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Abstract

We consider a minimization problem whose objective is presented by a set-valued
map, and treat as the problem as a set optimization problem. Also we define im-
proved natural criteria of solutions of such problems, and investigate such solutions;

especially we introduce some lower-semicontinuities and we show existence theorems.

1 Introduction and Preliminaries

Let X be a topological space, S a nonempty subset of X, (Y, <g) an ordered topological
vector space with an ordering solid convex cone K, and F' a map from X to 2Y with
F(x) # 0 for each z € S. We consider the following problem:

(SP) Minimize  F(x)
subject to z €S
Ordinary solutions of (SP) is considered as vector optimization with set-valued maps, how-
ever these are often not suitable for some set-valued optimization. Against the vector
optimization, set optimization with set-valued maps is introduced at [1] as follows: zo € S
is said to be l-minimal solution of (SP) if F(z) <' F(zo) and z € S implies F(zo) <' F(z),
and u-minimal solution of (SP) if F(z) <* F(xo) and = € S implies F(zy) <* F(x).

Such notions of solutions are natural, suitable, and useful for some set optimization

problem, however, there some faults as follows:

(i) there are too many solutions;
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(ii) it is difficult to check whether an element is a solutions or not.

In this paper, we introduce certain improved concepts of solutions which are more
natural to consider set optimization and consider relations between such notions and usual
ones. Also, we derive some cone-convexities for set-valued optimization, and we prove
existence theorems for such problems.

Definition 1.1 Let M C K™ be a set of weight. For nonempty subsets A, B of Y,
A<y B = (y,A+K)D (", B), Wy €M;
A<y B <= (y,A) C{y,B-K), VY eM

Proposition 1.1 Let M C K™ be a set of weight. For nonempty subsets A, B of Y/,
())A<!B=>A< B
(i) if M = K+ and A+ K, B+ K : closed convex, then A <! B < A <}, B.

In the rest of the paper, we fix a weight set M C K.

Definition 1.2 z, € S is said to be

(i) minimal solution with weight M if z € S, F(z) <}, F(zo) implies F(zo) <4, F();
(ii) w-minimal solution with weight M if z € S, F(z) <% F(zo) implies F(zo) <% F(z).

Example 1.1 (solutions with weight) ( ‘.
Let X =Y =R", K=K"=R?, M = {er,es,...,6,}, S C X, F: 5 — 2. Assume
that for each z € S, there exists y € X such that y <! F(z). Then, SRR

(i) zo : l-minimal solution == Inf F(zo) € Min | J Inf F(z)
z€eS
(i) o : u-minimal solution = Sup F(z) € Min | J Sup F(z)
: zeS

The reverse implication is satisfied when F' be a compact valued map.

In this example, we feel active impression from Fminimal solution and passive from u-
minimal solution. About this example, we have the following proposition:

Proposition 1.2 (i) If | Inf F(z) is closed, and there exists y* € Y such that (y*,-) is
bounded below on Uzelilf F(z), then there exists an l-minimal solution.

(ii) if | Sup F(z) is clg(c)es,zd, and there exists y* € Y such that (y*,-) is bounded below on
UEGSSup F(z), then there exists an u-minimal solution.
€S
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Example 1.2 (check whether A <' B or not) . ,
Let M = {e},es,...,e,} C R", and A, B C R" with |A| = |B| = m. When we check if
A <! B, the worst order of calculus is m?n. However if we check whether A <}, B or not,

it is only nm.

2 Continuities and Existence Theorems

We redefine cone-continuities of set-valued optimization based on [1], characterize such

notions, and show main results.

Definition 2.1 A set-valued map F is said to be
(i) Flower semicontinuous on S with weight M if for any [-closed subset A of Y,
L'(4) = {z € S|F(z) <)y A}

is closed.
(ii) I-demi-lower semicontinuous at zo € S with weight M if for each net {z)} with
F(CL‘)\I) SlM F(CL‘,\) if A< X and z\ — o,

F(zo) <}y Limsup(F(z,) + K)
A

is satisfied. F' is said to be l-demi-lower semicontinuous on S with weight M if it is
I-demi-lower semicontinuous at each point of S.

Also we define u type lower semicontinuities in the similar way.

We can define another lower-semicontinuities as [ and u types, however we omit, see [1].

Proposition 2.1 (i) If F is l-lower semicontinuous then F' is also Flower semicontinuous
with weight M,

(ii) If F is I-demi-lower semicontinuous then F'is also ldemi-lower semicontinuous with
weight M.

Proposition 2.2 If F is Ilower semicontinuous with weight M then F is also l-demi-lower
semicontinuous at zy € S with weight M.

In the two propositions above, we can show the similar claims with respect to u type
semicontinuities. By using such continuities, we have the following existence theorems:

Theorem 2.1 If S is compact and F is l-demi-lower semicontinuous with weight M, then
there exists an l-minimal solution of (SP) with weight M.
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Theorem 2.2 If (X, d) is a complete metric space, Yis a locally convex topological vector
space, F'is Iclosed and IHower semicontinuous with weight M, and the following condition
is satisfied: ’ - ’ '

there exists y* € K\ {6*} such that

- inf (y*, F'(z)) is finite for each z € S, and y
- F(z1) <l F(x9), 71,22 € S = inf (y*, F(z2)) —inf (y*, F(21)) > d(z2, 21).

Then, there exists an L-minimal solution of (SP) with weight M.
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