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1 Introduction and Main results

In the present paper, we treat the coupled system of wave equations with different
propagation speeds: '

(02 — A)f = F(f,0f,9,09), =zecRteR, (1

)

(0 — s’°A)g = G(f,0f,9,09), =z€R*tER, (1.2)

f(z,0) = fo(z) € H*,  8,f(z,0) = fi(z) € H“_l, z € R, (1.3)
9(z,0) = go(z) € H®, 3:9(z,0) = g1(x) € H*!, z e R, (1.4)

where 0 = 0,,(1 < j < n) or &; and s is a propagation speed of (1.2) with s > 1.
The nonlinear terms are as follows:

F =% 0;F, a; € C,

G =33, 5,G;, B; € C,
Fy =989, F,=f0g, F;=g0f,
Gy = fOf, Go= fdg, G3=gof.

Our aim is to prove the time local well-posedness with the low regularity initial
datas. Physically, this system describe the Klein-Gordon-Zakharov equations (K-G-
Z) and the coupled system of complex scalar field and Maxwell equations (C-M). we
can derive the time local well-posedness of (K-G-Z) and (C-M) from the time local
well-posednwss of this system.
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In the case of n > 4, we can prove the time local well-posedness with a > (n—1)/2
by the Strichartz estimate. This proof is indepent of the difference of the speeds.
In the case of n = 3, we can prove the time local well-posedness with a > 1 by
the Strichartz estimate. To prove the time local well-posedness with a = 1 in this
argument, we need the limiting case of the Strichartz estimate, which fails. But,
Ozawa, Tsutaya and Tsutsumi[5] proved the time local well-posedness in the case of
F = Fy,G = G5 with a = 1 by using the difference of speeds and Fourier restriction
norm method. By this result and the energy conservation, they proved the time
global well-posedness of (K-G-Z). By the same argument, T[7] proved the time local
well-posedness in the case of F = Fp, F = F3,G = G; with a = 1. By this result
and the energy conservation, we had the time global well-posedness of (C-M).

Fourier restriction norm method was developed by Bourgain [1] and [2] to study
the nonlinear Schrédinger equation and the KdV equation, and it was improved for
the one dimensional case by Kenig, Ponce and Vega[4]. The related method was
developed by Klainerman and Machedon [3] for the nonlinear wave equations.

In the case of n = 2, it seem to be difficult to prove the time local well-posedness
with @ < 3/4 by the Strichartz estimate. But, in the present paper, we have the
time local well-posedness with a > 1/2 by using the difference of speeds and Fourier
restriction norm method.

Before we state the theorem, we give several notations. For a function u(t, z),
we denote by %(7,£) the Fourier transform in both x and ¢ variables of u. For
ab€R,s>0and [ =+ or —, we define the spaces X:’,b as follows:

Xzt = {u € 8'®)|Jullgss < o0}
lullgep = | < € > P2y(r, )il

where Py (1,€) = (1+ |T+sl|§||), <&>=/1+|¢2and |- || =" ”Li,e‘ For T > 0,
we denote the cut function x(t),xr(t) € C§° as follows:

1 for [t| < 1/2,
t) = -
x(®) { 0 for |t| > 1,

xr(t) = x t/T).
For s > 0, we define W, +(t) = e¥™ where w = /1 — A. We put
(r.9) = [ 16 0)atEroieds.

Theorem 1.1. Let s >1 or1l>s>0,a >1/2 and 2a —1/2 > b > 1/2,then there
exist T' > 0 and problem (1.1)-(1.4) has time local unique solution satisfying

f,g € C(-T,T]: H*®R*)) N C*([-T,T) : H* '(R?)), (1.5)
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XT(t)(f +iw™8,f) € XH:,
xr(t)(g £ i(sw) ' Brg) €

Furthermore, this solution depends continuously on initial datas in the topology of

(1.5).

2 The proof of the Theorem
We first put
fe=fxiw8,f,
g+ = g L i(sw) 'd,g.
Then, (1.1)-(1.4) are rewritten as follows:

(u‘?t F D)fi = :Fw‘lF F (D - w)fi, » (21)
(i0; F sD)g+ = F(sw)™'G F s(D — w)gs, (2.2)
f(0) = fro, 9+(0) = gxo, (2.3)

where

fro= fotiw™'f, € H,
g0 = go + i(sw) gy € HC.

We try to solve (2.1)- (2 3) locally in time. For that purpase, we consxder the followmg
integral equations associated with (2.1)-(2.3): '

f) = XOWr () fro F ix() /0 Wislt — s){w F + (D - w)fs}ds, (24)

g+(t) = x(t) W, +(t) g0 F ixr(t) /0 Wes(t — s){w™G + (D —w)gs}ds.  (2.5)

If we try to apply the Fourier restriction norm method to (2.4)-(2.5), we have only
to prove the following estimates:

| Fallgrnomsve < CSillgslles ol xag, (26)

172l xaro-1re < CByull fill xoollgell o (20
[F50l xarro-14e < OBl fil xo 190l s | (2.8)
IIGIH_X;‘IL""H€ < Czj,k”fjuxfb’.’“fk”){f":’ (2.9)
[Gellxero-1re < CEjill fillxpollgrllxes, (2.10)

I1Gsllxaro-1+e < OBiill fill xpllgell o (2.11)



where a > 1/2,2a—1/2>b> 1/2‘and € > 0 which is sufficiently small and j, k£ and
[ denote either of + or — sign. Without loss of generality, we can assume f; and
grx > 0. Here,we note that

f=1/2(f+ + f-),
w
atf - Z(f-i- - f—)7
9=1/2(9+ +9-),
sw
Og = 2_i(g+ -9-)
Therefore, the left hand side of (2.6) is bounded by
Zjkllgiwgll xaro-re. (2.12)

To prove (2.6), we have only to prove

“gngk“Xf,?l,b-ue < C”gj“)(:),]’!||gk“X:,'t:’

which is equivalent to
(198 h) < Cllgsllsllgnll ozt ollBllc1o1-s-

by duality argument.We obtain this inequality by interpolating between (2.13) and
(2.14). In the same manner, we obtain (2.7)-(2.11) from Proposition 2.1.

Proposition 2.1. Assumethata > 1/2,b > 1/4,4a+2b >3 ands>1or0<s<1.
Then the following inequalities hold.

(£, 9] < Ol zsallglxap e e
107 9 < Ol s o Il (219

where j,k and l denote either of + or — sign.

Remark 2.1. This inequalities hold with a = 1/2,b > 1/2.But, because of b > 1/2,
we can’t apply Proposition 2.1 to (1.1)-(1.4).
Before we prove Proposition 2.1, we mention an essential lemma.

Lemma 2.1. Assume thata > 1/2,b > 1/44a+2b >3 and s > 1 or0 < s < 1.
Then, there is a positive constant C and the following inequalities hold.

sup < £ >% PI2(1,6)( < € >7% P2 (7, 8)%re < € >7% PIP(1,6)) < C
¢

where j,k and | denote either of + or — sign.
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Proof of Proposition 2.1. Without loss of generality, we can assume f,@' and h > 0.
We first prove (2.13). By the duality argument, (2.13) is equivalent to

| <€>* Pi(r,©)ghl,, < Cll <€ >* Poy(r, )7l < € >* Fly(r, &)hll,
which is equivalent to

| < &> PYi(7,6)( < £ >7° PR(r, §)Gkre < £ >7° P(r,6)R) || < ClIgIIIRI1>.
(2.15)

By the Schwartz’s inequality and Lemma 2.1, the left hand side of (2.15) is bounded

by

/ <€>% PE(r,6)( < £ >7% P(1, E)%rg < £ >72 PL2(1,8)) (§° #rg h?)drdet
R3

<c / § #rg R2drde
RS
<Ol IR0z,
< CigllIAl.-
We next prove (2.14).From (2.13), we have
|(f gh)| =[{w™™ f,w(gh))|

<[w?g, (W™ )R] + |(w*h, (W™ f)g)]
Scllgllegllfllx;gvb Hhuxfﬁ,‘"
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