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Abstract
This report is based on the following papers:

[HYM] M.Hashimoto and T.Yamazaki, Further eztensions of characterizations of chaotic order
associated with Kantorovich type inequalities, Scientiae Mathematicae, 3 (2000), 127-136.

[HYN] M.Hashimoto and M.Yanagida, Further characterizations of chaotic order associated with
Kantorovich type inequalities via Furuta inequality, preprint.

We showed characterizations of chaotic order via Kantorovich inequality in [33]. Recently as
a nice application of generalized Furuta inequality, Furuta and Seo showed an extension of one
of our results and a related result on operator equations. In this report, by using essentially
the same idea as theirs, we shall show further extensions of both their results and our another
previous result which is a characterization of chaotic order via Specht’s ratio. Moreover we shall
show further extensions of our results.

1 Introduction

An operator means a bounded linear operator on a complex Hilbert space H. An operator T is
said to be positive (denoted by T > 0) if (T'z,z) > 0 for all x € H and also an operator T is said to
be strictly positive (denoted by T' > 0) if T is positive and invertible. The following Léwner-Heinz
theorem is well known: A > B > 0 ensures A* > B* for any « € [0,1]. For the sake of convenience
on application, the following Theorem F was established.

p l+rjg=p+r
Theorem F (Furuta inequality [10]). ( ~ ) p

If A> B >0, then for eachr > 0,

(i) (B5APB%): > (BEBPB%)4

and

(i)  (AFAPAS)T > (AEBPA%):

(1,0)

hold for p > 0 and g > 1 with (1 + rig>p+r. (0, —1)

FIGURE 1

We remark that Theorem F yields Lowner-Heinz theorem when we put r = 0 in (i) or (ii) stated
above. Alternative proofs of Theorem F are given in [6][24] and also an elementary one-page proof in
[11]. It is shown in [29] that the domain drawn for p,q and r in the Figure 1 is best possible one for
Theorem F.

As an extension of Theorem F, the following Theorem G was obtained in [15].

Theorem G ([15]). If A> B >0 with A > 0, then for each t € [0,1] end p > 1,

Foi(A,B,r,s) = A% (A3 (AT BPAT ) A5} o neir AT
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is decreasing for r >t and s > 1, and F, (A, A,r,s) > Fp (A, B,r,s), that is, for each t € [0,1] and
p21,

1) AV > (A (AT BPAT) ATy
holds for any s > 1 and r > t.

Ando-Hiai [2] established excellent log majorization results and proved the following useful in-
equality equivalent to the main log majorization theorem: If A > B > 0 with A > 0, then

A" > {AF(AT BPAT) AR}

holds for any p > 1 and r > 1. Theorem G interpolates the inequality stated above by Ando-Hiai and
Theorem F itself, and also extends results of [7][12] and [13]. A nice mean theoretic proof of Theorem
G is shown in [8] and one-page proof of (1.1) is shown in [18]. In [21], we showed equivalence relation
among the inequality (1.1), monotonicity of the function F, (A, B,r,s) in Theorem G and related
results. The best possibility of the outside exponents of both sides in (1.1) is shown in [30] and its
simplified proofs are shown in [9] and [32].

On the other hand, related to Lowner-Heinz theorem, the following proposition is also well known:
A > B > 0 does not always assure A® > B* for any o > 1. As a way to settle this inconvenient, the
following result is given in [17]. '

Theorem A.1 ([17]). If A> B >0 and MI > A > mi > 0, then

MN\*!
(E) AP > Ky (m, M,p) A" > B? forp> 1,
where
(12) K. (m,M,p) = (p— D (247 — mP)"

PP (M —m)(mMpP —mpM)P

We remark that Theorem A.1 is related to both Hoélder-McCarthy inequality [25] and Kantorovich
inequality: If MI > A > mI > 0, then (A~ 'z,z) (Az,z) < ('"4—;%12— holds for every unit vector
z in H. The number %ﬁ is called Kantorovich constant and K, (m,M,2) = % where
K, (m,M,p) is stated in (1.2), so that K, (m,M,p) is a generalization of Kantorovich constant.
Many authors have been investigating Kantorovich inequality, among others, there is a long research
series of Mond-Pecarié, some of them are [26] and [27].

The order between positive invertible operators A and B defined by log A > log B is said to be
chaotic order which is a weaker order than usual order A > B. As an application of Theorem F, the
following characterization of chaotic order is well known.

Theorem A.2 ([7][13]). Let A and B be positive invertible operators. Then the following assertions
are mutually equivalent:

(i) log A > log B.
(i) AP > (A5BPA%)% for allp > 0.
(iii) A* > (A3BPA%)# for allp >0 andu > 0.

(i) (ii) of Theorem A.2 is shown in [1]. Recently a simple and excellent proof of (i)=(iii) is shown
in [31] by only applying Theorem F, and a simplified proof of (ii)=>(i) is shown in [22].

We prove the following two other characterizations of chaotic order in [33] as applications of
Theorem A.1 and Theorem A.2.
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Theorem B.1 ([33]). Let A-and B be positive invertible operators satisfying MI > A > mI > 0.
Then the following assertions are mutually equivalent: x

(i) log A > log B.
(i) (mP + MP)?
4mp MP

Theorem B.2 ([33]). Let A and B be positive invertible operators satisfying MI.> A > mI > 0.
Then the following assertions are mutually equivalent:

AP > B? for allp > 0.

(i) log A > log B.
(i) Mn(p)AP > BP for allp >0, where h =% > 1 and

(19 M) =
' P elog RFFT
Theorem B.2 gives a more precise sufficient condition for chaotic order than Theorem B.1 since

L’m—yﬁ?—z— > My (p) holds for all p > 0 by the following lemma.

Lemma B.3 ([33]). Let K (m,M,p) be defined in (1.2). Then

F(p,r,m,M) = K+<m",M’",p—:r)

is an increasing function of p, r and M, and also a decreasing function of m for p >0,r>0 and
M > m > 0. Moreover,

. » s P+
TEIEOK+(m M ,pT ) = My (p),
and
P y
(1.4) (%) > K, (m",M’,p:f") > My(p) > 1.

hold for p> 0, 7 >0 and M >m > 0, where h = 2 > 1 and My, (p) be defined in (1.3).

We remark that M,(1) = %_?‘1_ is called Specht’s ratio [4] [28}, which is the best upper bound

of the ratio of the arithmetic mean to the geometric mean of numbers z; satisfying M >z, > m >0
(i=1,2,---,n), that is, the following inequality holds:

1
(h = 1)h"=— Ty + 2o+t 2z,
AR SAA 77 N .
elogh P1%277 Tn 2 n

In 3], we showed a simplified proof of Theorem B.2 by using determinant for positive operators
defined in [4] and [5]. Moreover we showed the following result which interpolates (i)=(ii) of both
Theorem B.1 and Theorem B.2 in [33].

Theorem B.4 ([33]). Let A and B be positive invertible operators satisfying MI > A > mI > 0. If
log A > log B, then ‘

pt+r

K, (m’,MT, ) AP > B? holds for p> 0 and r > 0,

where Ky (m, M,p) is defined in (1.2).
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As a nice application of Theorem G, Furuta and Seo established the following result in [22].

Theorem C.1 ([22]). Let A and B be positive invertible operators. Then the following assertions
are mutually equivalent: ‘

(i) log A > log B.

(ii) For each o € [0,1], p > 0, u > 0 and s > 1 such that (p + au)s > (1 — a)u, there ezists the
unique invertible positive contraction T satisfying

TAPHa)sT — (4% BP A% s,

(iii) For each o € [0,1], p> u > 0 and s > 1, there exists the unique invertible positive contraction
T satisfying
TAP+HewsT = (A% BPAS ),

(iv) For each p > 0, there exists the unique invertible positive contraction T satisfying
TAPT = BP.
Moreover as an extension of Theorem B.1, Furuta and Seo also showed the following result based
on Theorem C.1 in [22].

Theorem C.2 ([22]). Let A and B be positive invertible operators satisfying MI > A > mI > 0.
Then the following assertions are mutually equivalent:

(i) log A > log B.
(i) For each a € [0,1], p> 0 and u > 0,

(m(p-l-au)s + M(p+au)s) 2

(p+au)s aw au g
4dm(ptaw)s pf(ptoau)s A > (AT BPA™)

holds for all s > 1 such that (p + au)s > (1 — a)u.

(ili) For each o € [0,1] and p > u > 0,

(m+ows 4 M(p+au)s)2

+au)s au au
Imrews ey AT T 2 (AY BrAY )

- holds for all s > 1.

i) (m? + MP)?

4mpMP .

In this report, we shall show a further extension of Theorem C.1. And also, by using Theorem G,

we shall show a further extension of Theorem C.2 which interpolates both Theorem B.1 and Theorem
B.2. Moreover we shall attempt to extend Theorem C.1 and Theorem C.2 by using Theorem F.

AP > BP holds for all p > 0.

2 Extensions of the results by Furuta and Seo

Firstly, as an extension of Theorem C.1, we have the following characterization of chaotic order
via operator equations.

Theorem 1. Let A and B be positive invertible operators. Then for each natural number n, the
following assertions are mutually equivalent:
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(i) log A > log B.

(ii) For each a € [0,1],p>0,u >0, s> 1 andr > 1— « such that {nr + (n+ 1)a}lu > (p+ au)s,
there exists the unique invertible positive contraction T = T(n,a,p,u,s,r) satisfying

(ptou)s+ru —(ptau)stnru u —(ptau)stnru
(2.1) T(AT =T T)" = A~ 204D (AT BPAS ) AT 204D

(iii) For each o € [0,1], p > nu > 0, s > 1 and real numbers r such that {nr+ (n+1)a}u > (p+ou)s,
there exists the unique invertible positive contraction T = T'(n,a,p,u,s,r) satisfying

(ptou)s+ru ~(ptau)s+nru ﬂ au —(ptau)st+nru
(2.1) T(A nt1 ) = A In+1) ( 2 BPAS )SA Snt1)

(iv) For each p > 0, there exists the unique invertible positive contraction T = T'(n,p) satisfying
T(A=T)" = B?.

The following Corollary 2 is easily obtained by Theorem 1.

Corollary 2. Let A and B be positive invertible operators. Then for each natural number n, the
following assertions are mutually equivalent:

(i) log A > log B.

(ii) For each a € [0,1], p > 0, u > 0 and s > 1 such that (p + au)s > n(l — a)u, there ea:zsts the
unique invertible positive contraction T = T'(n, a,p, u, s) satisfying

T(ATFET) = (AT BPAT)".
(iii) For each a € [0,1], p > nu > 0 and s > 1, there exists the unique invertible positive contraction
T =T(n,q,p,u,s) satisfying
(ptau)s ou au
T(A™+= T)"=(A=2 BPA®)".

(iv) For each p > 0, there exists the unigue invertible positive contraction T = T'(n,p) satisfying

T(AXT)" = BP.

Remark 1. Corollary 2 implies Theorem C.1 when we put n = 1, that is, Theorem 1 includes
Theorem C.1 as a special case.

Secondly, as an extension of Theorem C.2, we have the following Kantorovich type characterlzatmn
of chaotic order.

Theorem 3. Let A and B be positive invertible operators satisfying MI > A > mI > 0 and
K (m,M,p) be defined in (1.2). Then the following assertions are mutually equivalent:

(i) log A > log B.
(ii) For each natural number n, ac 0,1}, p>0 and u > 0,

(ptou)stru (ptau)s+ru

Ky (m S MR g 1) At > (A% BP AT

holds for all s > 1 and r > 1 — a such that {nr + (n + 1)a}tu > (p+ au)s.
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(iii) For each natural number n, o € [0,1] and p > nu >0,

(ptau)stru (pteou)stru

22) Ky (m S M ,n+1) Arew)s > (4% BPAT)®

holds for all s > 1 and real number r such that {nr + (n + 1)a}u > (p + au)s.

(iv) For each natural number n and p > nu > 0,
K+(m"n+%,M%’+%,n+ 1) AP > BP
holds for all real number r such that nru > p.

Remark 2. Theorem 3 implies Theorem C.2 as follows. We have (ii) [resp. (iii)] of Theorem C.2
when we put n =1 and r = QJ#E in (ii) [resp. (iii)] of Theorem 3. And put n =1 and r = £ in
(iv) of Theorem 3, then we have (iv) of Theorem C.2.

As mentioned above, Theorem 3 yields Theorem C.2 and Theorem C.2 yields Theorem B.1. More-
over Theorem 3 also yields the following Theorem 4 and Theorem 4 yields Theorem B.2, which is a
more precise estimation than Theorem B.1.

Theorem 4. Let A and B be positive invertible operators satisfying MI > A > mI > 0, and
K, (m,M,p) and My(p) be defined in (1.2) and (1.3), respectivery. Then the following assertions
are mutually equivalent:

(i) log A > log B.
(ii}) For each natural number n, a € [0,1], p >0 andu >0

(p+au)s—au (ptau)s—au

K+ (m n ,M n ,N + 1) A(p+au)s 2 (A%BPA%)’S

holds for all s > 1 such that (p + au)s > (n + a)u.

(i) For each natural number n, a € [0,1] and p > nu > 0,

(ptau)s—au (ptau)s—au

Ky (m " M n ,n+1)A(”+"““)éx > (A%BPA";—")s

holds for all s > 1.
(iv) My(p) AP > BP holds for all p > 0, where h = & > 1.

m

3 Proofs of results

In order to prove Theorem 1, we prepare the following result which is an application of Theorem

G.

Proposition 5. Let A and B be positive invertible operators. If log A > log B, then

(3.1) R S (AT (AT BPAT) AT

holds for any u >0,p >0, €[0,1],s>1,r>1—a and ¢ > 1 with u(a+r)g > (p+ au)s + ru.

We remark that Proposition 5 is a part of [16, Theorem 2.2]. For the sake of later argument, we
recall the proof of Proposition 5.
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Proof of Proposition 5. Both sides of (3.1) equal I in case u = 0, so that we have only to consider the
case u > 0. By Theorem A.2, log A > log B implies the following (3.2):

(3.2) A* > (A¥BPA%)5+v  forp>0and u > 0.

Put A; = A* and B, = (A5 BPA%)#¥=, then A; > B; > 0. By (1.1) of Theorem G, -

(p1—t)s+r

(3.3) A7 > {AF(A7 BUAZ AR}

holds for p; > 1,t € [0,1],s> 1,7 >t and ¢ > 1 with (1 —t+7)g > (p1 —t)s +r. (3.3) is equivalent
to the following (3.4):

u(py—t)stru

(3.4) AT S AT (AT (ASBPAR) R A }s 2.

b

Put p; = B2 > land a =1 -t € [0,1] in (3.4), then we have the following (3.1):

(prau)s+ru

(3.1) AP S AR (AT BPAT) AT

foru>0,p>0,a€(0,1],s>1,r>1-aand qg>1with u(a+r)g > (p+au)s +ru.
Consequently, the proof of Proposition 5 is complete. O

Proof of Theorem 1. Let n be a natural number. We shall show (i)=>(ii)=>(iii)=(iv)=>(i) as follows:

(i)==(ii): In case u = 0, (ii) holds obviously since the assumption of (ii) ensures ps = 0 and (2.1)
turns out to be T™*t! = I, so that we have only to show the case v > 0 as follows: By putting
g=n+1>1in (3.1) of Proposition 5, log A > log B implies the following (3.5):

(ptoau)s+ru

(3.5) AP S (AR (AT BPAT ) AT Y

for a €[0,1], p > 0,u > 0,5 > 1 and r > 1 — a such that {nr + (n +1)a}u > (p+ au)s. (3.5) implies
the following (3.6): ‘

(3.6) I>A_{£P2+(—ME;‘M(A DSAS )ZT%-TA-——{(L%%N—}>O,'
where D = A% BPA% . Let T = T(n,,p,u,s,r) be defined as follows:

—{(ptou)stru} {(p+au)s+ru}
(3.7) T=A icesy (A 2 DA ‘n+1A STy

Then it turns out that T is an invertible positive contraction by (3.6) and

(ptau)stru (ptrau)s+ru

(3.8) AR AT = (AT DAY )R

holds by (3.7). Taking the (n+1)-th power of both sides of (3.8), we obtain

(ptou)stru (ptau)stru

(3.9) (A5G A TS )t = AT DoAY,

(3.9) is equivalent to

(ptau)stru (ptau)stru (pteu)stru au au

AT T(AT =m T)"A 20 = AT (AY BPAT )°A7,

of

that is, we have (2.1).
Uniqueness of T' can be shown as follows: Assume that for each a € 0,1, p>0,u>0,s2>1
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and r > 1 — a such that {nr + (n + 1)a}u > (p+ au)s, there exists an invertible positive contraction
S = S(n,a,p,u,s,r) satisfying:

(ptou)s+ru —(ptau)stnru —(ptau)s+nru
n+1

(3.10) S(A S)t= A" =FD (A% BPAT)AT GAD

By (2.1) and (3.10), we have

(ptou)s+ru
1

(3.11) S(ATSHT ) = T(ASHTE )"

(3.11) is equivalent to

(A ELED ™ g A ST L = (A“’“Z‘(','.‘fﬁ"" T A TS yrtL,
Then we have S = T. Hence the proof of (i)==>(ii) is complete.
(ii)==(iii): (iii) holds in case u = 0 obviously by the same discussion as (ii). Let p > nu > 0 in (ii),
then the condition r > 1 — a follows from p > nu > 0 and the other assumptions of (ii) since

1 1
rz(p+au)s_n+ a2p+au_n+ a:ﬁ—aZI-a,
nu n nu n nu

so that we have (iii).

(iil)=>(@iv): Put r = (”—n‘f‘“l—s-, a =0 and s = 1 in (iii), then we have
T(A=T)" = BP

holds for each p > nu > 0, i.e.; p > 0. (iv) holds in case p = 0 obviously, so that the proof of
(iii)==(iv) is complete.

(iv)==(i): Assume (iv). Then we have

(3.12) (ABTAF) = ABT(ART)" A% = A% BPA% by (iv).

By taking the n#“—th power of both sides of (3.12), we have the following (3.13):

(3.13) A% > ATTA% = (A% BPA% )=

holds for any p > 0 since I > T > 0. Put X = (AQ%BPAEEE)TI«CT, then we have

AR -1 (AZBPAF )= — T

by (3.13)
p p
- n+l _ n n—1 -1
(3.14) _X-1_ X I)(X +;X +--+X+1)
p p
A% (BP — DA% A% T\ :
:( ( , JAz 5 >(X"+X"‘1+~-+X+I)‘1.

Tending p — +0 in (3.14), we have
1 1 1
—logA > —— 11 -
nlog _n+1<ogB+nlogA)

since X = (A#‘%BPA%)#; — I as p = 40, so that log A > log B.
Consequently the proofof Theorem 1 is complete. 0
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We remark that a proof of (iv)=(i) has been already shown in [14, Theorem 2.1], and the idea of
factorization which we use in the above proof of (iv)=>(i) is due to Furuta [20][19].

Proof of Corollary 2. Put r = L&%ﬁ)ﬁ in (i) and (iii) of Theorem 1, then the condition {nr + (n +
a}u > (p + au)s in (ii) is satisfied and r > 1 — a can be rewritten as (p + au)s > n(1 — a)u. Then
we have Corollary 2. O

In order to prove Theorem 3, we prepare the following lemma.

Lemma 6. Let A be a positive invertible operator satisfying MI > A > mlI > 0 and T be an invertible
positive contraction. Then

Ko(m,M,p+1) AP > T*(T% AT%)PT*
holds for p > 0, where K (m, M,p) is defined in (1.2).
We need the following Lemma D.1 to prove Lemma 6.
Lemma D.1 ([15]). Let A be a positive invertible operator and B be an invertible operator. Then
(BAB*)* = BA*(A*B*BA%)*"1 A B*
holds for any real number X.

Proof of Lemma 6. The condition I > T > 0 asserts 4 > A3TAz > 0. Put Ay = A and B, =
A3T A3, then A; and B satisfy A; > By > 0 with MI > A; > mlI > 0. Applying Theorem A.1,

(3.15) Ky (m,M,p+1)4,"*! > B;"*!

holds for p > 0, where K, (m, M, p) is defined in (1.2). (3.15) is equivalent to the following by Lemma

D.1.
(3.16) Ko (m,M,p+1)APT > (A3TA%)PH
' = AST3(THAT#)PT3 A%,

Multiplying A7 on both sides of (3.16), the proof is complete. O

Proof of Theorem 3.

(i)==(ii): Let n be a nutural number, a € [0,1], p > 0, v > 0, s > 1 and r > 1 — a such that
{nr + (n + 1)a}u > (p + au)s. By (i)=>(ii) of Theorem 1, there exists the unique invertible positive
contraction T satisfying the following (2.1):

1) (A=) = ATHRT (A% Br AT ) AT

By scrutinizing the proof of Theorem 1, (2.1) is equivalent to the following (3.9):

(ptou)stru (ptou)stru

(3-9) (A 2(n+1) T A 2(=+1) )n+1,___A%DsA121,

where D = A" BPA%". (3.9) can be rewritten as

(ptau)st+ru au)stru (ptou)stru Tu ru
(3.17) ATEETE T T AT T ATSRAD T = AR DAY
(ptau)stru (ptau)stru (ptoau)s+ru
Let A, = AP 5™ Then MI > A > mI > 0 ensures M 31 1 > Ay > m =+ ]
> 0 and

(ptaw)stru (ptoau)stru
n

S 0+ 1) 4 > THT AT T

(3.18) K, (m
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holds for each nutural number n by Lemma 6. (3.18) can be rewritten as

(ptau)stru (ptau)stru {(ptau)stru}n
n+1

K+(m el Vi = ,n+1)A

(3.19)

(ptau)s+ru

>T3(T2A T =31~ T3)"T3,

+au)s+ru

Multiplying A “5t40 - on both sides of (3.19), we have

(ptou)stru (ptau)stru

K+ (m nt1 M w+1 ,n+ 1) A(p+au)s+ru

?

(3.20) >A‘—Ei2‘z‘nli—f)r£T2(T AM %)”T%A@;‘("—:ﬁ#
= AT D*AT.

Hence the proof of (i)==(ii) is complete.

(ii)==(iii): (iii) holds in case u = 0 since the assumption of (iii) ensures ps = 0 and (2.2) turns out to

be K. (1,1,n + 1)I > I by (1.4) in Lemma B.3. Let p > nu > 0 in (ii), then the condition r > 1 — a

follows from p > nu > 0 and the other assumption of (ii) since
2(p~+—ozu)s_n+10[>p-|-ozu_n+1 p

> a=—-a>1—aqa
nu n nu n nu

so that we have (iii).
(iii)=(iv): Put o= 0and s = 1 in (iii).

P P)2 '
(MP + mP)* by (1.2), so

. . _ — B i (; » AP 9) —
Proof of (iv)==(i). Put n =1 and r = 2 in (iv). Then K (mP, M?,2) AP
that
(mP + MP)®
.2 AP > BP

(3:21) 4mP MP -
holds for all p > u > 0, i.e., p > 0. By Theorem B.1, (3.21) implies (i).

Whence the proof of Theorem 3 is complete. 0O

Proof of Theorem 4. In case u = 0, (i)=-(ii)=>(iii) holds by Theorem B.4, because (ii) and (iii) can be
rewritten as follows: For each nutural number n,

pspS+L s s
K+( M )AP>BP

n

holds for ps > 0.

(i)==(ii): In (i)=>(ii) of Theorem 3, we can put r = @M — 2tlq since (p+ ow)s > (n+a)u yields
r= 5’“;—";“3 2dly > 1 — a. Hence the proof of (1)=>(11) is complete.

(ii)==(iii): Put p > nu > 0, then the required condition (p + au)s > (n + a)u is satisfied.
(iii)==(iv): Put v = 0 in (iii), we have, for each nutural number n,

(3.22) K, (m’l—‘,M%i,n + 1) APs > BPs

holds for ps > 0. (3.22) is equivalent to

K, (m%",Mn’ pst )A"s > B

Tending n — oo (i.e., 22 — 0), we have (iv) by Lemma B.3.
(iv)=(i) has been already shown in Theorem B.2.
Hence the proof of Theorem 4 is complete. (]



157

4 Some consideration on the results

In this section, we shall rewrite the results shown in Section 2 into more simple form by expressing
them without one of the parameter u. We recall that in order to give their proofs in Section 3, we
used the following result which is an application of Theorem G.

Proposition 5. Let A and B be positive invertible operators. If log A > log B, then

(ptou)stru

(3.1) AT S (AT (AF BPAT) AT )
holds for anyu >0, p >0, a €[0,1], s >1,r>1—a and ¢ > 1 with u(a +r)g > (p+ au)s + ru.

In (3.1), the parameter u does not appear by itself, but appears only in the form of au and ru.
Put a; = au and r; = ru in Proposition 5, then (3.1) can be rewritten as follows:

(ptay)str]
A

P S (AT (AT BPAT ) AT

Here we consider the conditions of the parameters a; and r;. We recall 71 ]
that the conditions of the parameters a;, r and u are as follows:

(4.1) a€l0,1],r>1—-aand u>0. : u

(4.1) is equivalent to the following (4.2):

(4.2)
ai=au€[0,u], m=ru>u—au=u—oa and u>0. 01 v o
Figure 2 expresses the domain of a; and ry for a fixed v > 0 in (4.2). FIGURE 2

Since the parameter u does not appear in the statement any longer, we
can choose the value of u arbitrarily. a; and r; can attain any positive
real numbers by choosing the value of u appropriately, so that (4.2) implies the following (4.3):

(4.3) a1 >0and ry >0.
Hence Proposition 5 can be rewritten as follows:

Proposition 5’. Let A and B be positive and invertible operators. If log A > log B, then

(pta)str

(4.4) AT S (AB(ASBPAS) A5)s

holds for any p >0, a>0,s> 1,7 >0 and ¢ > 1 with (a +7)g > (p+a)s+r.

By using Proposition 5’ instead of Proposition 5 in their proofs, our previous results in Section 2
can be rewritten as follows. Here we omit to describe the proofs.

Theorem 1°. Let A and B be positive invertible operators. Then for each natural number n, the
following assertions are mutually equivalent:
(i) log A > log B.
(i) For eacha >0, p >0, s > 1 and r > max{0, %(p + a)s — ("—:Qa}, there exists the unique
invertible positive contraction T =T (n,a,p,s,r) satisfying

(pta)s+r —(p+a)stnr o o —(pta)stnr
T(A B T)* = A7 2G+D (AEBPAE‘)SA D,
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(iii) For eacha >0, p>na, s >1andr > L(p+a)s - ntlo, there exists the unique invertible
positive contraction T = T(n,a,p,s,r) satzsfymg

(p+n str —(p+a)stnr s | —(pta)stnr

)" = A7 24D (A%BPA%) AT 2 ntD)

T(A

(iv) For each p > 0, there exists the unique invertible positive contraction T = T(n,p) satisfying

T(A=T)" = BP.

Corollary 2°. Let A and B be positive invertible operators. Then for each natural number n, the
following assertions are mutually equivalent:

(i) log A > log B.

(ii) For each a > 0, p > 0 and s > 1, there exists the unique invertible positive contraction T =
T(n,a,p,s) satisfying
(p+a)s

T(AT="T)" = (AT BPAE)".

(iii) For each a > 0, p > na and s > 1, there exists the unique invertible positive contraction
T =T(n,a,p,s) satisfying

(pta)s o ay\ s

T(A™ST)" = (A% BPA%)

(iv) For each p > 0, there exists the unique invertible positive contraction T = T'(n,p) satisfying

T(A=T)"™ = BP.

Theorem 3’. Let A and B be positive invertible operators satisfying MI > A > mI > 0, and let
K, (m,M,p) be defined in (1.2). Then the following assertions are mutually equivalent:

(i) log A > log B.

(ii) For each natural number n, o > 0 and p > 0,

(pta)str (pta)s+r

Ky (m 53 M 1) AP > (43 B74%)°

holds for all s > 1 and r > max{0, 1 (p + a)s — Ztla}.

(iii) For each natural number n, o > 0 and p > na,

(pta)s+r (pta)s+r

K, (m ™55, MO g 1) Ao > (A% BPAS)’

holds for all s > 1 andr > L (p+ a)s — 2Ha.
(iv) For each natural number n and p > 0,
K, (m%i,Mﬁi—?,nJr 1) AP > BP

holds for all r > E.



159

Theorem 4’. Let A and B be positive invertible operators satisfying MI > A > mI > 0, and let
K, (m,M,p) and My(p) be defined in (1.2) and (1.3), respectively. Then the following assertions are
mutually equivalent:

(i) log A > log B.

(ii) For each natural number n, a > 0 and p > 0,

(pta)s—a (pta)s—a

K+(m o M ,n+1)A(P+“>32(A%BPA%)S

holds for all s > 1 and (p+ a)s > (n + 1)a.

(iii) For each natural number n, o > 0 and p > na,

(pta)s—a (pto)s—a

Ky (m ™55 M 1) At > (4% Bra%)”

holds for all s > 1.

(iv) Mp(p)AP > BP holds for all p > 0, where h = M > 1.

5 Further extentions of our results

In the previous section, we rewrote our results into more simple form. In this section, we consider
whether the domain of s can be extended or not. In Theorem 1, Corollary 2, Theorem 3 and Theorem
4, the parameter s is restricted to s > 1. Even after rewriting into simple form, this restriction does
not be relaxed. Practically, we can find that this restriction derives from Proposition 5 or Proposition
5’. In other words, it derives from Theorem G.

Contrary to Proposition 5°, we have the following result as an application of Theorem F.
Proposition 7. Let A and B be positive invertible operators. If log A > log B, then

(4.4) AT > (A5 (AT BPAT) AT

1
q

holds for any p >0, >0,5>0,r >0 and q > 1 such that (a+7)g> (p+ a)s+r.

We remark that Proposition 7 is an immediate corollary of [23, Theorem 1], which is a function
version of Proposition 7.

Proof of Proposition 7. (i) Case a > 0. By Theorem A.2, log A > log B implies the following (5.1):
(5.1) A® > (A2 BPA%)5+= for p> 0 and a > 0.
Put A; = A* and B; = (A BPA%)#+=, then A; > B; > 0 by (5.1). By Theorem F,

p1tm

52 A G A

holds for p; > 0, 71 >0 and ¢ > 1 with (1 +71)g > p1 +r1. (5.2) is equivalent to the following (5.3):
1

(53) A(Pl-*:lrl)a _>__ {A%(A%BPA%)Q_‘:ATEA}q )

Put s = z%r% and r = r;«, then the conditions p; = g%a)s >0,rp=L>0and (1+r1)g>p1+1
are equivalent to s > 0, 7 > 0 and (a+7)g > (p + a)s + r, respectively, and (5.3) can be rewritten as
follows:

(4.4) A

(pteo)s+r
q

> {A5(ABBPAT) AR}
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forp>0,a>0,8s>0,r>0and ¢g>1with (a+7)g>(p+a)s+r.
(ii) Case a = 0. (4.4) can be rewritten as follows:

(5.4) ABEE > (AR BPoAR)S.

(5.4) holds for p >0, s > 0,7 > 0 and g > 1 such that rq > ps + r by Theorem A.2.
Consequently, the proof of Proposition 7 is complete. O

By comparing Proposition 5’, an application of Theorem G, with Proposition 7, an application of
Theorem F, we can find that Proposition 7 is an extension of Proposition 5’ since the inequalities are
the same but the domain s > 0 of Proposition 7 includes the domain s > 1 of Proposition 5’.

We have the following results which are extensions of Theorem 1’ and Theorem 3’ by using Propo-
sition 7 instead of Proposition 5’,

Theorem 8. Let A and B be positive invertible operators. Then for each natural number n, the
following assertions are mutually equivalent:

(i) log A > log B.

(ii) For each a > 0, p > 0, s > 0 and r > max{0,1(p+a)s - %la}, there exists the unique
invertible positive contraction T = T(n,a,p,s,r) satisfying

(5.5) T(AREET) = AR (4% prat)” TR

(iii) For each a > 0, p > 0 and s > 0, there exists the unique invertible positive contraction T =
T(n,a,p,s) satisfying

(pta)s a xS
n

T(A®F*T)" = (A5 BPA%)" .

(iv) For each p > 0, there exists the unique invertible positive contraction T = T(n,p) satisfying
T(A=T)" = BP.

Theorem 9. Let A and B be positive invertible operators satisfying MI > A > mI > 0, and let
K, (m,M,p) and My(p) be defined in (1.2) and (1.3), respectively. Then the following assertions are
mutually equivalent:

(i) log A > log B.

(ii) For each natural number n,a>0andp >0,

(pta)str (pta)s+r

(5.6) K, (m n M AT n 4 1) Alpta)s > (A%BPA%)S

holds for s > 0 and r > max {0, 2 (p + a)s — 2tla}.

(iii) For each natural number n, a > 0 and p > 0,

(pta)s—o (pta)s—a

K+(m el Ve ,n+1)A(P+°‘)32(A%B”A%)S

holds for s > 0 such that (p+ a)s > (n + 1)a.

(iv) For each natural number n and p > 0,
K, (m%,Mﬁ-,n + 1) AP > BP

holds.



161

(mP + MP)?
) 4mp MP

(vi) My(p)AP > BF holds for all p > 0, where h = 4 > 1,

AP > BP holds for all p > 0.

Proofs of Theorem 8 and Theorem 9 are slight modification of proofs of Theorem 1 and Theorem

3, respectivery. So that we omit describe their proofs.

By Comparmg the new results Theorem 8 and Theorem 9 with the refined former results Theorem
1’, Corollary 2’, Theorem 3’ and Theorem 4’, it turns out that the new results are extensions of the
former results since the domain s > 0 of the new results includes the domain s > 1 of the former

results. This fact is based on Proposition 5’ and Proposition 7 which are used in the proofs of the
former and new results, respectively.
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