
Renormalization and Asymptotics
Y. Oono, Physics, UIUC1

1 Introduction

My lectures consist of the following two parts:

(1) Introduction to renormalization group $(\mathrm{R}\mathrm{G})$ ( $\mathrm{e}\mathrm{s}\mathrm{p}.$ , the St\"uckelberg-Petermann style $\mathrm{R}\mathrm{G}$),

(2) Applications of the RG idea to the asymptotic analysis of differential equations ($\mathrm{e}\mathrm{s}\mathrm{p}.$ , the new proto-RG

approach)

Except for the introduction that prepares the audience to our mode of thinking, the main purpose

of the lectures is to report presumably interesting mathematical phenomena encountered by a fleld worker

in the land of nonlinearity. It is up to you to find mathematically meaningful topics buried in the field

notebook.

Section 2 corresponds to (1), and Section 3 corresponds to (2). Section 2 is similar to my other

introductory articles [1]. The main part of Section 3 is to explain our recent approach to streandine reductive

and singular perturbations. Section 4 is devoted to end remarks.

2 Introduction to Renormalization Group Approach

2. $\mathrm{A}$ Nonlinearity and dimensional analysis

Dimensional analysis is based on the principle that any objectively meaningful relation among observables

can be written as a relation among dimensionless quantities ( $=\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}$ invariants), because the units we use

(say, $\mathrm{m}$ or inch) have no special meaning (their choice is not imposed by Nature). Therefore, the general

form of a relation among observables is.

$\Pi=f(\Pi_{0}, \Pi_{1}, \cdots, \mathrm{I}\mathrm{I}_{n})$, (2.1)
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where $\Pi$ and $\Pi_{i}(i=0,1, \cdots, n)$ are dimensionless quantities. According to the standard wisdom of dimen-

sional analysis, we may ignore ffom this relation the dimensionless quantities much larger or much smffier

than unity.

Assume that $\Pi_{0}$ is very large. The standard instruction (wisdom) of dimensional analysis may be

expressed as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ , “Since the limit

$\Pi=\lim_{\mathrm{T}_{0}arrow\infty}f(\Pi_{0)}\Pi_{1}, \cdots, \Pi_{n})$ (2.2)

‘exists,’ we may asymptotically ignore the $\Pi_{0}$ effect on $\Pi.$”

Although the instruction sounds very natural, it forces us to ignore many interesting natural phenome-

na. We must note that the most typical nonlinear phenomena such as, chaos, turbulence, critical phenomena,

biological phenomena, etc., are solely due to the interference between disparate scales (e.g., length scales).

In other words, the limit (2.2) may not exist, and when there is no limit, we observe typically nonlinear

phenomena due to scale interference.

2. $\mathrm{B}$ Asymptotics and phenomenology

When we wish to study a nonlinear phenomenon, often we wish to describe its aspects relevant to us.

Consequently, we wish to describe the phenomenon at our (time and space) scale. This scale is much larger

than the so-called microscopic scales of atoms and elementary particles. Let us write the ratio of our scale

$L_{0}$ and the microscopic scale $\ell$ as $\zeta=\Pi_{0}=L_{0}/l$. We are interested in the $\zetaarrow\infty$ limit. Suppose an

observable $f$ we are interested in depends on the scale of observation as $f=f(\zeta)$ . If the limit converges,

$\lim_{\zetaarrow\infty}f(\zeta)=c$, then $f$ has a definite value very insensitive to the microscopic details at our observation

scale. As mentioned above in many interesting cases this limit does not exist. This imphes that at however

large a scale we may observe $f$ , the result depends on the microscopic details. That is, $f$ depends on

microscopic details sensitively (depends on the details of individual systems for which we observe $f$) even

observed at our scale.

If we could isolate divergent quantities fiom the observable $f$ , then the remaining part would be insen-

sitive to the microscopic details ( $=\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}$ to a class of systems for which we observe $f$) by construction.
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The isolated divergent quantities can be understood as phenomenological parameters sensitive to the micro-

scopic detffis. We should recaU that a typical phenomenological law such as the Navier-Stokes equation has

the structure consisting of the universal form of the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}+\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ parameters (density and

shear viscosity).

We $\mathrm{c}\mathrm{a}\mathrm{U}$ the procedure to absorb divergences in the limit of $\zetaarrow\infty$ into adjustable parameters a

renormalization procedure. $\mathrm{I}\dot{\mathrm{f}}$ we can remove divergences by this procedure, we say that the system {problem

or phenomenon) is renormalizable. Although the usage of this word is much looser than that in high energy

physics (the reader may $\mathrm{w}\mathrm{e}\mathrm{U}$ say it is an abuse), the lecturer beheves that this is the most practical definition

of renormalizability.

An important point worth noticing is that the effects of microscopic details are very large (even di-

vergent), but they are confined to well-defined places (quantities) in many phenomena in Nature. This is a

reason why we can understand (can feel that we understant) Nature without payin$\mathrm{g}$ much attention to Her

details. If a phenomenon is not renormalizable, then we cannot expect to understand it in general terms

(that is, we cannot have any general theory).

The above consideration tells us how to extract a phenomenological description (if any) of a giv-

en phenomenon. We look for $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{u}_{\mathrm{y}}$ unstable aspects of the phenomenon and try to isolate them.

If we succeed in this program and if the remaining structure is non-trivial (such as the structure of the

Navier-Stokes equation), then we have an interesting phenomenological framework to understand the given

phenomenon.

2. $\mathrm{C}$ ABC of renormalization

Let us illustrate the above considerations in terms of presumably the simplest example, the von Koch curve

(please refer to the figure in [1]).

Let $l$ be the ‘microscopic unit’ of the von Koch curve. Let $L$ be its total length along the curve, and
$L_{0}$ be its overall size. These lengths make two dimensionless ratios $L/L_{0}$ and $L_{0}/\ell$. Therefore, the principle
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of dimensional analysis implies

$\frac{L}{L_{0}}=f(\frac{L_{0}}{l})$ . (2.3)

Everyone knows that $f$ diverges in the $\zetaarrow\infty$ limit. Therefore, we cannot follow thi standard wisdom of

$\mathrm{d}\mathrm{i}_{\mathrm{I}}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1$analysis; we cannot simply ignore $l$ . Indeed,

$L=L_{0}^{\ln 4/\ln 8}l^{1-\ln 4/\ln 3}$ . (2.4)

That is, $f(x)=\mathrm{a};^{\ln 4/\ln 3-1}$ . If we colect various von Koch curves with different $l$ and $L_{0}$ , we see that their

‘true’ lengths $L$ are always proportional to $L_{0}^{\ln 4/\ln 3}$ . This is the universal structure of the von Koch curves.

The proportionality constant of $L_{0}^{\ln 4/\ln 3}$ to $L$ is very sensitive to $l$, and must be treated as an adjustable

parameter, if we do not know $\ell$ . Note that all the features of phenomenology show up here. $L/l^{1-\ln 4/\ln 3}$

is the structurally stable quantity that is invariant under the perturbation of the microscopic details of the

curve. If we could identify such a quantity, we can isolate the universal aspects (structuraly stable aspects)

of the phenomenology.

The example is very simple, but this is almost an ideal example to illustrate all the important aspects

of the RG approach. An observer knows only the overall size $L_{0}$ , the scale of observation (resolving power)

$\lambda$ , and the actually measured length $\tilde{L}$ measured with the given resolution. The true length $L$ and $\tilde{L}$ must

be proportional (when $\lambda$ is fixed):
$\tilde{L}=ZL$ . (2.5)

$Z$ must be dimensionless and must depend on $\ell/\lambda$ . The divergence of the true length in the $larrow \mathrm{O}$ limit

cannot be observed as long as the curve is observed at the scale $\lambda$ (i.e., $\tilde{L}$ is finite). Therefore, $Z$ must be

chosen so that the divergence of $L$ in this limit is absorbed in $Z$ . Such a coefficient that absorbs divergences

is $\mathrm{c}.\mathrm{a}\mathbb{I}\mathrm{e}\mathrm{d}$ a ,ren.ormali.zation constant. In our example, if $larrow l/3$ , then $Larrow(4/3)L$, so that in the $\ellarrow 0$ limit,

the divergence of $L$ should behave as $(4/3)^{-\log_{S}\mathit{1}}=\ell^{1-\ln 4/\ln\}$ . The renormalization group constant $Z$ is so

chosen to remove tbe divergence $l^{1-\ln 4/\ln 3}$ (i.e., to remove this divergence fiom $ZL$) $\mathrm{a}\mathrm{s}\propto(\lambda/l)^{1-\ln 4/\ln 8}$ .

$\lambda$ is a quantity introduced by the observer, unrelated to the system (the von Koch curve) itself. There-

fore, the ‘true’ length $L$ should not depend on $\lambda$ (a belief in the reality of the world). In other words, if $l$
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and $L_{0}$ are fixed, $L$ does not change, even if $\lambda$ is altered.2

$\lambda\frac{\partial L}{\partial\lambda}=0$ . (2.6)

On the other hand, the quantity that the macroscopic observer knows are $L_{0},\tilde{L}$ , and $\lambda$ , so that she

would conclude dimensional analyticaUy as

$\frac{\tilde{L}}{\lambda}=f(\frac{L_{0}}{\lambda})$ . (2.7)

This and (2.5) imply that

$L=Z^{-1} \lambda f(\frac{L_{0}}{\lambda})$ . (2.8)

Introducing this into (2.6), we obtain

$f(x\rangle$ $-\alpha f(x)-xf’(x)=0,$ (2.9)

where

$\alpha\equiv\partial\ln Z/\partial\ln\lambda$ . (2.10)

The equation (2.6) or its consequence (2.9) is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a renormalization group $(\mathrm{R}\mathrm{G})$ equation. If $\alpha$ converges

in the $larrow \mathrm{O}$ limit, then this equation becomes an equation governing the universal aspect of the problem.

In the present example, the hmit exisfs:

$\alpha=1-\frac{\ln 4}{\ln 3}$ . (2.11)

Solving (2.9), we get

$f(x)\propto x^{1-\alpha}$ , (2.12)

i.e.,

$\tilde{L}\propto L_{0}^{1-\alpha}\lambda^{\alpha}\propto L_{0}^{\ln 4/\ln 3}$. (2.13)

Thus, we have recovered the phenomenological relation $\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\dot{\mathrm{i}}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{d}$ above.
.

2As we will knoe later, it is often advantageous to use a more structured differential operator instead of the simple derivative
$\partial/\partial\lambda$.
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2. $\mathrm{D}$ ABC of Perturbative RG

The von Koch curve does not need any approximate means, but again this is a very good example to illustrate

a perturbative RG approach.

In the above when $\ell$ is shrunk to $l/3$ , the total length $L$ increases to $4L/3$ . Although 4/3 is fairly

different fiom unity, to use a perturbative approach let us write this 4/3 as $e^{\epsilon}$ and pretend that $\epsilon>0$ is

sufficiently smal, so that $e^{\epsilon}\simeq(1+\epsilon)$ . If we complete $n$ construction steps of the von Koch curve, to order $\epsilon$ ,

$L_{0}arrow L=(1+n\epsilon)L_{0}$ . (2.14)

(2.15)

The equation is reliable only when $\epsilon n<<1$ . That is, this equation cannot uniformly be used with respect to

$\epsilon^{3}$. If we write $n$ in terms of $l$ ,
$L= \{1+\epsilon\log_{3}(\frac{L_{0}}{l})\}L_{0}$

(2.16)

to order $\epsilon$ . Expanding the renormalization constant as $Z=1+A\epsilon+\cdots$, we determine $A$ so that the

divergence in the $larrow \mathrm{O}$ is removed order by order in $\epsilon$ . To prepare for this, we introduce a length scale $\lambda$

and rewrite (2.16) as
$L=[1+ \epsilon\{\log_{3}(\frac{L_{0}}{\lambda})+\log_{3}(\frac{\lambda}{l})\}]L_{0}$.

(2.17)

Consequently, (2.5) may be expanded as

$\tilde{L}=ZL=\{1+\epsilon[A+\log_{8}(\frac{\lambda}{\ell})]+\epsilon 1o\mathrm{g}_{3}(\frac{L_{0}}{\lambda})\}L_{0}$ .

(2.18)

Therefore, if we choose $A=-\log_{3}(\lambda/l)$ , the divergence to order $\epsilon$ may be absorbed into $Z$ . The resultant

equation

$\tilde{L}=\{1+\epsilon\ln_{3}(\frac{L_{0}}{\lambda})\}L_{0}$

is called the renormalized perturbation result (to order $\epsilon$ ). If we introduce

$Z=1- \epsilon\frac{1}{\ln \mathfrak{F}}\ln\frac{\lambda}{p}$ $l_{\backslash }2.19)$

,

into the definition (2.10) of $\alpha$ , we obtain $\alpha=-\epsilon/\ln 3$ (the order $\epsilon$ result), so that (2.13) implies $\tilde{L}\propto L_{0}^{1+\epsilon/\ln 3}$ .
If we set $\epsilon=\ln 4-\ln 3$ , then the result happens to be exact.
$\overline{3\mathrm{I}\mathrm{n}}$this $s$ense, the term proportional to $n$ corresponds to the secular term in differential equations.
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3 Renormalization Group Theoretical Reduction

As we have seen ffom the simple von Koch curve, RG can be used as a tool of asymptotic analysis. Needless

to say, RG is a well-known tool for $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\dot{\mathrm{i}}\mathrm{o}\mathrm{n}$ of phenomenology, and the latter is essentially a sort of

asymptotic description. Therefore, the observation just mentioned is not surprising, but are not all the

asymptotic analyses in the world just applications of $\mathrm{R}\mathrm{G}$? To begin with, let us check the idea with the

study of large space-time scale of differential equations.

3. $\mathrm{A}$ Simple Example

Let us review the simplest example:

$\epsilon\frac{d^{2}y}{dt^{2}}+\frac{dy}{dt}+y=0$ , (3.1)

where $\epsilon>0$ is assumed to be $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ . Expanding the solution formaUy as

$y=y_{0}+\epsilon y_{1}+\cdots$ , (3.2)

we obtain to order $\epsilon$

$y=A_{0}e^{-t}-\epsilon A_{0}te^{-t}+O(\epsilon^{2})$ . (3.3)

The first order term in $\epsilon$ is the secular term. $\dot{\mathrm{N}}\mathrm{o}\mathrm{t}\mathrm{e}$ the perfect paralelism between this example and the

von Koch perturbation result. Splitting the secular divergence as $(t-\tau)+\tau$ , we absorb $\tau$ into $A_{0}$ , which

is modified to $A(\tau)^{4}$. This new coefficient is determined to agree with the observation at present, i.e., at $t$ .
Thus, (3.3) turns into the renormalized perturbation result

$y=A(\tau)e^{-t}-\epsilon(t-\tau)A(\tau)e^{-t}+O(\epsilon^{2})$ . (3.4)

In this equation $t$ need not be small because we may choose $\tau$ sufficiently close to $t$ . $\tau$ is the parameter that

does not exist in the original problem, so that $\partial y/\partial\tau=0$ . This is the RG equation:

$\frac{dA}{d\tau}=-\epsilon A$. (3.5)

4We do not introduce the renormalization constant for simplicity, but to go beyond the lowest nontrivial order, it is advisable
to use one.
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The renormalized perturbation (3.4) simplifies, if we set $\tau=t$ :

$y=A(t)e^{-t}$ . (3.6)

From (3.5), we see that $A(t)$ obeys the following ‘amplitude equation’

$\frac{dA(t)}{dt}=-\epsilon A(t)$ . (3.7)

Solving this for $A$ and using it in (3.6), we get the result that agrees with the one obtained by the conventional

singular perturbation method.5

Rom this simple example, we may have two claims:

(1) The secular term is a divergence that should be renormalized, and the renormalized perturbation result

is the conventional singular perturbation result.

(2) The RG equation is an equation governing the global behavior of the solution. The equation obtained

by the reductive perturbation is the RG equation.

The correctness of these claims has been demonstrated with various examples by 1994 [4]. There are, however,

two unsatisfactory features in our results.

First of all, our ‘demonstration’ is only through numerous examples: What is the general theorem that

guarantees these claims in a much more abstract and clean $\mathrm{f}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{o}\mathrm{b}^{?}$ I have no idea.6

The other unsatisfactory feature is practical. Looking at the simple example, we must conclude that

the core of the singular perturbation theory is the reductive perturbation theory: if we know the reductive

perturbation result, solving the resultant equation, we can obtain the singulair perturbation result. Therefore,

a procedure that requires an explicit perturbation result to obtain the RG equation is theoreticaly inelegant

and practically inconvenient.
$\epsilon_{\tau}=t$ simplifies the computation drastically, but some people questions the legitimacy of the procedure. Generally, the

result of the renormalized perturbation may be written as

$y(t)=j(t;\epsilon\tau)+\epsilon(t-\tau)g(t)+O(\epsilon^{2})$, (3.8)

if we introduce the RG equation result. Since $J$ is $\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\varpi \mathrm{a}\dot{\mathrm{b}}\mathrm{l}\mathrm{e}\mathrm{w}\mathrm{i}\mathrm{t}\overline{\mathrm{h}}$respect to the second variable, with the aid ot Taylor $j\mathrm{s}$

formula
$y(t)=f(t;\epsilon t)+\epsilon(\tau-t)\partial_{2}f(t, \epsilon t)+\epsilon(t-\tau)g(t)+O(\epsilon^{2})$ . (3.9)

Here, a denotes the partial differentiation with respect to the second variable. The second and the third terms of this formula
must cancel each other as seen from the construction of the RG equation. That is, to remove the secular term by setting $\tau=t$

is always correct.
6It is not hard to estimate the errors of the resultant formulas. It cqn be done, for cxample, by following a standard mcthod

used in the justification of amlitude equations.
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We will see that this problem is larg.ely overcome by the proto RG approach [5].

3. $\mathrm{B}$ Resonance and Proto RG Equation

To explain our new approach, let us use $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ Rayleigh equation

$\frac{d^{2}y}{dt^{2}}+y=\epsilon\frac{dy}{dt}(1-\frac{1}{3}(\frac{dy}{dt})^{2})$ . (3.10)

We solve this perturbatively as

$y..=y_{0}+\epsilon y_{1}+\epsilon^{2}y_{2}+\cdots$ . (3.11)

Its zeroth order reads

$y_{0}=Ae^{i\mathrm{t}}+A^{*}e^{-it}$ , (3.12)

where $A$ is a complex constant. The equation governing $y_{1}$ is

$( \frac{d^{2}}{dt^{2}}+1)y_{1}=iA(1-|A|^{2})e^{it}+\frac{i}{\}A^{3}e^{3il}+cc$ , (3.13)

where $cc$ denotes the complex conjugate. From the structure of (3.13), we see that the solution has the

following structure:

$y_{1}=P_{1}e^{\dot{l}t}+Q_{1}e^{3it}+cc$ . (3.14)

By inspection we know $P_{1}(t, A)$ is first order in $t$ , and $Q_{1}(t, A)$ is a constant. bom (3.13) we see

$L_{t}P_{1}$ $=$ $iA(1-|A|^{2})$ , (3.15)

$R_{t}Q_{1}$ $=$ $\frac{1}{3}iA^{3}$ , (3.16)

where

$L_{t}$ $\equiv$
$\frac{d^{2}}{dt^{2}}+2i\frac{d}{dt}$ , (3.17)

$R_{t}$ $\equiv$
$\frac{d^{2}}{dt^{2}}+6i\frac{d}{dt}-8$ . (3.18)

The renormalized perturbation result reads

$y(t)=A_{R}(\tau)e^{il}+\epsilon[P_{1}(t,A_{R}(\tau))-\hat{P}_{1}(\tau, A_{R}(\tau))]e^{ie}+\cdots$ . ($.19)
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Here, $\hat{P}_{1}$ is the singular part of $P_{1}$ (note that if $P_{1}$ does not have an additive constant term, then $P_{1}=\hat{P}_{1}$).

Let $L_{\tau}$ be $L_{t}$ with its $t$ being replaced by $\tau$ . Then,

$0=L_{\tau}y=[L_{\tau}A_{R}-\epsilon L_{\tau}\hat{P}_{1}(\tau,A_{R})]e^{it}$ . (3.20)

That is,

$( \frac{d^{2}}{dt^{2}}+2i\frac{d}{dt})A_{R}(\tau)=\epsilon iA_{R}(1-|A_{R}|^{2})$ . (3.21)

From this we see that differentiation with respect to $\tau$ raises the order by $\epsilon$ . Therefore, to order $\epsilon$ we may

ignore the second derivative. Replacing $\tau$ with $t$ , we obtain to order $\epsilon$

$\frac{dA_{R}}{dt}=\frac{1}{2}\epsilon A_{R}(1-|A_{R}|^{2})$ . (3.22)

This is the RG equation (the amplitude equation) to the same order. Thus, we cal (3.21) the proto $RG$

equation. If we obtain the proto RG equation, then the RG equation can be obtain by an algebraic procedure.

Note that to obtain the proto RG equation to order $\epsilon$ we do not need any explicit perturbative result. This

feature becomes important when the problems become complicated (e.g., partial differential equations).

Instead of $\partial y/\partial\tau=0$ , to use $L_{\tau}y=0$ is the proto RG approach. Is this approach effective for higher

order results? For nonlinear problems we need slightly more information than required by the first order

result. Still, the approach is much simpler than the conventional perturbation calculation.

S.C Amplitude Equation–RG Theoretical Reduction

As we have seen above the essence of singular perturbation theory is the reductive perturbation. The proto

RG equation approach makes the reduction process transparent. Let us apply this to the $2\mathrm{D}$ Swift-Hohenberg

equation:
$\frac{\partial u}{\partial t}=\epsilon\langle u-u^{3}$ ) $-( \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+h^{2})^{2}u$ . (3.23)

The unperturbed solution is $Ae^{ikoe}+cc$ , where $A$ is a complex constant. We assume the perturbative solution

n8

$\prime u=Ae^{ik_{\mathfrak{F}}}+A^{*}e^{-ik\alpha}+\epsilon u_{1}+\epsilon^{2}u_{2}+\cdots$ . (3.24)

The first order term obeys

$\frac{\partial \mathrm{u}_{1}}{\partial t}+(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2})^{2}u_{\mathrm{i}}=(1-3|A|^{2})Ae^{ikae}-A^{\mathrm{S}}e^{3ik\mathrm{r}}+cc$ . (3.25)
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Its solution has the folowing form:7

$u_{1}=P_{1}(t, r)e^{ik\alpha}+Q_{1}(t,r)e^{3ikx}$ , (3.26)

where $P_{1}$ is singular (unbounded $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ non-integrable), because $\mathrm{r}=(x, y)$ . $e^{ikae}$ is the zero solution of

(3.25). Since

$[ \frac{\partial}{\partial t}+(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k^{2})^{2}]P_{1}e^{ikx}=(1-3|A|)^{2})Ae^{ikoe}$, (3.27)

we have

$[ \frac{d}{dt}+\frac{\partial^{4}}{\partial x^{4}}+4ik\frac{\partial^{3}}{\partial x^{3}}+2\frac{\partial^{2}}{\partial y^{2}}\frac{\partial^{2}}{\partial\varpi^{2}}+(-4k^{2}\frac{\partial^{2}}{\partial x^{2}}+\ k \frac{\partial^{2}}{\partial y^{2}}\frac{\partial}{\partial x}+\frac{\partial^{4}}{\partial y^{4}})]P_{1}$

$\equiv$ $LP_{1}=(1-3|A|)^{2})A$ (3.28)

Similarly, we obtain

$[ \frac{d}{dt}+(\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial x^{2}}+6ik\frac{\partial}{\partial x}-8k^{2})^{2}]Q_{1}$

$\equiv$ $RQ_{1}=-A^{3}$ : (3.29)

$P_{1}$ cannot be a constant, but $Q_{1}$ can.

The renormalized perturbation result has the following form:

$u=A_{R}(\tau,\rho)e^{ik\alpha}+\epsilon[P_{1}(t, ’*)-P_{1}(\tau, \rho)]e^{ik\approx}+Q_{1}e^{3ikx_{\vee}},$ . $\langle$ 3.30)

Consequently, the proto RG equation to order $\epsilon$ is

$( \frac{\partial}{\partial\tau}+L_{\tau,\rho}A_{R}(\tau, \rho))=\epsilon(1-3|A_{R}|^{2})A_{R}$ . (3.31)

Here, $L_{\tau,\rho}$ is $L$ with the replacement $tarrow\tau,$ $rarrow\rho$. $L$ contains superfluous terms. To remove such terms,

generaly speaking, how to observe (at what space-time scale to observe) the system must be specified. In

the present example, if we choose $t\sim x^{2}\sim y^{4}\sim l/\epsilon$ , we obtain

$( \frac{\partial}{\partial t}-4k^{2}\frac{\partial^{2}}{\partial x^{2}}+4ik\frac{\partial^{2}}{\partial y^{2}}\frac{\partial}{\partial x}+\frac{\partial^{4}}{\partial y^{4}})A_{R}(t,r)=\epsilon(1-3|A_{R}|^{2})A_{R}$ . (3.32)

That is, the usual NeweU-Wkitehead equation results. The choice of the orders above may look arbitrary,

but, actually, in this case there is no other choice. For example, if we assume $y^{4}\sim y^{2}x^{2}\sim t\sim 1/\epsilon$ ,
$\overline{\tau_{\mathrm{i}\mathrm{n}}}$the formal algebraic sense;to

$\mathrm{c}\dot{\mathrm{h}}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e}$

this form $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{C}\mathrm{a}}\mathrm{u}_{\mathrm{y}}$ is a $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}:\backslash$.
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then $\partial^{2}/\partial x^{2}$ and $\partial^{3}/\partial x\partial y^{2}$ dominate the left-hand side and cannot balance with the order $\epsilon$ terms on the

right-hand side. In this way we see that (3.32) is the unique order $\epsilon$ result.

The second order proto RG equation reads

$LA_{R}= \epsilon(1-3|A_{R}|^{2})A_{R}+\epsilon^{2}\frac{3}{64k^{4}}|A_{R}|^{4}A_{R}$. (3.33)

(3.31) is the equation obtained by Graham [6], but as seen clearly in } $3.33$) the equation is not consistent to

order $\epsilon$ (as first realized by [7]). If we wish to retain ffi the differential operators in (3.31), as seen in $(3.33\rangle$ ,

we need a higher order correction to the nonlinear term.

The reader might have asked what happens if the RG equation is reduced further. For example, the

Boltzmann equation may be obtained as an RG equation [8], but the equation can further be reduced to the

Navier-Stokes equation [9], if observed at further larger space-time scale. However, if we look at the system

at the same scale, no further reduction should be possible. For example, in the case of the Newel-Whitehead

equation, we can easily show that its RG reduction gives the same equation. In other words, it is the fixed

point of the system reduction.

We can derive phase equations, equations of motion for singularities of a field (such as the interface

equation, equation of motion for kinks and defects), etc., as RG equations. So far the assertion seems to

hold that al the named phenomenological equations are RG equations.

3. $\mathrm{D}$ All orders

Let us study the ‘simplest’ example of the singular perturbation proble$m$ again:

$( \epsilon\frac{d^{2}}{dt^{2}}+\frac{d}{dt}+1)y=0$ . (3.34)

Expanding as $y=y_{0}+\epsilon y_{1}+\cdots+\epsilon^{n}y_{n}+\cdots$ , we have

$\frac{dy_{i\iota}}{dt}\perp y_{\wedge}.-=-\frac{d^{2}y_{n-1}}{dt^{2}}$ $(3.35)\backslash$

’

Writing the lowest order result as $y_{0}=Ae^{-t}$ , the solution of this equation can be written in the folowing

form $y_{n}=AP_{n}e^{-\}$ , where $P_{n}$ is governed by:

$\frac{dP_{n}}{dt}=-\frac{d^{2}P_{n-1}}{dt^{2}}+2\frac{dP_{n-1}}{dt}-P_{n-1}$ (3.36)
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Its initial condition is $P_{n}(0)=0$ that alows us to identify $P_{\pi}$ and its singular part $\hat{P}_{n}$ .

Using these results, the perturbation result reads

$y(t)=A[1+\epsilon P_{1}(t)+\cdots+\epsilon^{ll}P_{n}(t)+\cdots]e^{-t}$ . (3.37)

$\acute{\mathrm{S}}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}$ our problem is linear, $P_{n}$ does not depend on $A$ . If we renormalize $A$ as usual as $A=ZA_{R}(\tau)$ :

$y(t)=A_{R}(\tau)Z[1+\epsilon P_{1}(t)-+\cdots+\epsilon^{n}P_{n}(t)+\cdots]e^{-t}$ , (3.38)

and if we assume (without any loss of generality) that $t-\tau$ is higher order infinitesimal than any power of
$\epsilon$ to $\mathrm{s}\mathrm{i}\mathrm{m}\dot{\mathrm{p}}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{y}$ the calculation, we obtain

$Z^{-1}--1+\epsilon P_{1}(\tau)+\cdots+\epsilon^{n}P_{\pi}(\tau)+\cdots$ . (3.39)

That is, for linear problems, renormalization is the same as the naive renormalization we are famihar with

in, e.g., solid state physics:

$A_{R}=A[1+\epsilon P_{1}(\tau)+\cdots+\epsilon^{n}P_{n}(\tau)+\cdots]$ . (3.40)

The renormalized coefficient obeys the $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ equation according to (3.36)

$\frac{dA_{R}}{d\tau}=\epsilon(-\frac{d^{2}A_{R}}{d\tau^{2}}+2\frac{dA_{R}}{d\tau}-A_{R})$ . (3.41)

Solving this order by order in $\epsilon,$ $P_{n}$ is determined. Note, however, [3.41) is obtained by introducing $y=$

$A_{R}(t)e^{-t}$ into the original problem (3.34). That is, (3.41) is the proto RG equation (to all orders). $\mathrm{F}\mathrm{r}\mathrm{o}\grave{\mathrm{m}}$

this the RG equation can be obtained by solving it for $dA_{R}/d\tau$ order by order. To the lowest order

$\frac{dA_{R}}{d\tau}=-\epsilon A_{R}$ . (3.42)

Using this to the right-hand side of (3.41}, we obtain to order $\epsilon^{2}$

$\frac{dA_{R}}{d\tau}=-(\epsilon+2\epsilon^{2})A_{R}$. (3.43)

The $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\dot{\mathrm{i}}\mathrm{o}\mathrm{n}$ is $\mathrm{b}\mathrm{a}\mathrm{s}\dot{\mathrm{i}}\mathrm{c}$ that differentiation raises the power of $\epsilon$ by one:

$\frac{d^{2}A_{R}}{d\tau^{2}}=-\epsilon\frac{dA_{R}}{d\tau}=\epsilon^{2}A_{R}$. (3.44)

In this way; for example, to order $\epsilon^{\theta}$ we have

$\frac{dA}{d\tau}=-(\epsilon+2\epsilon^{2}+5\epsilon^{\theta})A$. (3...45)
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3.$\mathrm{E}$ Merit of Proto RG Approach in Linear Cases

The reader may say that linear problems are so $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\cdot \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ such a calculation has no $m$erit. However, there

are many linear ordinary differential equation problems that cannot directly be solved by the RG approach

proposed in $[4]^{8}$. For example,9 if we solve

$\frac{d^{2}y}{dt^{2}}+(2+\epsilon)\frac{dy}{dt}+y=0$ (3.46)

perturbatively, the zeroth order solution has the for. $.$

$\mathrm{m}(A+Bt)e^{-t}$ . There is already a secular term that

complicates the identification of the divergence. However, there is no difficulty at all in the proto RG

approach. Let $y=A(t)e^{-t}$ . Then, the proto RG equation (although we need not name such a trivial

equation) reads

$\frac{d^{2}A}{dt^{2}}=\epsilon(A-\frac{dA}{dl})$ . (3.47)

From this, the lowest order RG equation is
$\frac{d^{2}A}{dt^{2}}=\epsilon A$ . (3.48)

Notice that the procedure is quite mechanical.

Nishiura [10] mentions other ‘difficult’ examples such as

$\frac{dy}{dt}=-\epsilon^{2}y+\epsilon y^{2}$ . (3.49)

This example helps us to make an implicit assumption in our RG method explicit. Its proto RG equation is

$\frac{dA}{dt}=\epsilon A^{2}-\epsilon^{2}$A. (3.50)

The examples we have discussed so far $\mathrm{a}\mathrm{U}\mathrm{o}\mathrm{w}$ us to assume that $A$ is of order unity. However, in this example,

the soiution we are interested in is of order $\epsilon$ . That is, although we claim that the RG approach does not

require any a priori knowledge, we need at least such an estimate. Therefore, both terms on the right hand

$\mathrm{f}\mathrm{f}\mathrm{i}\epsilon$ of (..3..50) ae comparable,. so no ffirther ied.uction is possible. That is, we must interpret that the proto

RG equation is the RG equation itself for this example.
$\epsilon$ In this papcr, problems were avoided with the aid of the approach via the canonical form of. the equation. With the

canonical form, our simple RG always works.
9This example was stressed by F. Furtado.
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As a not-so-trivial example ofreducing the proto RG to the RG equation, let us consider the bifurcation

problem of the Mathieu equation: the problem is to find the range of $\omega$ such that

$\frac{d^{2}y}{dt^{2}}+y=-\epsilon[\omega+2\cos(2t)]y$
$\langle$ 3.51)

does not have a bounded solution. Although this is not an autonomous $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\dot{\mathrm{i}}\mathrm{o}\mathrm{n}$ , for linear problems, it is

easy to see that the proto RG method works to ffi orders. The unperturbed solution reads

$y_{0}=Ae^{it}+A^{*}e^{-it}$ . (3.52)

$\mathrm{T}\dot{\mathrm{h}}\mathrm{e}$ easiest method that still allows us to avoid explicit calculation of perturbative results $\mathrm{f}\mathrm{i}:\mathrm{o}\mathrm{m}$ this equation

is to expand as

$y=A(t)e^{it}+\epsilon B(t)e^{3it}\backslash +\epsilon^{2}C(t)e^{5it}+cc$. (3.53)

This form is easily guessed from the fact that $e^{2it}$ appears with $\epsilon$ in (3.51). The procedure is to get the

equations (they may also be caled proto RG equations) for the coefficients, and then to reduce them to the

equation of $A$ alone. For example, to order $\epsilon^{2}$ we have

$\frac{d^{2}A}{dt^{2}}+2i\frac{dA}{dt}=-\epsilon(\omega A+A^{*})-\epsilon^{2}B$ (3.54)

The equation for $B$ is

$\epsilon(\frac{d^{2}B}{dt^{2}}+6i\frac{dB}{dt}-8B)=-\epsilon A-\epsilon^{2}B+\epsilon^{\}C$ (3.55)

Since derivatives give higher order powers of $\epsilon$ , we see fiom this $B=A/8$ to order $\epsilon$ . Hence, to order $\epsilon^{2}$ the

proto $\mathrm{R}\dot{\mathrm{G}}$ equation is reduced to

$\frac{d^{2}A}{dt^{2}}+,$ $2i \frac{dA}{dt}=-\epsilon(\omega A+A^{*})-\epsilon^{2}\frac{A}{8}$. (3.56)

It is easy to reduce this further to a first order differential equation, ffom which the bifurcation condition

can be read off.

3. $\mathrm{F}$ Beyond All Orders

As we have seen in the preceding subsection, the (proto) RG method works to all orders for linear problems.

It is not $\mathrm{h}\mathrm{a}\iota \mathrm{d}$ to see that even for nonlinear resonant problems, the procedure given here can be consistently
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performed order by order to all orders. However, it is clear that the method explained cannot give the other

solution of (3.34) whose leading order behavior is $e^{-t/\epsilon}$ .

One (and the conventional) way to retain such a solution is to scale the variable as $t=\epsilon s$ . Then, the

perturbation term becomes non-singular. However, we wish to reduce the amount of insight needed to solve

problems as much as possible, so that we avoid rescaling of the variables.

Although there might be other reasons, one chief reason why we cannot obtain the fundamental set of

the singularly perturbed ordinary differential equation $\mathrm{i}\mathrm{s}_{\wedge}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ the unperturbed equation has a lower $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}_{)}$

so that the dimension of the solution space is reduced. In other words, we cannot impose the auxihary

conditions that the original perturbed equation can accomodate. For example, $\langle$ 3.34) with $\epsilon=0$ is a first

order equation, so that there is no way to impose two independent auxiliary conditions.

From this point of view, (3.34) is not the simplest example. The simplest example seems to be

$\epsilon\frac{dy}{dt}+y=0$. (3.57)

Its general solution is $y=Ae^{-t/\epsilon}$ . Ifwe perform the expansion $y=y_{0}+\epsilon y_{1}+\cdots$ , then we obtain $y=0$ , which

is consistent with the asymptotic expansion of the exact solution. The problem of the simplest example is

that the zeroth order equation is not even an ODE, so that not a single auxihary condition can be imposed.

$\mathrm{T}\mathrm{h},\mathrm{i}\mathrm{s}$ observation suggests that, if we could impose the same number of auxiliary conditions to the

$\mathrm{p}$

. erturbed and unperturbed equations, we might be able to overcome the difficulty. The most natural

approach seems to be as folows. An initial condition may be imposed with the aid of the delta function as

$\epsilon\frac{dy}{dt}+y=\alpha\delta(t)$ (3.58)

with a homogeneous initial condition $y(\mathrm{O})=0$ . The zeroth order equation reads

$y_{0}=\alpha\delta(t)$ . (3.59)

The perturbation equations read
$y_{n}= \frac{dy_{n-1}}{dt}$ , $(3.60\rangle$

so that

$y= \sum_{n=0}^{\infty}\alpha(-\epsilon\frac{d}{dt})^{n}\delta(t)$ . (3.61)
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To sum this highly singular series, we use the Borel summation method. Let

$B(s) \equiv\sum_{n=0}^{\infty}.\alpha\frac{1}{n!}(-s\frac{d}{dt})^{n}\delta(t)=\alpha\delta(t-s)$ . (3.62)

Then, the Borel summation result reads

$y= \frac{1}{\epsilon}\int_{0}^{\infty}B(s)e^{-\ell[\epsilon}ds=\frac{\alpha}{\epsilon}e^{-1/\epsilon}$. (3.63)

Thus, we have obtained the result beyond all orders ffom a perturbative calculation.

From the above calculation, it is tempting to conjecture that perturbative calculations, appropriately

organized, can give us all the information about the original equation. Consequently, the results beyond all

orders can also be obtained perturbatively. A crucial ingredient seems to be to retain the degrees offfeedom

(Aexibility of introducing sufficiently many auxiliary conditions) in the original problem in the perturbative

processes.

4 End Remarks

The outstanding problems in the related fields of these lectures seems (other than mathematically unsatsis-

factory aspects already mentioned above):

(1) Clarify the relation between the St\"uckelberg-Petermann RG and the Wilson-Kadanoff $\mathrm{R}\mathrm{G}$. As the reader

knows, the latter has been rigorized for several systems, but the so-called field theoretical schemes have not

been. The ODE exam.ple that can be solved in both ways should be an ideal laboratory for this probkm.

(2) The Telation between the original equation and the reduced equation has been studied, but it is desirable

that there is a method closely related to the idea of $\mathrm{R}\mathrm{G}$ . Similar things may be said for $\mathrm{a}\mathrm{U}$ the problems in

this field of asymptotic analysis; is there any $\mathrm{R}\mathrm{G}$-related unified logic for rigorous results7

(3) PracticaJly, we are interested in much more complicated systems like proteins: describe the long-term

$(1- 1000 \sec)$ dynamics of a protein molecule consisting of 200 amino acid residues (with $\mathrm{s}$,urrounding water

molecules). Philosophically, $\mathrm{R}\mathrm{G}$-like means should work, but in practice, we have no idea to implement it.

A patient step-by step trial and error approach seems mandatory [13].
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