), then we have an interesting phenomenological framework to undersﬁand the given

phenomenon.
2.C ABC of renormalization . -

Let us illustrate the above considerations in terms of presumably the siinplest example, the von Koch curve

(please refer to the figure in [1]).

Let £ be the ‘microseopic unit’ of the von Koch curve. Let L be its total léngth along the curve, and

Lo be its overall size. These lengths make two dimensionless ratios L /Lg and Lg/f. Therefore, the principle



of dimensional analysis implies :

L (Lo

‘I‘l; =f (7) . (2.3)
Everyone knows that f diverges in the { — oo limit. Therefore, we cannot follow the standard wisdom of

dimensional analysis; we cannot simply ignore £. Indeed,
L= Lgl‘l/ n8,1-Ing/ 3 (2.4)

That is, f(:z:) = ¢4/ 188-1_ If we collect various von Koch curves with different £ and Ly, we see that their

‘true’ lengths L are always proportional to L})“ 4/188 This is the universal structure of the von Koch curves.

The proportionality constant of Lg‘” 8 4o L is very sensitive to £, and must be treated as an adjustable:
parameter, if we do not know £. Note that all the features of phenomenology show up here. L /£1‘1“4/ In3
is the structurally stable quantity that is invariant under the perturbation of the microscopic details of the

curve. If we could identify such a quantity, we can isolate the universal aspects (structurally stable aspects)

of the phenomenology.

The example is very simple, but this is almost an ideal example to illustrate all the important aspects
of the RG approach. An observer knows only the overall size Lo, the scale of observation (resolving power)
A, and the actually measured length L measured with the given resolution. The true length L and L must
be proportional (when A is fixed):

I=2zL (2:5)

Z must be dimensionless and must depend on £/X. The divergence of the true length in the £ — 0 limit
cannot be observed as long as the curve is observed at the scale A (i.e., Lis finite). Therefore, Z must be
chosen so that the divergence of L in this limit is absorbed in Z. Such a coefficient that absorbs divergences
is called a renormalization constant. In our example, if £ — £/3, then L — (4/ 3)L, so that in the £ — 0 limit,
the divérgence. of I should behave as (4/3)™ 18s¢ = ¢1~104/1n8 The renormalization group constant Z is so

chosen to remove the divergence £1-24/183 (e to remove this divergence from ZL) as o (A/£)1-1n4/188,

) is & quantity introduced by the observer, unrelated to the system (the von Koch curve) itself. There-

fore, the ‘true’ length L should not depend on XA (a belief in the reality of the world). In other words, if ¢



and Lg are fixed, L does not change, even if ) is altered.?

AaL

Ao =0. | (2.6)

On the other hand, the qua.ntii:y that the macroscopic observer knows are Lo, z_,' and A, so that she

would conclude dimensional analytically as

I (L, _ _
This and'_‘(2.5) imply that : » o »
L=2"1\f (:LX‘I) ) (2.8)
Introducing this into (2.6), we obtain
f(2) = af(z) = af'(2) =0, (29)
where
a=0lnZ/dln A (2.10)

The equation (2.6) or its consequence (2.9) is called a renormalization group (RG) equation. If a converges
in the £ — 0 limit, then this equation becomes an equation governing the universal aspect of the problem.

In the present example, the limit exists:

In4
Solving (2.9), we get
(=) oc &', (2.12)
ie.,
Lo LI oA oc L9418, | (2.13)

Thus, we have recovered the phenomenological relation mentioned above.

2 As we will know later, it is often advantageous to use a more structured differential operator instead of the simple derivative

8/0.



2.D ABC of Perturbative RG

The von Koch curve does not need any approximate means, but again this is a very good example to illustrate

" a perturbative RG approach.

In the above when £ is shrunk to £/3, the total length L increases to 4L/3. Although 4/3 is fairly
different from unity, to use a perturbative approach let us write this 4/3 as e® and pretend that € > 0 is

‘sufficiently small, so that e ~ (14¢). If we complete n construction steps of the von Koch curve, to order ¢,
Lo — L = (1 + ne) L. (2.14)
The equation is reliable only when en <« 1. That is, this equation cannot uniformly be used with respect to

L= {1 +elog, (%‘l) } Lo (2.15)

to order ¢. Expanding the renormalization constant as Z = 1 + Ae + ---, we determine A so that the

€3 If we write n in terms of £,

divergence in the £ — 0 is removed order by order in e. To prepare for this, we introduce a length scale A

oo el (2) eme ()]0 -

Consequently, (2.5) may be expanded as

- A L
L=ZL = {1 + € [A+ log3 (Z)] +elog3 (To-) } Lo. (2.17)

Therefore, if we choose A = —logg (A/£), the divergence to order € may be absorbed into Z. The resultant

L= {1 + €lng (%‘2)} Lo : (2.18)

is called the renormalized perturbation result (to order¢). If we introduce

and rewrite (2.15) as

equation

1 A
7z = 1—6i;_§1n—[; : (2.19)

' into the definition (2.10) of a, we obtain a = —¢/ In 3 (the order ¢ result), so that (2.13) implies I Lé""s/ n38

If we set € = In4 — In 3, then the result happens to be exact.

3n this sense, the term proportional ton corresponds to the secular term in differential equations.



3 Renormalization Group Theoretical Reduction

As we have seen from the simple von Koch curve, RG can be used as a tool of asymptotic analysis. Needless
to say, RG is a well-known tool for -extraction of phenomeﬁo_logy, and the latter is essentially a sort of
asymptotic-idésc;iptiOn; bThel;efore, the observation just' mentioned is not surprising, but are rot aﬂ.the
asymptotic analyses in the wotld just applications of RG? To begin with, let us.check the idea with the

Study'of large space-time scale of differential equations.-
3.A Simple Example

Let us review the simplest example:

d’y  dy

where € > 0 is assumed to be small. Expanding the solution formally as
Y=Y teyr+---, (3.2)

we obtain to order ¢

y= Age "t — ngte;t + O(cz). ' : (3.3)

The first order term in € is the secular term. Note the perfect parallelism between this example and the
von Koch perturbation result. Splitting the secular divergence as (t — 7) + 7, we absorb 7 into Ay, which
is modified to' A(7).* This new coefficient is determined to agree with the observation at present, i.e., at ¢,

Thus, (3.3) turns into the rénormalized perturbation result
y=A(r)e™t —€e(t — TYA(T)e™t + O(?). ‘ (3.4)

In this equation ¢ need not be small because we may choose 7 sufficiently close to t. 7 is the parameter that
does not exist in the original problem, so that dy/dr = 0. This is the RG equation:
dA _
dr ~

. 4We do not introduce the renormalization constant for simplicity, but to go beyond the. lowest nontrivial, order, it is advisable
to use one. : :

—€A. ’ (3.5)




The renormalized perturbation (3.4) simplifies, if we set 7 =1
y = Aft)e". , (3.6)

From-(3.5), we see that A(t) obeys the following ‘amplitude equation’

dA(t) : .
5 = —€eA(t). | 3.7
Solving this for A and using it in (3.6), we get the result that agrees with the one obtained by the conventional

singular perturbation method.®

From this simple example, we may have two claims:
(1) The secular term is a divergence that should be renormalized, and the renormalized perturbation result
is the conventional singular perturbation result.
(2) The RG equation is an equation governing the global behavior of the solution. The equation obtained
by the reductive perturbation is the RG equation.
The correctness of these claims has been demonstrated with various examples by 1994 [4]. There are, however,

two unsatisfactory features in our results.

First of all, our ‘demonstration’ is only through numerous examples: What is the general theorem that

guarantees these claims in a much more abstract and clean fashion? I have no idea.?

‘ The other unsatisfactory feature is practical. Looking at the simple example, we must conclude that
the core of the singular perturbation theory is the reductive perturbation theory: if we know the reductive
perturbation result, solving the resultant equation, we can obtain the singular perturbation result. Therefore,
a procedure that requires an explicit perturbation result to bbtain the RG equation is theoretically inelegant

-and pra,ctlca,lly inconvenient.

Br=t sxmphﬁes the computation drashcally, but some ‘people questions the legitimacy of the procedure Generally, the
result of the renormahzed perturbation may be written as

y(t) = f(t;er) + e(t — T)g(t) + O(¢%), ' (3.8)

if we introduce the RG equation result. -Since f is differentiable with respect to the second variable, thh the aid of Taylor’s
_formula
y(t) = F(tiet)+ e(r — £)82F(t,et) + et ~ —r)g(t) + o(e2), (3.9)
‘Here, 85 denotes the partial differentiation with respect to the second variable. The second and the third terms of this formula
" must cancel each other as seen from the construction of the RG equation. That is, to remove the secular term by setting r = ¢
is always correct.
81t is not hard to estimate the errors of the resultant formula.s It can be done, for example, by followmg a standard method
used in the Justxﬁcatlon of amlitude equations.



‘We will see that this problem is largely overcome by the proto RG approach [5]
3.B  Resonance and Proto RG Equation

To explain our new. approach, let us use the Rayleigh equation

%ﬁ ty= ‘;i’ (1 — 2 (j’t’) ) : (3.10)
We solve this perturbatively as | A |
y=‘yo+6;y1,—i—:6?yz +eee - (3.11)
Its _zero‘th order reads | |
yo = Ae® + A*e™¥, (3.12)

where A is-a complex constant. The equation governing y; is

d2 ‘ 1 N
( 7+ 1) yi = iA(1 - [4P)e’ + %A%W +ec, (3.13)

where cc denotes the cOmPIex conjugate. From the structure of (3.13), we see that the solution has the
following s‘tructuré:

= P]__ei.t -+ Q]_E'Sit + ce. (314)

By inspection we know Pi(2, A) is first order in ¢, and Q1(2, 4) is a constant: From (3.13) we see

LP = iA(1-]4]), ' ' - (3.15)
1 _

RQ: = gz'As, ‘ - (8.16)

where
: & _d
I, = dt2+2z 5 (3.17)
a2 d R
R, = —2+6%'Jt‘-—8. ) (318)

dt

The renormalized perturbation result reads

Y(t) = An(r)e" + e[Pe(t, Ar(r) = Py(r, Ap(r)le® + -, (3.19)
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Here, P; is the singular part of P; (note that if P; does not have an additive constant term, then P; = Py).

Let L, be L; with its ¢ being replaced by 7. Then,

0= L.y = [L Ag — €L, Py(r, Ar))e™. - (3.20)
That is, o
& _.d ) 2 ' , -
7ol + Zza—; Agp(r) = eiAg(1 - ]ARI )- (3.21)

From this we see that differentiation with respect to 7 raises the order by €. Therefore, to order ¢ we may

ignore the second derivative. Replacing  with ¢, we obtain to order ¢

5“% = %eAR(l ~ |4aP). (3.22)
This is the RG equation (the amplitude equation) to the same order. Thus, we call (3.21) the proto RG
equation. If we obtain the proto RG equation, then the RG equation can be obtain by an algebraic procedure.
Note that to obtain the proto RG equation to order € we do not need any explicit perturbative result. This

Afea.tm'e becomes important when the problems become complicated (e.g., partial differential equations).

Instead of dy/81 = 0, to use L,y = 0 is the proto RG approach. Is this approach effective for higher
order results? For nonlinear problems‘we need slightly more information than required by the first order

result. Still, the approach is much simpler than the conventional perturbation calculation.
3.C Amplitude Equation — RG Theoretical Reduction

As we have seen above the essence of singular perturbation theory is the reductive perturbation. The proto
RG equation approach makes the reduction process transparent. Let us apply this to the 2D Swift-Hohenberg
equation:

du 8 8 2

The unperturbed solution is Ae*® + cc, where A is a complex constant. We assume the perturbative solution
as

. u= Aet*® 4 A*e 4 cuy +ug +---. (3._24)
Thc first order term obeys o |
duy ( 82 o

ot T\az Pt k) ur = (1 3A")Ae® — A%e%*2 4 cc. (3.25)
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Its solution has the followingvfovr'm_:7

uy = Pi(t,7)e™® + Qq(t,r)ed*2, (3.26)
_where Py is singular (unbounded and/or non-integrable), because » = (z,y). €*® is the zero solution of
(3.25). Since

o (o ‘a2r‘22“.k_~ . e
Fv + (ﬁ + ‘555 + k') | Per™ = (1- 3|Al) )__Ae’_ 2, _ (3.27)

we have

rd o 8 9 o8t , 2 9 o
[dt 64+4ka3+20262+(4k62+4k626 +5§z)}1’1

LP = (1-3]4)*)A o ' (3.28)

Similarly, we obtain
d (& 8 8 .\
l: +<82+a$2+62k~6—£—-8k ) Q]_
= R@ =- 3._ ' (3.29)
Py cannot be a constant, but ¢; can.

The renormalized. perturbation result has the following form:
u = Ap(r, p)e™ + e[Py(t, 7) — Pu(r, p)le™® + Qre¥he..... (3.30)

Consequently, the proto RG equation to order ¢ is

2 y :
(5; + Lr,pAr(T, p)) =¢(1 - 3|4r[*)Ar. | (3.31)
Here, L;.'p is L with the replacement ¢ — 7, » — p. L contains superfluous terms. To remove such terms,
generally speaking, how to observe (at what space-time scale to observe) the system must be specified. In

the present exa.mple,.if we choose t ~ 2% ~ y* ~ 1/¢, we obtain

K} o2 8 4 ot

- 2
( 4k62+4k626 35

ot ) Ap(t,r) = (1~ 3IARI2)AR | (3.32)

That is, the usual Newel_l—Whitehe_ad équation‘results; The choice of the ordex;s-a.bove may look arbitrary,

but, actually, in this case there is no other choice. For example, 1f we assume y* ~ }yz.:vz ~t ~ 1fe,

7in the formal algebraic sense; to characterize this form mathematically is a’pr:';\blem.
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then 92/0z? and 83/0x0y? dominate the left-hand side and cannot balance with. the order ¢ terms on the

- right-hand side. In this way we see that (3.32) is the u'niql:xe order ¢ result.

The second order proto RG equation reads
3 -
64k4

LAp =€(1— 3|4 )Ar+ ¢ |Ag|*Ag. (3.33)

(3.31) is the equation obtained by Graham [6], but as seen clearly in (3.33) the equation is niot consistent to
order e (as first realized by [7]). If we wish to retain all the differential operators in (3.31), as seen in (3.33),

we need a higher order correction to the nonlinear term.

The reader might have. asked what happens if the RG equation is reduced further. For example, the
‘Boltzmann equation may be obtained as an RG equation [8], but the equation can further be reduced to the
Navier-Stokes equation [9], if observed at further larger space-time scale. However, if we look at the system
_at the same scale, no further reduction should be possible. For example, in the case of the Newell-Whitehead
equation, we can easily show that its RG reduction gives the same equation. In other words, it is the fixed

point of the system reduction.

We can .derive phase equations, equations of motion for singularities of a field (such as the interface
equation, equation of motion for kinks and defects), etc., as RG equations. So far the assertion seems to

hold that all the named phénomenological equations are RG equations.
3.D All orders

Let us study the ‘simplest’ example of the singular perturbation problem again:
&2 d o\
-,(e_de‘-l—:Eﬁ-l)y:O. (3.34)
Expanding asy=ypt+eyr+ 4 € yp+---, we have
. @’i.&. o dzy"""l_.

a T T e

(3.35)

: Writing the lowest order result as y = Ae~t, the solution of this equation can be written in the following’
form y, = AP,e~?, where P, is governéd by: '

dP,  d?P,_ .
! 1 +2dPn 1

“dt dt2 dt

~Pasr (3.36)
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Its initial condition.is P,(0) = 0 that allows us to ideﬁtify-’P,,, and:ifs- singﬂu ﬁa;t'. B,.
'Usingi these results, the -p'er"turba.tion result rea,dé V
y(t) = A[l +ePi(t) + o +,eﬁpn(t) +:-Jet. o (3.37)
Since our problem is ﬁnear, P, does not depend-on A. If we renormaﬁze A as ﬁsuél as ,A‘;= ZAR(f):
| y(t) = Ar(T)Z[1+ eP(t) + -+ +»e"‘Pn_(tA) +-oet (3.38). -

and if we assume (ﬁthout any Ioss of generality) that ¢ — 7 is higher order infinitesimal 'than any power of
€ to simplify the calculation, we obtain - '

Z7 =14 Py (r) ook EPu(r) + oo (3:39)

That is, for linear problems, renormalization is the same as the naive renormalization we are familiar with
in, e.g., solid state physics:

An=All+eP(r) o+ @R o] - (340)

The renormalized coefficient obeys the following equation according to (3.36)

dAg _ d*Ap | ,dAR :
E_,"' =€ <— dr? +2—d7-—AR . ) (3.41)

Solving this order by order in ¢, P, is determined. Néte, however, (3.41) is obtained by introducing y =
Ag(t)e™* into the original problem (3.34). That is, (3.41) is the proto RG equation (to all orders).  From
this the RG equation can be obtained by solving it for dAg/dr order by order. To the lowest order

dAg

dr V._GAR". » . - (3.42)

Usihg this to the i'i‘ght-ha.nd_ side of (3.41), we obtain to order ¢

A o : 4
?rﬁ = —(e+26%) Ag. ‘ (3.43)

The obser-vationis ba.Sié that diﬂeréntiation raises the power of € by one:.

d1-2R =-e JTR = szR. : v CEON
In this~way,’ for example, to order €® we have
- da . . - - )
— = —(e+ 2% 4 Be®)A. : (3.45)

dr
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3.E  Merit of Proto RG Approach in Linear C_ases

The reader may say that linear problems are so simple that such a calculation has no merit. However, there
are many linear ordinary differential equation ptoblemé that cannot directly be s_olved by the RG.approach
proposed in [4].8 For example,? if we solve

2

d‘y \dy
F+(2+€)Et_'+y=0 ~ (3.46)

perturbatively, the zeroth order solution has the form (A + Bt)e~t. There is already a secular term that
complicates the identification of the divergence. However, there is no difficulty at all in the proto RG
approach. Let y = A(t)e~®. Then, the proto RG equation (although we need not name such a trivial

~equation) reads

d’A { dA
i (A—- Ty ) . (3.47)
From this, the lowest order RG equation is
dA .
G €A. » (3.48)

Notice that the procedure is quite mechanical.

Nishiura [10] mentions other ‘difficult’ examples such as

dy a2 2 ‘ ;
oYty | (3.49)

This example helps.us to make an implicit assumption in our RG method explicit. Its proto RG equation is
— =eA? - &A. _ (3.50)

‘The examples we have discussed so far allow us to assume that A is of order unity. However, in this e_xaxﬁple,
_ the solution we are interested in is of order e. That is, although we claim that the RG approach does not
require any a priori knowledge, we need at léa.st such an estimate. Therefore, both terxﬁé on the right hand
side of (3.50) are comparable, so no further reduction is possible. That is, we must interpret that the pm%é

RG equation is the RG equation itself for this example.

8In this peper, problems were avoided with the aid of the. approach via the cianon.ic_"al form of the equation. With the.
canonical form, our sitnple RG always works. ' o
9This example was stressed by F. Furtado.
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Asa not_—so-triﬁa.l exa.mple’ of rr'educing_the. prbto_ RG to the RG equation, let us consider the bifurca.tion '
problem of the Mathiéu_equation: the problem is to find the range of w such that ‘

d?y ST o
o) 4+ y = —€[w + 2 cos(2t)]y » (3.51)
does not have a bounded solution. Although this is not an autonomous equation, for lmea.r problems, it is

easy to see that the proto RG method works to all orders The unperturbed solution reads
Yo = Ae't 3 A*eT . o ; o (3-52)

The easiest method that still allows us to avoid explicit calculation of perturbative results from this equation »
is to expand as - : : :
y= A(t)e“ + €B (i)eSit + €2 C(t)e% + cc. (3.53)
This form is easily- guessed from the fact that e appears with € in (3.51). The procedure is to get the
equations (they may also be called. proto RG equations) for the coeflicients, and then to reduce them to the

equation of 4 alone. For exa.mple,_ to order €? we have

d?A dA

Py + 2”3‘{ = —e(wd + A*) -~ ] _ ‘ (3.54)
The equation for B is
dB ..dB . , A
(dt—2 + 6i—Jt— — SB) =—cA~ B+ C | - (3.55)

Since derivatives give higher order powers of ¢, we see from this B = A /8 to order e. Hence, to order € the

proto RG equation is reduced to

d*A dA

5T +’2 p = —e(wA+ A%) — 2=

A
= (3.56).

It is easy to reduce this further to a first order differential equation, from which the bifurcation condition

can be read off.
3.F Beydnd All Orders

As we liave seen in the preceding subsection, the (proto) RG-method works to all orders for linear. problems.

It is not h#rd to see that even for nonlinear resonant problems, the pr‘ocedure- given here can be consistently
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performed order by order-to all orders. However, it is clear that the method explained cannot give the other

solution of (3.34) whose leading order behavior is e=*/¢.

One '(and the conventional) way to retain such a solution is to scale the variable as ¢ = €¢s. Then, the
perturba.tion»tverm becomes non-singular. However, we wish to reduce the amount of insight needed to solve

probléms as much as possible, so that we avoid rescaling of the variables.

Although there might be other reasons, one chief reason why we cannot obtain the fundamental set of
the singularly perturbed ordinary differential equation is that the unperturbed equation has a lower order,
so that the dimension of the solution. space is reduced. In other words, we cannot impose the auxiliary
conditions that the original perturbed equation can accomodate. For example, (3.34) with e = 0 is a first

order equation, so that there is no way to imposeé two independent 'a.uxilia,ry conditions.

From this point of view, (3.34) is not the simplest example.. The simplest example seems to be

dy :
e-c-l-z +y=0. ' (3.57)

Its general solution is y = Ae~t/¢. If we perform the expansion y = yog+e€y; +- - -, then we obtain y = 0, which
is consistent with the asymptotic expansion of the exact solution. The problem of the simplest example is

t_hat. the zeroth order equation is not even an ODE, so that not a single auxiliary condition can be imposed.

This observation suggests that, if we could impose the same number of auxiliary conditions to the
perturbed and unperturbed equations, we might be able to overcome the difficulty. The most natural

‘approach seems to be as follows. An initial condition may be imposed with the aid of the delta function as

dy _ A "
% +y = ad(t) | (3.58)

with a homogeneous initial condition y(0) = 0. The zeroth order equation reads

The perturbation eguations read
_ dyai
Yn = — at (3.60)

so that

y=Ya (—e%)-n 5. | (361)
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To sum this highly singular series, we use the Borel summation method. Let
. B(s)=i'a.1_ _s2 n’&(t)— 8t —s) ' 362).
TWE L\ ) O Tk ' (3.62)

Then, the Borel summation result reads

y= %[) B(s)e~*/*ds = .i:-e"t/e.' » ‘ (3.63)

Thus, we have obtained the result beyond all orders from.a perturb’atiire ca.lcula.ﬁion.

From the vabove ca.icﬁla.tio'n, it is tempting to conjecture that perturbative calculations, approprié.tely
6rgé.nized, can give us all ‘the informaiion about the original equation. Consequently, the results beyond a.ll
 orders can also be obtaired ﬁerturbatiVely. A crucial ingredient seems to be to retain the degrees of freedom
(flexibility of inttodu‘éing sufficiently many auxiliary conditions) in the original problem in the _perturba,tivé

processes.

4 End Remarks

| The outstanding problems in the related fields of these lectures seems (other than mathematically unsatsis—.
factory a.Sped:s already mentioned above): » ,
(1) Clarify the relation between the Stiickelberg-Petermann RG and the Wilson-Kadanoff RG. As the reader
knows, the latter has bee_n_ rigorized for several systems, but the so-called field theoréti_cal:schemes have not
been. The ODE‘exam‘pIe' that can be solved in both W’ays should be an ideal la.bbi:atory for this problem.b
(2) The rel_ati@n between the original equation and the reduced equation has been studied, but it is desirable
“that there is a method closely related to the idea of RG. Similar things may be said for all the problems in
‘.th'is field of asympﬁotic é.n_‘élysis; is there ‘any RG-related unified logic for ,rig,ordus'results?
(3) Pr@ética]ly, we ..a.re_v-intere‘sted in’ much more comp.lic’a,t_edx systems"lik"e prote_ins: describe- the loﬁgfterm
| {1-1000 sec) dynamics of a protein molecule consisting of 200 amino ‘acid residues (ﬁv’ith sﬁrrounding water
‘molecules).- Philo‘sophi?:a.ﬂj, RG-like means should work, but in ?rqctice, ‘we have no idea to implement it.

A pa.tieht step-by step tiia.l and error approach seems mandatory [13].:

(1] REFH [< D 5, BUthe. £ L CHRRART) HOERIY 35(4), 13 (1097); TIHRBHER < 025 B
YRR 52, 5021 (1997). . ‘ o



18

[2] G. I Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics (Consultant Bureau, New
York, 1979). '
[3] L. Y. Chen, N. Goldenfeld, Y. Oono, and G. C. Paquette, Physica A 204, 111-33 (1993).

[4] L. Y. Chen, N. Goldenfeld and Y. Oono, Phys. Rev. E 54, 376-394 (1996)

‘[5] K- Nozaki and Y. Oono, unpublished.

[6] R. Graham, Phys. Rev. Lett. 76, 2185 (1996); erratum ibi&. 80, 3888 (1998).

* [7] K. Matsuba and K. Nozaki, Phys. Rev. Lett. 80, 3836 (1998).

[8] O. Pashko and Y. Oono, unpublished.

(9] BAEAD, WHERTA 49, 299 (1987).

[10] FEwEREL, (IEMERIRE L ) (BEIE. 1999).

[11] A. Shinozaki and Y. Oono, Phys. Rev. E 48, 2622 (1993).

[12] L. San Martin and Y. Oono, Phys. Rev. E 57, 4795 (1998).

[13] M. Balsera, Thesis, UIUC 1998. |



